1
|
Aughton K, Hattersley J, Coupland SE, Kalirai H. Revealing the structural microenvironment of high metastatic risk uveal melanomas following decellularisation. Sci Rep 2024; 14:26811. [PMID: 39500968 PMCID: PMC11538295 DOI: 10.1038/s41598-024-78171-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/29/2024] [Indexed: 11/08/2024] Open
Abstract
Uveal melanoma (UM) is a rare aggressive intraocular tumour that spreads most commonly to the liver in tumours with loss of one copy of chromosome 3 (HR-M3); current treatments for metastatic disease remain largely ineffective. Pre-clinical research is increasingly using three-dimensional models that better recapitulate the tumour microenvironment (TME). One aspect of the TME is the acellular extracellular matrix (ECM) that influences cell proliferation, migration and response to therapy. Although commercial matrices are used in culture, the composition and biochemical properties may not be representative of the tumour ECM in vivo. This study identifies UM metastatic risk specific ECM proteins by developing methodology for decellularisation of low- and high- metastatic risk tissue samples (LR-D3 vs. HR-M3). Proteomic analysis revealed a matrisome signature of 34 core ECM and ECM-associated proteins upregulated in HR-M3 UM. Combining additional UM secretome and whole cell iTRAQ proteomic datasets revealed enriched GO and KEGG pathways including 'regulating ECM binding' and 'PI3K/Akt signalling'. Structural analyses of decellularised matrices revealed microarchitecture of differing fibre density and expression differences in collagen 4, collagen 6A1 and nidogen 1, between metastatic risk groups. This approach is a powerful tool for the generation of ECM matrices relevant to high metastatic risk UM.
Collapse
Affiliation(s)
- Karen Aughton
- Liverpool Ocular Oncology Research Group, Department of Eye and Vision Science, Institute of Life Course and Medical Science, University of Liverpool, 3rd Floor William Henry Duncan Building, West Derby Street, Liverpool, L7 8TX, UK.
| | - Joshua Hattersley
- Liverpool Ocular Oncology Research Group, Department of Eye and Vision Science, Institute of Life Course and Medical Science, University of Liverpool, 3rd Floor William Henry Duncan Building, West Derby Street, Liverpool, L7 8TX, UK
| | - Sarah E Coupland
- Liverpool Ocular Oncology Research Group, Department of Eye and Vision Science, Institute of Life Course and Medical Science, University of Liverpool, 3rd Floor William Henry Duncan Building, West Derby Street, Liverpool, L7 8TX, UK
- Liverpool Clinical Laboratories, Liverpool University Hospital Foundation Trust, Liverpool, UK
| | - Helen Kalirai
- Liverpool Ocular Oncology Research Group, Department of Eye and Vision Science, Institute of Life Course and Medical Science, University of Liverpool, 3rd Floor William Henry Duncan Building, West Derby Street, Liverpool, L7 8TX, UK
- Liverpool Clinical Laboratories, Liverpool University Hospital Foundation Trust, Liverpool, UK
| |
Collapse
|
2
|
Grenell A, Singh C, Raju M, Wolk A, Dalvi S, Jang GF, Crabb JS, Hershberger CE, Manian KV, Hernandez K, Crabb JW, Singh R, Du J, Anand-Apte B. Tissue Inhibitor of Metalloproteinase 3 (TIMP3) mutations increase glycolytic activity and dysregulate glutamine metabolism in RPE cells. Mol Metab 2024; 88:101995. [PMID: 39047907 PMCID: PMC11344013 DOI: 10.1016/j.molmet.2024.101995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024] Open
Abstract
OBJECTIVES Mutations in Tissue Inhibitor of Metalloproteinases 3 (TIMP3) cause Sorsby's Fundus Dystrophy (SFD), a dominantly inherited, rare form of macular degeneration that results in vision loss. TIMP3 is synthesized primarily by retinal pigment epithelial (RPE) cells, which constitute the outer blood-retinal barrier. One major function of RPE is the synthesis and transport of vital nutrients, such as glucose, to the retina. Recently, metabolic dysfunction in RPE cells has emerged as an important contributing factor in retinal degenerations. We set out to determine if RPE metabolic dysfunction was contributing to SFD pathogenesis. METHODS Quantitative proteomics was conducted on RPE of mice expressing the S179C variant of TIMP3, known to be causative of SFD in humans. Proteins found to be differentially expressed (P < 0.05) were analyzed using statistical overrepresentation analysis to determine enriched pathways, processes, and protein classes using g:profiler and PANTHER Gene Ontology. We examined the effects of mutant TIMP3 on RPE metabolism using human ARPE-19 cells expressing mutant S179C TIMP3 and patient-derived induced pluripotent stem cell-derived RPE (iRPE) carrying the S204C TIMP3 mutation. RPE metabolism was directly probed using isotopic tracing coupled with GC/MS analysis. Steady state [U-13C6] glucose isotopic tracing was preliminarily conducted on S179C ARPE-19 followed by [U-13C6] glucose and [U-13C5] glutamine isotopic tracing in SFD iRPE cells. RESULTS Quantitative proteomics and enrichment analysis conducted on RPE of mice expressing mutant S179C TIMP3 identified differentially expressed proteins that were enriched for metabolism-related pathways and processes. Notably these results highlighted dysregulated glycolysis and glucose metabolism. Stable isotope tracing experiments with [U-13C6] glucose demonstrated enhanced glucose utilization and glycolytic activity in S179C TIMP3 APRE-19 cells. Similarly, [U-13C6] glucose tracing in SFD iRPE revealed increased glucose contribution to glycolysis and the TCA cycle. Additionally, [U-13C5] glutamine tracing found evidence of altered malic enzyme activity. CONCLUSIONS This study provides important information on the dysregulation of RPE glucose metabolism in SFD and implicates a potential commonality with other retinal degenerative diseases, emphasizing RPE cellular metabolism as a therapeutic target.
Collapse
Affiliation(s)
- Allison Grenell
- Case Western Reserve University, Department of Pharmacology, Cleveland, OH, USA; Cole Eye Institute, Department of Ophthalmic Research, Cleveland Clinic Foundation, Cleveland, OH, USA.
| | | | - Monisha Raju
- Cole Eye Institute, Department of Ophthalmic Research, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Alyson Wolk
- Cole Eye Institute, Department of Ophthalmic Research, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Sonal Dalvi
- University of Rochester, Department of Ophthalmology, Rochester, NY, USA
| | - Geeng-Fu Jang
- Cole Eye Institute, Department of Ophthalmic Research, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - John S Crabb
- Cole Eye Institute, Department of Ophthalmic Research, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Courtney E Hershberger
- Cleveland Clinic Lerner Research Institute, Department of Quantitative Health Sciences, USA
| | - Kannan V Manian
- University of Rochester, Department of Ophthalmology, Rochester, NY, USA
| | - Karen Hernandez
- Case Western Reserve University, Department of Pharmacology, Cleveland, OH, USA; Cole Eye Institute, Department of Ophthalmic Research, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - John W Crabb
- Cole Eye Institute, Department of Ophthalmic Research, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Ruchira Singh
- University of Rochester, Department of Ophthalmology, Rochester, NY, USA
| | - Jianhai Du
- West Virginia University, Department of Ophthalmology and Visual Sciences, Department of Biochemistry and Molecular Medicine, Morgantown, WV, USA
| | - Bela Anand-Apte
- Cole Eye Institute, Department of Ophthalmic Research, Cleveland Clinic Foundation, Cleveland, OH, USA; Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Dept. of Ophthalmology, Cleveland, OH, USA.
| |
Collapse
|
3
|
Zhao Y, Wang L, Li X, Jiang J, Ma Y, Guo S, Zhou J, Li Y. Programmed Cell Death-Related Gene Signature Associated with Prognosis and Immune Infiltration and the Roles of HMOX1 in the Proliferation and Apoptosis were Investigated in Uveal Melanoma. Genes Genomics 2024; 46:785-801. [PMID: 38767825 PMCID: PMC11208274 DOI: 10.1007/s13258-024-01521-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/24/2024] [Indexed: 05/22/2024]
Abstract
BACKGROUND Uveal melanoma (UVM) is the most common primary ocular malignancy, with a wide range of symptoms and outcomes. The programmed cell death (PCD) plays an important role in tumor development, diagnosis, and prognosis. There is still no research on the relationship between PCD-related genes and UVM. A novel PCD-associated prognostic model is urgently needed to improve treatment strategies. OBJECTIVE We aim to screen PCD-related prognostic signature and investigate its proliferation ability and apoptosis in UVM cells. METHODS The clinical information and RNA-seq data of the UVM patients were collected from the TCGA cohort. All the patients were classified using consensus clustering by the selected PCD-related genes. After univariate Cox regression and PPI network analysis, the prognostic PCD-related genes were then submitted to the LASSO regression analysis to build a prognostic model. The level of immune infiltration of 8-PCD signature in high- and low-risk patients was analyzed using xCell. The prediction on chemotherapy and immunotherapy response in UVM patients was assessed by GDSC and TIDE algorithm. CCK-8, western blot and Annexin V-FITC/PI staining were used to explore the roles of HMOX1 in UVM cells. RESULTS A total of 8-PCD signature was constructed and the risk score of the PCD signature was negatively correlated with the overall survival, indicating strong predictive ability and independent prognostic value. The risk score was positively correlated with CD8 Tcm, CD8 Tem and Th2 cells. Immune cells in high-risk group had poorer overall survival. The drug sensitivity demonstrated that cisplatin might impact the progression of UVM and better immunotherapy responsiveness in the high-risk group. Finally, Overespression HMOX1 (OE-HMOX1) decreased the cell viability and induced apoptosis in UVM cells. Recuse experiment results showed that ferrostatin-1 (fer-1) protected MP65 cells from apoptosis and necrosis caused by OE-HMOX1. CONCLUSION The PCD signature may have a significant role in the tumor microenvironment, clinicopathological characteristics, prognosis and drug sensitivity. More importantly, HMOX1 depletion greatly induced tumor cell growth and inhibited cell apoptosis and fer-1 protected UVM cells from apoptosis and necrosis induced by OE-HMOX1. This work provides a foundation for effective therapeutic strategy in tumour treatment.
Collapse
Affiliation(s)
- Yubao Zhao
- Department of Ophthalmology, Fuyang Cancer Hospital of Fuyang Normal University, Fuyang, 236000, Anhui, China
| | - Liang Wang
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510000, Guangdong, China
| | - Xiaoyan Li
- Department of Science and Education, Fuyang Cancer Hospital of Fuyang Normal University, Fuyang, 236000, Anhui, China
| | - Junzhi Jiang
- Department of Ophthalmology, Fuyang Cancer Hospital of Fuyang Normal University, Fuyang, 236000, Anhui, China
| | - Yan Ma
- Department of Ophthalmology, Fuyang Cancer Hospital of Fuyang Normal University, Fuyang, 236000, Anhui, China
| | - Shuxia Guo
- Department of Ophthalmology, Fuyang Cancer Hospital of Fuyang Normal University, Fuyang, 236000, Anhui, China
| | - Jinming Zhou
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510000, Guangdong, China
| | - Yingjun Li
- Department of Ophthalmology, Fuyang People's Hospital of Anhui Medical University, Fuyang, 236000, Anhui, China.
| |
Collapse
|
4
|
Midena G, Parrozzani R, Frizziero L, Esposito G, Micera A, Midena E. Expression of GNAQ, BAP1, SF3B1, and EIF1AX Proteins in the Aqueous Humor of Eyes Affected by Uveal Melanoma. Invest Ophthalmol Vis Sci 2024; 65:15. [PMID: 38175637 PMCID: PMC10774693 DOI: 10.1167/iovs.65.1.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2024] Open
Abstract
Purpose The purpose of this study was to quantify specific aqueous humor (AH) proteins in eyes affected by posterior uveal melanoma (UM). Methods Thirty-six eyes affected by primary UM were included. Tumor thickness and largest basal diameter were specific clinical characteristics. Tumors were staged with the American Joint Commission on Cancer Eighth Edition (AJCC) classification. During the brachytherapy (Iodine-125) surgical procedure, both the AH sample collection and the 25-gauge transscleral fine needle aspiration biopsy (FNAB) were performed. AH samples were analyzed by immunoprecipitation and SDS PAGE techniques to quantify GNAQ, BAP1, SF3B1, and EIF1AX proteins. Cytologic material underwent fluorescence in situ hybridization for chromosome 3. The AH of 36 healthy eyes was used as the control group. Cluster analysis of groups was also performed. Results Compared with the control group, significantly higher protein levels of: GNAQ (P = 0.02), BAP1 (P = 0.01), and SF3B1 (P = 0.02) were detected in eyes with UM. Cluster analysis of UM group revealed 2 clusters, one showing higher expression of GNAQ and BAP1 protein and one of EIF1AX protein. Moreover, the 2 clusters corresponded with the chromosome 3 status of UM. Conclusions Specific and selected proteins may be detected in the AH of eyes affected by UM. These findings confirm the possibilities provided by AH analysis in UM.
Collapse
Affiliation(s)
| | | | - Luisa Frizziero
- Department of Ophthalmology, University of Padova, Padova, Italy
| | | | | | - Edoardo Midena
- IRCCS–Fondazione Bietti, Rome, Italy
- Department of Ophthalmology, University of Padova, Padova, Italy
| |
Collapse
|
5
|
Onken MD, Erdmann-Gilmore P, Zhang Q, Thapa K, King E, Kaltenbronn KM, Noda SE, Makepeace CM, Goldfarb D, Babur Ö, Townsend RR, Blumer KJ. Protein Kinase Signaling Networks Driven by Oncogenic Gq/11 in Uveal Melanoma Identified by Phosphoproteomic and Bioinformatic Analyses. Mol Cell Proteomics 2023; 22:100649. [PMID: 37730182 PMCID: PMC10616553 DOI: 10.1016/j.mcpro.2023.100649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/22/2023] [Accepted: 09/17/2023] [Indexed: 09/22/2023] Open
Abstract
Metastatic uveal melanoma (UM) patients typically survive only 2 to 3 years because effective therapy does not yet exist. Here, to facilitate the discovery of therapeutic targets in UM, we have identified protein kinase signaling mechanisms elicited by the drivers in 90% of UM tumors: mutant constitutively active G protein α-subunits encoded by GNAQ (Gq) or GNA11 (G11). We used the highly specific Gq/11 inhibitor FR900359 (FR) to elucidate signaling networks that drive proliferation, metabolic reprogramming, and dedifferentiation of UM cells. We determined the effects of FR on the proteome and phosphoproteome of UM cells as indicated by bioinformatic analyses with CausalPath and site-specific gene set enrichment analysis. We found that inhibition of oncogenic Gq/11 caused deactivation of PKC, Erk, and the cyclin-dependent kinases CDK1 and CDK2 that drive proliferation. Inhibition of oncogenic Gq/11 in UM cells with low metastatic risk relieved inhibitory phosphorylation of polycomb-repressive complex subunits that regulate melanocytic redifferentiation. Site-specific gene set enrichment analysis, unsupervised analysis, and functional studies indicated that mTORC1 and 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 2 drive metabolic reprogramming in UM cells. Together, these results identified protein kinase signaling networks driven by oncogenic Gq/11 that regulate critical aspects of UM cell biology and provide targets for therapeutic investigation.
Collapse
Affiliation(s)
- Michael D Onken
- Department of Biochemistry and Molecular Biophysics, Washington University in St Louis, St Louis, Missouri, USA.
| | | | - Qiang Zhang
- Department of Medicine, Washington University in St Louis, St Louis, Missouri, USA
| | - Kisan Thapa
- Department of Computer Science, University of Massachusetts Boston, Boston, Massachusetts, USA
| | - Emily King
- Department of Cell Biology and Physiology, Washington University in St Louis, St Louis, Missouri, USA
| | - Kevin M Kaltenbronn
- Department of Cell Biology and Physiology, Washington University in St Louis, St Louis, Missouri, USA
| | - Sarah E Noda
- Department of Cell Biology and Physiology, Washington University in St Louis, St Louis, Missouri, USA
| | - Carol M Makepeace
- Department of Cell Biology and Physiology, Washington University in St Louis, St Louis, Missouri, USA
| | - Dennis Goldfarb
- Department of Cell Biology and Physiology, Washington University in St Louis, St Louis, Missouri, USA
| | - Özgün Babur
- Department of Computer Science, University of Massachusetts Boston, Boston, Massachusetts, USA
| | - R Reid Townsend
- Department of Medicine, Washington University in St Louis, St Louis, Missouri, USA
| | - Kendall J Blumer
- Department of Cell Biology and Physiology, Washington University in St Louis, St Louis, Missouri, USA.
| |
Collapse
|
6
|
Zhang C, Wu S. BAP1 mutations inhibit the NF-κB signaling pathway to induce an immunosuppressive microenvironment in uveal melanoma. Mol Med 2023; 29:126. [PMID: 37710185 PMCID: PMC10503157 DOI: 10.1186/s10020-023-00713-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 08/14/2023] [Indexed: 09/16/2023] Open
Abstract
BACKGROUND Tumor immune microenvironment regulates the growth and metastasis of uveal melanoma (UM). This study aims to reveal the possible molecular mechanism of BRCA1-associated protein 1 (BAP1) mutations in affecting the tumor immune microenvironment in UM through mediating the nuclear factor-κB (NF-κB) signaling pathway. METHODS TCGA and cBioPortal databases jointly analyzed the genes with high mutation frequency in UM samples. Following survival analysis of UM patients, UM samples with BAP1 mutations were subjected to immune cell infiltration analysis. The signaling pathways associated with the mutated genes were screened by GSEA. Subsequently, the differential BAP1 expression was analyzed in the selected UM cell lines with wild type (WT) or mutant type (MUT) BAP1. RESULTS Bioinformatics analysis identified 12 genes mutated in the UM samples, while only BAP1 mutations were related to the prognosis of UM patients. UM patients with BAP1 mutations had higher immune cell infiltration. BAP1 mutations inhibited the NF-κB signaling pathway, suppressing the cytokine secretion and antigen presentation by macrophages. Rescue experiments confirmed that overexpressed NF-κB could reverse the effect of BAP1 mutations on the immunosuppressive microenvironment, thus suppressing the malignant phenotypes of UM cells. CONCLUSION BAP1 mutations may inhibit the NF-κB signaling pathway, repressing the cytokine secretion and antigen presentation by macrophages, which induces the immunosuppressive microenvironment, enhances the malignant phenotypes of UM cells and ultimately promotes the growth and metastasis of UM.
Collapse
Affiliation(s)
- Chao Zhang
- Department of Strabismus and Pediatric Ophthalmology, the Second Hospital of Jilin University, Changchun, 130041, P. R. China
| | - Shuai Wu
- Department of Orbital Disease and Ocular Plastic Surgery, the Second Hospital of Jilin University, No. 218, Ziqiang Street, Nanguan District, Changchun, Jilin Province, 130041, P. R. China.
| |
Collapse
|
7
|
Wang H, Zhao S, Liu Y, Sun F, Huang X, Wu T. Sclerostin Suppression Facilitates Uveal Melanoma Progression Through Activating Wnt/β-Catenin Signaling Via Binding to Membrane Receptors LRP5/LRP6. Front Oncol 2022; 12:898047. [PMID: 35785219 PMCID: PMC9248439 DOI: 10.3389/fonc.2022.898047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 04/28/2022] [Indexed: 11/13/2022] Open
Abstract
Objective Uveal melanoma (UM) is the most frequent primary eye cancer in adults with a 50% mortality rate. Characterizing the fundamental signaling pathways that drive UM is of importance for the development of targeted therapy. This study aims to probe the impact of sclerostin (SOST) on malignant progression of UM and regulation of Wnt/β-catenin signaling. Methods Epithelial-type (n=20) and spindle-type (n=16) UM tissues were collected for immunohistochemical staining of SOST, Wnt-1, and β-catenin expressions. SOST was silenced in three UM cell lines (primary spindle-type OCM-1 cells, metastatic epithelial Mum-2B cells, and metastatic spindle-type Mum-2C cells) through transfecting specific siRNA. RT-qPCR and Western blot were presented for examining the levels of SOST, and markers in Wnt/β-catenin signaling. Flow cytometry, MTT, EdU, transwell, and tube formation assays were conducted, respectively. By implanting BALB/c nude murine models in situ, the function of SOST on tumor growth was investigated, followed by immunofluorescence double staining of SOST and LRP5/6. Results Low SOST expression as well as high Wnt-1 and β-catenin expressions were found in epithelial-type (high malignancy) than spindle-type (low malignancy) UM tissues. Silencing SOST activated the markers in Wnt/β-catenin signaling as well as accelerated cell cycle progression, migration, invasion, angiogenesis, and reduced apoptosis in UM cells. In situ tumor formation in murine eyes showed that SOST knockdown promoted tumor growth. Moreover, SOST interacted with LRP5/LRP6. Conclusion SOST silencing may facilitate the malignant progression of UM cells through activating Wnt/β-catenin signaling. Mechanistically, SOST may exert this function by interacting with LRP5/LRP6 membrane receptors.
Collapse
Affiliation(s)
- Hanqing Wang
- Department of Orbital Disease and Oculoplastic Surgery, Sichuan Eye Hospital, Aier Eye Hospital Group, Chengdu, China
- Department of Orbital Disease and Oculoplastic Surgery, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Sidi Zhao
- Department of Orbital Disease and Oculoplastic Surgery, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Yang Liu
- Research and Development Department, Microsensor Labs, Chicago, IL, United States
| | - Fengyuan Sun
- Department of Orbital Disease and Oculoplastic Surgery, Sichuan Eye Hospital, Aier Eye Hospital Group, Chengdu, China
- Department of Orbital Disease and Oculoplastic Surgery, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Xiaoming Huang
- Department of Orbital Disease and Oculoplastic Surgery, Sichuan Eye Hospital, Aier Eye Hospital Group, Chengdu, China
- Department of Orbital Disease and Oculoplastic Surgery, Tianjin Medical University Eye Hospital, Tianjin, China
- *Correspondence: Tong Wu, ; Xiaoming Huang,
| | - Tong Wu
- Department of Orbital Disease and Oculoplastic Surgery, Sichuan Eye Hospital, Aier Eye Hospital Group, Chengdu, China
- Department of Orbital Disease and Oculoplastic Surgery, Tianjin Medical University Eye Hospital, Tianjin, China
- *Correspondence: Tong Wu, ; Xiaoming Huang,
| |
Collapse
|
8
|
Cai MY, Xu YL, Rong H, Yang H. Low Level of PALMD Contributes to the Metastasis of Uveal Melanoma. Front Oncol 2022; 12:802941. [PMID: 35494064 PMCID: PMC9043551 DOI: 10.3389/fonc.2022.802941] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 03/16/2022] [Indexed: 11/13/2022] Open
Abstract
Uveal melanoma (UM) is a highly aggressive disease. There is an urgent need to develop the metastasis prediction markers of UM. This study aims to detect the key role of PALMD in UM metastasis. Transcriptome sequencing results of 2 sets of UM metastatic samples (GSE22138 and GSE156877) were downloaded from the Gene Expression Omnibus (GEO), and 18 overlapping differentially expressed genes were screened out, including PALMD. PALMD was significantly underexpressed in metastatic UM tissue. Low expression of PALMD was associated with poor prognosis in UM patients. The decreased expression of PALMD promoted the invasion and migration of 92-1 and Mel270 cells, while the high expression of PALMD inhibited the invasion and migration of UM cells. Furthermore, the levels of matrix metallopeptidase (MMP) 2 and MMP9 increased after transfection of siRNAs specifically targeting PALMD, whereas the levels of MMP2 and MMP9 were decreased after PALMD overexpression. However, PALMD did not affect the proliferation of UM cells. In addition, ZNF263 promoted the transcription of PALMD through the putative binding sequence using the JASPAR database, luciferase reporter gene analysis and chromatin immunoprecipitation assay. In summary, the expression of PALMD regulated by ZNF263 plays an important role in UM metastasis.
Collapse
Affiliation(s)
- Min-Yun Cai
- Department of Ophthalmology, Shanghai East Hospital, Shanghai, China
| | - Yue-Li Xu
- Department of Ophthalmology, Shanghai East Hospital, Shanghai, China
| | - Hua Rong
- Department of Ophthalmology, Shanghai Jiangong Hospital, Shanghai, China
| | - Hai Yang
- Department of Ophthalmology, Shanghai East Hospital, Shanghai, China
| |
Collapse
|
9
|
Abstract
PURPOSE OF REVIEW This article reviews the latest proteomic research on uveal melanoma. RECENT FINDINGS Proteomic analysis of uveal melanoma cell lines and tissue specimens has improved our understanding of the pathophysiology of uveal melanoma and helped identify potential prognostic biomarkers. Circulating proteins in patient serum may aid in the surveillance of metastatic disease. The proteomes of aqueous and vitreous biopsy specimens may provide safer biomarkers for metastatic risk and candidate therapeutic targets in uveal melanoma. Proteomic analysis has the potential to benefit patient outcomes by improving diagnosis, prognostication, surveillance, and treatment of uveal melanoma. SUMMARY These recent findings demonstrate that proteomic analysis is an important area of research to better understand the pathophysiology of uveal melanoma and improve the personalized management of our patients.
Collapse
Affiliation(s)
- Michael J. Heiferman
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL, USA
- Department of Ophthalmology, Byers Eye Institute, Stanford University, Palo Alto, CA, USA
| | - Vinit B. Mahajan
- Department of Ophthalmology, Byers Eye Institute, Stanford University, Palo Alto, CA, USA
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304 USA
| | - Prithvi Mruthyunjaya
- Department of Ophthalmology, Byers Eye Institute, Stanford University, Palo Alto, CA, USA
- Department of Radiation Oncology, Stanford University, Palo Alto, CA, USA
| |
Collapse
|
10
|
Prognostic Biomarkers in Uveal Melanoma: The Status Quo, Recent Advances and Future Directions. Cancers (Basel) 2021; 14:cancers14010096. [PMID: 35008260 PMCID: PMC8749988 DOI: 10.3390/cancers14010096] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/15/2021] [Accepted: 12/23/2021] [Indexed: 01/18/2023] Open
Abstract
Simple Summary Although rare, uveal melanoma (UM) is the most common cancer that develops inside adult eyes. The prognosis is poor, since 50% of patients will develop lethal metastases in the first decade, especially to the liver. Once metastases are detected, life expectancy is limited, given that the available treatments are mostly unsuccessful. Thus, there is a need to find methods that can accurately predict UM prognosis and also effective therapeutic strategies to treat this cancer. In this manuscript, we initially compile the current knowledge on epidemiological, clinical, pathological and molecular features of UM. Then, we cover the most relevant prognostic factors currently used for the evaluation and follow-up of UM patients. Afterwards, we highlight emerging molecular markers in UM published over the last three years. Finally, we discuss the problems preventing meaningful advances in the treatment and prognostication of UM patients, as well as forecast new roadblocks and paths of UM-related research. Abstract Uveal melanoma (UM) is the most common malignant intraocular tumour in the adult population. It is a rare cancer with an incidence of nearly five cases per million inhabitants per year, which develops from the uncontrolled proliferation of melanocytes in the choroid (≈90%), ciliary body (≈6%) or iris (≈4%). Patients initially present either with symptoms like blurred vision or photopsia, or without symptoms, with the tumour being detected in routine eye exams. Over the course of the disease, metastases, which are initially dormant, develop in nearly 50% of patients, preferentially in the liver. Despite decades of intensive research, the only approach proven to mildly control disease spread are early treatments directed to ablate liver metastases, such as surgical excision or chemoembolization. However, most patients have a limited life expectancy once metastases are detected, since there are limited therapeutic approaches for the metastatic disease, including immunotherapy, which unlike in cutaneous melanoma, has been mostly ineffective for UM patients. Therefore, in order to offer the best care possible to these patients, there is an urgent need to find robust models that can accurately predict the prognosis of UM, as well as therapeutic strategies that effectively block and/or limit the spread of the metastatic disease. Here, we initially summarized the current knowledge about UM by compiling the most relevant epidemiological, clinical, pathological and molecular data. Then, we revisited the most important prognostic factors currently used for the evaluation and follow-up of primary UM cases. Afterwards, we addressed emerging prognostic biomarkers in UM, by comprehensively reviewing gene signatures, immunohistochemistry-based markers and proteomic markers resulting from research studies conducted over the past three years. Finally, we discussed the current hurdles in the field and anticipated the future challenges and novel avenues of research in UM.
Collapse
|