1
|
Xie D, Huang H, Guo Y, Jiang Z, Kuang Y, Huang H, Liu W, Wang L, Xin Z, Wang B, Ren C, Jiang X. Integrated profiling identifies ferredoxin 1 as an immune-related biomarker of malignant phenotype in glioma. Heliyon 2024; 10:e26976. [PMID: 38463788 PMCID: PMC10923675 DOI: 10.1016/j.heliyon.2024.e26976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/18/2024] [Accepted: 02/22/2024] [Indexed: 03/12/2024] Open
Abstract
Background Glioma, a highly resistant and recurrent type of central nervous system tumor, poses a significant challenge in terms of effective drug treatments and its associated mortality rates. Despite the discovery of Ferredoxin 1 (FDX1) as a crucial participant in cuproptosis, an innovative mechanism of cellular demise, its precise implications for glioma prognosis and tumor immune infiltration remain inadequately elucidated. Methods To analyze pan-cancer data, we employed multiple public databases. Gene expression evaluation was performed using tissue microarray (TMA) and single-cell sequencing data. Furthermore, four different approaches were employed to assess the prognostic importance of FDX1 in glioma. We conducted the analysis of differential expression genes (DEGs) and Gene Set Enrichment Analysis (GSEA) to identify immune-related predictive signaling pathways. Somatic mutations were assessed using Tumor Mutation Burden (TMB) and waterfall plots. Immune cell infiltration was evaluated with five different algorithms. Furthermore, we performed in vitro investigations to evaluate the biological roles of FDX1 in glioma. Results Glioma samples exhibited upregulation of FDX1, which in turn predicted poor prognosis and was positively associated with unfavorable clinicopathological characteristics. Notably, the top four enriched signaling pathways were immune-related, and the discovery revealed a connection between the expression of FDX1 and the frequency of mutations or the TMB. The FDX1_high group exhibited heightened infiltration of immune cells, and there existed a direct association between the expression of FDX1 and the regulation of immune checkpoint. In vitro experiments demonstrated that FDX1 knockdown reduced proliferation, migration, invasion and transition from G2 to M phase in glioma cells. Conclusion In glioma, FDX1 demonstrated a positive association with the advancement of malignancy and changes in the infiltration of immune cells.
Collapse
Affiliation(s)
- Dongcheng Xie
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Hailong Huang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Youwei Guo
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Zhipeng Jiang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Yirui Kuang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Haoxuan Huang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Weidong Liu
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China
- The NHC Key Laboratory of Carcinogenesis and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, China
| | - Lei Wang
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China
- The NHC Key Laboratory of Carcinogenesis and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, China
| | - Zhaoqi Xin
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Binbin Wang
- Department of Neurosurgery, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing, China
| | - Caiping Ren
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China
- The NHC Key Laboratory of Carcinogenesis and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, China
| | - Xingjun Jiang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
2
|
Tripathy DK, Panda LP, Biswal S, Barhwal K. Insights into the glioblastoma tumor microenvironment: current and emerging therapeutic approaches. Front Pharmacol 2024; 15:1355242. [PMID: 38523646 PMCID: PMC10957596 DOI: 10.3389/fphar.2024.1355242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/07/2024] [Indexed: 03/26/2024] Open
Abstract
Glioblastoma (GB) is an intrusive and recurrent primary brain tumor with low survivability. The heterogeneity of the tumor microenvironment plays a crucial role in the stemness and proliferation of GB. The tumor microenvironment induces tumor heterogeneity of cancer cells by facilitating clonal evolution and promoting multidrug resistance, leading to cancer cell progression and metastasis. It also plays an important role in angiogenesis to nourish the hypoxic tumor environment. There is a strong interaction of neoplastic cells with their surrounding microenvironment that comprise several immune and non-immune cellular components. The tumor microenvironment is a complex network of immune components like microglia, macrophages, T cells, B cells, natural killer (NK) cells, dendritic cells and myeloid-derived suppressor cells, and non-immune components such as extracellular matrix, endothelial cells, astrocytes and neurons. The prognosis of GB is thus challenging, making it a difficult target for therapeutic interventions. The current therapeutic approaches target these regulators of tumor micro-environment through both generalized and personalized approaches. The review provides a summary of important milestones in GB research, factors regulating tumor microenvironment and promoting angiogenesis and potential therapeutic agents widely used for the treatment of GB patients.
Collapse
Affiliation(s)
- Dev Kumar Tripathy
- Department of Physiology, All India Institute of Medical Sciences (AIIMS), Bhubaneswar, India
| | - Lakshmi Priya Panda
- Department of Physiology, All India Institute of Medical Sciences (AIIMS), Bhubaneswar, India
| | - Suryanarayan Biswal
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, India
| | - Kalpana Barhwal
- Department of Physiology, All India Institute of Medical Sciences (AIIMS), Bhubaneswar, India
| |
Collapse
|
3
|
Wang Q, Wang Z. Serpin family H member 1 and its related collagen gene network are the potential prognostic biomarkers and anticancer targets for glioma. J Biochem Mol Toxicol 2024; 38:e23541. [PMID: 37712121 DOI: 10.1002/jbt.23541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 08/02/2023] [Accepted: 09/01/2023] [Indexed: 09/16/2023]
Abstract
Serpin family H member 1 (SERPINH1) is responsible for encoding the protein known as heat shock protein 47, which functions as a molecular chaperone specific to collagen (COL). This protein has been identified as a potential therapeutic target for COL-related disorders. In this study, we aimed to investigate the role of SERPINH1 in the tumorigenicity of gliomas. To achieve this, we utilized various bioinformatics tools to analyze gene expression, overall survival, protein-protein interactions, Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment, and Gene Set Enrichment Analysis (GSEA). Based on The Cancer Genome Atlas database revealed that SERPINH1 and four COL family members (COL1A1, COL3A1, COL4A1, and COL4A2) expression are significantly upregulated in glioma tissues compared with normal nontumor tissues. GO, KEGG, and GSEA analyses exhibited that SERPINH1 is implicated in the establishment and degradation of COL-containing extracellular matrix (ECM), focal adhesion, and ECM-receptor interaction in glioma. SERPINH1 is an independent prognostic factor, exhibiting a positive association with the augmentation of neutrophils and macrophages, as well as the manifestation of immune checkpoint molecules within glioma. Experimental assessments conducted both in vitro and in vivo demonstrated that the suppression of SERPINH1 impeded the migratory, invasive, and proliferative capacities of glioma cells, while concurrently fostering cellular apoptosis. Consequently, SERPINH1 emerges as an oncogenic gene and an independent prognostic marker for glioma, potentially facilitating the advancement of immunotherapeutic interventions for the treatment of glioma.
Collapse
Affiliation(s)
- Qi Wang
- Department of Geriatrics, The First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Zhe Wang
- Department of Geriatrics, The First Hospital of Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
4
|
Daisy Precilla S, Kuduvalli SS, Biswas I, Bhavani K, Pillai AB, Thomas JM, Anitha TS. Repurposing synthetic and natural derivatives induces apoptosis in an orthotopic glioma-induced xenograft model by modulating WNT/β-catenin signaling. Fundam Clin Pharmacol 2023; 37:1179-1197. [PMID: 37458120 DOI: 10.1111/fcp.12932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 05/09/2023] [Accepted: 06/09/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND Glioblastomas arise from multistep tumorigenesis of the glial cells. Despite the current state-of-art treatment, tumor recurrence is inevitable. Among the innovations blooming up against glioblastoma, drug repurposing could provide profound premises for treatment enhancement. While considering this strategy, the efficacy of the repurposed drugs as monotherapies were not up to par; hence, the focus has now shifted to investigate the multidrug combinations. AIM To investigate the efficacy of a quadruple-combinatorial treatment comprising temozolomide along with chloroquine, naringenin, and phloroglucinol in an orthotopic glioma-induced xenograft model. METHODS Antiproliferative effect of the drugs was assessed by immunostaining. The expression profiles of WNT/β-catenin and apoptotic markers were evaluated by qRT-PCR, immunoblotting, and ELISA. Patterns of mitochondrial depolarization was determined by flow cytometry. TUNEL assay was performed to affirm apoptosis induction. In vivo drug detection study was carried out by ESI-Q-TOF MS analysis. RESULTS The quadruple-drug treatment had significantly hampered glioma proliferation and had induced apoptosis by modulating the WNT/β-catenin signaling. Interestingly, the induction of apoptosis was associated with mitochondrial depolarization. The quadruple-drug cocktail had breached the blood-brain barrier and was detected in the brain tissue and plasma samples. CONCLUSION The quadruple-drug combination served as a promising adjuvant therapy to combat glioblastoma lethality in vivo and can be probed for translation from bench to bedside.
Collapse
Affiliation(s)
- Senthilathiban Daisy Precilla
- Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to-be University), Puducherry, 607 403, India
| | - Shreyas S Kuduvalli
- Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to-be University), Puducherry, 607 403, India
| | - Indrani Biswas
- Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to-be University), Puducherry, 607 403, India
| | - Krishnamurthy Bhavani
- Department of Pathology, Mahatma Gandhi Medical College and Research Institute (MGMCRI), Sri Balaji Vidyapeeth (Deemed to-be University), Puducherry, 607 403, India
| | - Agieshkumar Balakrishna Pillai
- Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to-be University), Puducherry, 607 403, India
| | - Jisha Mary Thomas
- Catalysis and Energy Laboratory, Department of Chemistry, Pondicherry University, Puducherry, 605 014, India
| | - Thirugnanasambandhar Sivasubramanian Anitha
- Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to-be University), Puducherry, 607 403, India
- Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry, 605 014, India
| |
Collapse
|
5
|
Zhou J, Guo H, Liu L, Jin Z, Zhang W, Tang T. Identification of immune-related hub genes and construction of an immune-related gene prognostic index for low-grade glioma. J Cell Mol Med 2023; 27:3851-3863. [PMID: 37775993 PMCID: PMC10718158 DOI: 10.1111/jcmm.17960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 08/14/2023] [Accepted: 09/08/2023] [Indexed: 10/01/2023] Open
Abstract
Low-grade glioma (LGG) poses significant management challenges and has a dismal prognosis. While immunotherapy has shown significant promise in cancer treatment, its progress in glioma has confronted with challenges. In our study, we aimed to develop an immune-related gene prognostic index (IRGPI) which could be used to evaluate the response and efficacy of LGG patients with immunotherapy. We included a total of 529 LGG samples from TCGA database and 1152 normal brain tissue samples from the GTEx database. Immune-related differentially expressed genes (DEGs) were screened. Then, we used weighted gene co-expression network analysis (WGCNA) to identify immune-related hub genes in LGG patients and performed Cox regression analysis to construct an IRGPI. The median IRGPI was used as the cut-off value to categorize LGG patients into IRGPI-high and low subgroups, and the molecular and immune mechanism in IRGPI-defined subgroups were analysed. Finally, we explored the relationship between IRGPI-defined subgroups and immunotherapy related indicators in patients after immunotherapy. Three genes (RHOA, NFKBIA and CCL3) were selected to construct the IRGPI. In a survival analysis using TCGA cohort as a training set, patients in the IRGPI-low subgroup had a better OS than those in IRGPI-high subgroup, consistent with the results in CGGA cohort. The comprehensive results showed that IRGPI-low subgroup had a more abundant activated immune cell population and lower TIDE score, higher MSI, higher TMB score, lower T cell dysfunction score, more likely benefit from ICIs therapy. IRGPI is a promising biomarker in the field of LGG ICIs therapy to distinguish the prognosis, the molecular and immunological characteristics of patients.
Collapse
Affiliation(s)
- Jing Zhou
- Department of Oncology, Shanxi Province Academy of Traditional Chinese MedicineShanxi Province Hospital of Traditional Chinese MedicineTaiyuanChina
| | - Hao Guo
- Department of AnesthesiologyShanxi Provincial People's HospitalTaiyuanChina
| | - Likun Liu
- Department of Oncology, Shanxi Province Academy of Traditional Chinese MedicineShanxi Province Hospital of Traditional Chinese MedicineTaiyuanChina
| | - Zengcai Jin
- Department of Oncology, Shanxi Province Academy of Traditional Chinese MedicineShanxi Province Hospital of Traditional Chinese MedicineTaiyuanChina
| | - Wencui Zhang
- Department of Oncology, Shanxi Province Academy of Traditional Chinese MedicineShanxi Province Hospital of Traditional Chinese MedicineTaiyuanChina
| | - Tao Tang
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative MedicineXiangya Hospital, Central South UniversityChangshaChina
- National Clinical Research Center for Geriatric DisordersXiangya Hospital, Central South UniversityChangshaChina
| |
Collapse
|
6
|
Wang K, Zhao B, Ao Y, Zhu J, Zhao C, Wang W, Zou Y, Huang D, Zhong Y, Chen W, Qian H. Super-small zwitterionic micelles enable the improvement of blood-brain barrier crossing for efficient orthotopic glioblastoma combinational therapy. J Control Release 2023; 364:261-271. [PMID: 37839641 DOI: 10.1016/j.jconrel.2023.10.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 10/17/2023]
Abstract
Glioblastoma multiforme (GBM) remains incurable in clinical, nanotechnology-based drug delivery strategies show promising perspective in alleviating GBM, while limited blood-brain-barrier (BBB) permeation, short blood half-live accompanied by the poor tumor accumulation and penetration, significantly restrict the therapeutic outcomes. Herein, a versatile super-small zwitterionic nano-system (MCB(S)) based on carboxybetaine (CB) zwitterion functionalized hyperbranched polycarbonate (HPCB) is developed to overcome the brain delivery challenges. After grafting with amino-functionalized IR780 (free IR780), the ultimate paclitaxel (PTX)-encapsulated micelles (MCB(S)-IR@PTX) are precisely activated by near-infrared (NIR) for accelerated drug release and effective combinational GBM therapy. Importantly, MCB(S)-IR@PTX with the crosslinked structure and CB zwitterion prolongs blood-circulation, and CB-zwitterion further facilitates BBB-traversing through betaine/γ-aminobutyric acid (GABA) transporter-1 (BGT-1) pathway. Combined with the benefit of super small-size, MCB(S)-IR@PTX highly accumulates at tumor sites and penetrates deeply, thus efficiently inhibiting tumor growth and strikingly improving survival time in U87MG orthotopic GBM-bearing mouse model. The ingenious nanoplatform furnishes a versatile strategy for delivering therapeutics into the brain and realizing efficient brain cancer therapy.
Collapse
Affiliation(s)
- Ke Wang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Bingbing Zhao
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Yuli Ao
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Jinyu Zhu
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Changshun Zhao
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Wei Wang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Yan Zou
- Henan-Macquarie Uni Joint Centre for Biomedical Innovation, Academy for Advanced Interdisciplinary Studies, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China.
| | - Dechun Huang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China.
| | - Yinan Zhong
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Wei Chen
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China.
| | - Hongliang Qian
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
7
|
Tatebayashi K, Nakayama N, Sakamoto D, Iida T, Ono S, Matsuda I, Enomoto Y, Tanaka M, Fujita M, Hirota S, Yoshimura S. Clinical Significance of Early Venous Filling Detected via Preoperative Angiography in Glioblastoma. Cancers (Basel) 2023; 15:3800. [PMID: 37568616 PMCID: PMC10416945 DOI: 10.3390/cancers15153800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/18/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Preoperative angiography in glioblastoma (GBM) often shows arteriovenous shunts and early venous filling (EVF). Here, we investigated the clinical implications of EVF in GBM as a prognostic and vascular mimicry biomarker. In this retrospective multicenter study, we consecutively enrolled patients who underwent angiography with a GBM diagnosis between 1 April 2013 and 31 March 2021. The primary and secondary endpoints were the differences in overall survival (OS) and progression-free survival (PFS), respectively, between cases with and without EVF. Of the 133 initially enrolled patients, 91 newly diagnosed with GBM underwent preoperative angiography and became the study population. The 6-year OS and PFS were significantly worse in the EVF than in the non-EVF group. Moreover, 20 GBM cases (10 with EVF and 10 without EVF) were randomly selected and evaluated for histological vascular mimicry. Except for two cases that were difficult to evaluate, the EVF group had a significantly higher frequency of vascular mimicry than the non-EVF group (0/8 vs. 5/10, p = 0.04). EVF on preoperative angiography is a robust prognostic biomarker for GBM and may help detect cases with a high frequency of histological vascular mimicry.
Collapse
Affiliation(s)
- Kotaro Tatebayashi
- Department of Neurosurgery, Hyogo Medical University, Nishinomiya 663-8501, Japan; (K.T.); (D.S.); (T.I.); (S.O.)
| | - Noriyuki Nakayama
- Department of Neurosurgery, Gifu University, Gifu 501-1112, Japan; (N.N.); (Y.E.)
| | - Daisuke Sakamoto
- Department of Neurosurgery, Hyogo Medical University, Nishinomiya 663-8501, Japan; (K.T.); (D.S.); (T.I.); (S.O.)
| | - Tomoko Iida
- Department of Neurosurgery, Hyogo Medical University, Nishinomiya 663-8501, Japan; (K.T.); (D.S.); (T.I.); (S.O.)
| | - Shun Ono
- Department of Neurosurgery, Hyogo Medical University, Nishinomiya 663-8501, Japan; (K.T.); (D.S.); (T.I.); (S.O.)
| | - Ikuo Matsuda
- Department of Surgical Pathology, Hyogo Medical University, Nishinomiya 663-8501, Japan; (I.M.); (S.H.)
| | - Yukiko Enomoto
- Department of Neurosurgery, Gifu University, Gifu 501-1112, Japan; (N.N.); (Y.E.)
| | - Michihiro Tanaka
- Department of Neuroendovascular Surgery, Kameda Medical Center, Kamogawa 296-0041, Japan;
| | - Mitsugu Fujita
- Department of Medicine, Graduate School of Medical Sciences, Kindai University, Higashiosaka 577-8502, Japan;
| | - Seiichi Hirota
- Department of Surgical Pathology, Hyogo Medical University, Nishinomiya 663-8501, Japan; (I.M.); (S.H.)
| | - Shinichi Yoshimura
- Department of Neurosurgery, Hyogo Medical University, Nishinomiya 663-8501, Japan; (K.T.); (D.S.); (T.I.); (S.O.)
| |
Collapse
|
8
|
Lee E, Lee EA, Kong E, Chon H, Llaiqui-Condori M, Park CH, Park BY, Kang NR, Yoo JS, Lee HS, Kim HS, Park SH, Choi SW, Vestweber D, Lee JH, Kim P, Lee WS, Kim I. An agonistic anti-Tie2 antibody suppresses the normal-to-tumor vascular transition in the glioblastoma invasion zone. Exp Mol Med 2023; 55:470-484. [PMID: 36828931 PMCID: PMC9981882 DOI: 10.1038/s12276-023-00939-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 02/26/2023] Open
Abstract
Tumor progression is intimately associated with the vasculature, as tumor proliferation induces angiogenesis and tumor cells metastasize to distant organs via blood vessels. However, whether tumor invasion is associated with blood vessels remains unknown. As glioblastoma (GBM) is featured by aggressive invasion and vascular abnormalities, we characterized the onset of vascular remodeling in the diffuse tumor infiltrating zone by establishing new spontaneous GBM models with robust invasion capacity. Normal brain vessels underwent a gradual transition to severely impaired tumor vessels at the GBM periphery over several days. Increasing vasodilation from the tumor periphery to the tumor core was also found in human GBM. The levels of vascular endothelial growth factor (VEGF) and VEGF receptor 2 (VEGFR2) showed a spatial correlation with the extent of vascular abnormalities spanning the tumor-invading zone. Blockade of VEGFR2 suppressed vascular remodeling at the tumor periphery, confirming the role of VEGF-VEGFR2 signaling in the invasion-associated vascular transition. As angiopoietin-2 (ANGPT2) was expressed in only a portion of the central tumor vessels, we developed a ligand-independent tunica interna endothelial cell kinase 2 (Tie2)-activating antibody that can result in Tie2 phosphorylation in vivo. This agonistic anti-Tie2 antibody effectively normalized the vasculature in both the tumor periphery and tumor center, similar to the effects of VEGFR2 blockade. Mechanistically, this antibody-based Tie2 activation induced VE-PTP-mediated VEGFR2 dephosphorylation in vivo. Thus, our study reveals that the normal-to-tumor vascular transition is spatiotemporally associated with GBM invasion and may be controlled by Tie2 activation via a novel mechanism of action.
Collapse
Affiliation(s)
- Eunhyeong Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Eun-Ah Lee
- R&D Center, PharmAbcine Inc., Daejeon, 34047, Republic of Korea
| | - Eunji Kong
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Haemin Chon
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Melissa Llaiqui-Condori
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Cheon Ho Park
- R&D Center, PharmAbcine Inc., Daejeon, 34047, Republic of Korea
| | - Beom Yong Park
- R&D Center, PharmAbcine Inc., Daejeon, 34047, Republic of Korea
| | - Nu Ri Kang
- R&D Center, PharmAbcine Inc., Daejeon, 34047, Republic of Korea
| | - Jin-San Yoo
- R&D Center, PharmAbcine Inc., Daejeon, 34047, Republic of Korea
| | - Hyun-Soo Lee
- Department of Bio and Brain Engineering, KAIST, Daejeon, 34141, Republic of Korea
| | - Hyung-Seok Kim
- Department of Forensic Medicine, Chonnam National University Medical School, Gwangju, 61463, Republic of Korea
| | - Sung-Hong Park
- Department of Bio and Brain Engineering, KAIST, Daejeon, 34141, Republic of Korea
| | - Seung-Won Choi
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University, Seoul, 06351, Republic of Korea
| | - Dietmar Vestweber
- Max Planck Institute for Molecular Biomedicine, D-48149, Muenster, Germany
| | - Jeong Ho Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.,BioMedical Research Center, KAIST, Daejeon, 34141, Republic of Korea.,SoVarGen, Inc., Daejeon, 34051, Republic of Korea
| | - Pilhan Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.,Graduate School of Nanoscience and Technology, Daejeon, 34141, Republic of Korea.,KI for Health Science and Technology, KAIST, Daejeon, 34141, Republic of Korea
| | - Weon Sup Lee
- R&D Center, PharmAbcine Inc., Daejeon, 34047, Republic of Korea.
| | - Injune Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea. .,BioMedical Research Center, KAIST, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
9
|
Musatova OE, Rubtsov YP. Effects of glioblastoma-derived extracellular vesicles on the functions of immune cells. Front Cell Dev Biol 2023; 11:1060000. [PMID: 36960410 PMCID: PMC10028257 DOI: 10.3389/fcell.2023.1060000] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 02/22/2023] [Indexed: 03/09/2023] Open
Abstract
Glioblastoma is the most aggressive variant of glioma, the tumor of glial origin which accounts for 80% of brain tumors. Glioblastoma is characterized by astoundingly poor prognosis for patients; a combination of surgery, chemo- and radiotherapy used for clinical treatment of glioblastoma almost inevitably results in rapid relapse and development of more aggressive and therapy resistant tumor. Recently, it was demonstrated that extracellular vesicles produced by glioblastoma (GBM-EVs) during apoptotic cell death can bind to surrounding cells and change their phenotype to more aggressive. GBM-EVs participate also in establishment of immune suppressive microenvironment that protects glioblastoma from antigen-specific recognition and killing by T cells. In this review, we collected present data concerning characterization of GBM-EVs and study of their effects on different populations of the immune cells (T cells, macrophages, dendritic cells, myeloid-derived suppressor cells). We aimed at critical analysis of experimental evidence in order to conclude whether glioblastoma-derived extracellular vesicles are a major factor in immune evasion of this deadly tumor. We summarized data concerning potential use of GBM-EVs for non-invasive diagnostics of glioblastoma. Finally, the applicability of approaches aimed at blocking of GBM-EVs production or their fusion with target cells for treatment of glioblastoma was analyzed.
Collapse
Affiliation(s)
- Oxana E. Musatova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, RAS, Moscow, Russia
| | - Yury P. Rubtsov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, RAS, Moscow, Russia
- N.N.Blokhin Russian Cancer Research Center, Ministry of Health of the Russian Federation, Moscow, Russia
- *Correspondence: Yury P. Rubtsov,
| |
Collapse
|
10
|
Jain N, Shahrukh S, Famta P, Shah S, Vambhurkar G, Khatri DK, Singh SB, Srivastava S. Immune cell-camouflaged surface-engineered nanotherapeutics for cancer management. Acta Biomater 2023; 155:57-79. [PMID: 36347447 DOI: 10.1016/j.actbio.2022.11.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/01/2022] [Accepted: 11/01/2022] [Indexed: 11/07/2022]
Abstract
Nanocarriers (NCs) have shown potential in delivering hydrophobic cytotoxic drugs and tumor-specific targeting. However, the inability to penetrate the tumor microenvironment and entrapment by macrophages has limited their clinical translation. Various cell-based drug delivery systems have been explored for their ability to improve circulation half-life and tumor accumulation capabilities. Tumors are characterized by high inflammation, which aids in tumor progression and metastasis. Immune cells show natural tumor tropism and penetration inside the tumor microenvironment (TME) and are a topic of great interest in cancer drug delivery. However, the TME is immunosuppressive and can polarize immune cells to pro-tumor. Thus, the use of immune cell membrane-coated NCs has gained popularity. Such carriers display immune cell-specific surface receptors for tumor-specific accumulation but lack cell machinery. The lack of immune cell machinery makes them unaffected by the immunosuppressive TME, meanwhile maintaining the inherent tumor tropism. In this review, we discuss the molecular mechanism behind the movement of various immune cells toward TME, the preparation and characterization of membrane-coated NCs, and the efficacy of immune cell-mimicking NCs in tumor therapy. Regulatory guidelines and the bottlenecks in clinical translation are also highlighted. STATEMENT OF SIGNIFICANCE: Nanocarriers have been explored for the site-specific delivery of chemotherapeutics. However, low systemic circulation half-life, extensive entrapment by macrophages, and poor accumulation inside the tumor microenvironment prevent the clinical translation of conventional nanotherapeutics. Immune cells possess the natural tropism towards the tumor along the chemokine gradient. Hence, coating the nanocarriers with immune cell-derived membranes can improve the accumulation of nanocarriers inside the tumor. Moreover, coating with membranes derived autologous immune cells will prevent engulfment by the macrophages.
Collapse
Affiliation(s)
- Naitik Jain
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India
| | - Syed Shahrukh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India
| | - Paras Famta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India
| | - Saurabh Shah
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India
| | - Ganesh Vambhurkar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India
| | - Dharmendra Kumar Khatri
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India
| | - Shashi Bala Singh
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India
| | - Saurabh Srivastava
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India.
| |
Collapse
|
11
|
Guo X, Sui R, Piao H. Tumor-derived small extracellular vesicles: potential roles and mechanism in glioma. J Nanobiotechnology 2022; 20:383. [PMID: 35999601 PMCID: PMC9400220 DOI: 10.1186/s12951-022-01584-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/02/2022] [Indexed: 12/05/2022] Open
Abstract
Small extracellular vesicles (SEVs) are extracellular vesicles containing DNA, RNA, and proteins and are involved in intercellular communication and function, playing an essential role in the growth and metastasis of tumors. SEVs are present in various body fluids and can be isolated and extracted from blood, urine, and cerebrospinal fluid. Under both physiological and pathological conditions, SEVs can be released by some cells, such as immune, stem, and tumor cells, in a cytosolic manner. SEVs secreted by tumor cells are called tumor-derived exosomes (TEXs) because of their origin in the corresponding parent cells. Glioma is the most common intracranial tumor, accounting for approximately half of the primary intracranial tumors, and is characterized by insidious onset, high morbidity, and high mortality rate. Complete removal of tumor tissues by surgery is difficult. Chemotherapy can improve the survival quality of patients to a certain extent; however, gliomas are prone to chemoresistance, which seriously affects the prognosis of patients. In recent years, TEXs have played a vital role in the occurrence, development, associated immune response, chemotherapy resistance, radiation therapy resistance, and metastasis of glioma. This article reviews the role of TEXs in glioma progression, drug resistance, and clinical diagnosis.
Collapse
Affiliation(s)
- Xu Guo
- Department of Neurosurgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, No. 44 Xiaoheyan Road, Shenyang, 110042, Liaoning, China
| | - Rui Sui
- Department of Neurosurgery, Cancer Hospital of Dalian University of Technology (Liaoning Cancer Hospital & Institute), No. 44 Xiaoheyan Road, Shenyang, 110042, Liaoning, China
| | - Haozhe Piao
- Department of Neurosurgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, No. 44 Xiaoheyan Road, Shenyang, 110042, Liaoning, China.
| |
Collapse
|
12
|
Mosteiro A, Pedrosa L, Ferrés A, Diao D, Sierra À, González JJ. The Vascular Microenvironment in Glioblastoma: A Comprehensive Review. Biomedicines 2022; 10:biomedicines10061285. [PMID: 35740307 PMCID: PMC9219822 DOI: 10.3390/biomedicines10061285] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/25/2022] [Accepted: 05/28/2022] [Indexed: 02/06/2023] Open
Abstract
Glioblastoma multiforme, the deadliest primary brain tumor, is characterized by an excessive and aberrant neovascularization. The initial expectations raised by anti-angiogenic drugs were soon tempered due to their limited efficacy in improving the overall survival. Intrinsic resistance and escape mechanisms against anti-VEGF therapies evidenced that tumor angiogenesis is an intricate multifaceted phenomenon and that vessels not only support the tumor but exert indispensable interactions for resistance and spreading. This holistic review covers the essentials of the vascular microenvironment of glioblastoma, including the perivascular niche components, the vascular generation patterns and the implicated signaling pathways, the endothelial–tumor interrelation, and the interconnection between vessel aberrancies and immune disarrangement. The revised concepts provide novel insights into the preclinical models and the potential explanations for the failure of conventional anti-angiogenic therapies, leading to an era of new and combined anti-angiogenic-based approaches.
Collapse
Affiliation(s)
- Alejandra Mosteiro
- Department of Neurosurgery, Hospital Clínic de Barcelona, 08036 Barcelona, Spain; (A.F.); (J.J.G.)
- Correspondence:
| | - Leire Pedrosa
- Laboratory of Experimental Oncological Neurosurgery, Hospital Clínic de Barcelona, 08036 Barcelona, Spain; (L.P.); (D.D.); (À.S.)
| | - Abel Ferrés
- Department of Neurosurgery, Hospital Clínic de Barcelona, 08036 Barcelona, Spain; (A.F.); (J.J.G.)
| | - Diouldé Diao
- Laboratory of Experimental Oncological Neurosurgery, Hospital Clínic de Barcelona, 08036 Barcelona, Spain; (L.P.); (D.D.); (À.S.)
| | - Àngels Sierra
- Laboratory of Experimental Oncological Neurosurgery, Hospital Clínic de Barcelona, 08036 Barcelona, Spain; (L.P.); (D.D.); (À.S.)
- Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - José Juan González
- Department of Neurosurgery, Hospital Clínic de Barcelona, 08036 Barcelona, Spain; (A.F.); (J.J.G.)
- Laboratory of Experimental Oncological Neurosurgery, Hospital Clínic de Barcelona, 08036 Barcelona, Spain; (L.P.); (D.D.); (À.S.)
| |
Collapse
|
13
|
Yuan F, Cai X, Cong Z, Wang Y, Geng Y, Aili Y, Du C, Zhu J, Yang J, Tang C, Zhang A, Zhao S, Ma C. Roles of the m 6A Modification of RNA in the Glioblastoma Microenvironment as Revealed by Single-Cell Analyses. Front Immunol 2022; 13:798583. [PMID: 35558067 PMCID: PMC9086907 DOI: 10.3389/fimmu.2022.798583] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 03/28/2022] [Indexed: 12/12/2022] Open
Abstract
Purpose Glioblastoma multiforme (GBM) is a common and aggressive form of brain tumor. The N6-methyladenosine (m6A) mRNA modification plays multiple roles in many biological processes and disease states. However, the relationship between m6A modifications and the tumor microenvironment in GBM remains unclear, especially at the single-cell level. Experimental Design Single-cell and bulk RNA-sequencing data were acquired from the GEO and TCGA databases, respectively. We used bioinformatics and statistical tools to analyze associations between m6A regulators and multiple factors. Results HNRNPA2B1 and HNRNPC were extensively expressed in the GBM microenvironment. m6A regulators promoted the stemness state in GBM cancer cells. Immune-related BP terms were enriched in modules of m6A-related genes. Cell communication analysis identified genes in the GALECTIN signaling network in GBM samples, and expression of these genes (LGALS9, CD44, CD45, and HAVCR2) correlated with that of m6A regulators. Validation experiments revealed that MDK in MK signaling network promoted migration and immunosuppressive polarization of macrophage. Expression of m6A regulators correlated with ICPs in GBM cancer cells, M2 macrophages and T/NK cells. Bulk RNA-seq analysis identified two expression patterns (low m6A/high ICP and high m6A/low ICP) with different predicted immune infiltration and responses to ICP inhibitors. A predictive nomogram model to distinguish these 2 clusters was constructed and validated with excellent performance. Conclusion At the single-cell level, m6A modification facilitates the stemness state in GBM cancer cells and promotes an immunosuppressive microenvironment through ICPs and the GALECTIN signaling pathway network. And we also identified two m6A-ICP expression patterns. These findings could lead to novel treatment strategies for GBM patients.
Collapse
Affiliation(s)
- Feng Yuan
- Department of Neurosurgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xiangming Cai
- School of Medicine, Southeast University, Nanjing, China
| | - Zixiang Cong
- Department of Neurosurgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yingshuai Wang
- Department of Internal Medicine III, University Hospital Munich, Ludwig Maximilians-University Munich, Munich, Germany
| | - Yuanming Geng
- Department of Neurosurgery, The Affiliated Jinling Hospital of Nanjing Medical University, Nanjing, China
| | - Yiliyaer Aili
- Department of Neurosurgery, The Affiliated Jinling Hospital of Nanjing Medical University, Nanjing, China
| | - Chaonan Du
- Department of Neurosurgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Junhao Zhu
- Department of Neurosurgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jin Yang
- Department of Neurosurgery, Jinling Hospital, Nanjing, China
| | - Chao Tang
- Department of Neurosurgery, Jinling Hospital, Nanjing, China
| | - Aifeng Zhang
- School of Medicine, Southeast University, Nanjing, China.,Department of Pathology, School of Medicine, Southeast University, Nanjing, China
| | - Sheng Zhao
- School of Medicine, Southeast University, Nanjing, China.,Department of Biochemistry and Molecular Biology, School of Medicine, Southeast University, Nanjing, China.,The Key Laboratory of Developmental Genes and Human Disease, Institute of Life Sciences, Southeast University, Nanjing, China
| | - Chiyuan Ma
- Department of Neurosurgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China.,School of Medicine, Southeast University, Nanjing, China.,Department of Neurosurgery, The Affiliated Jinling Hospital of Nanjing Medical University, Nanjing, China.,Department of Neurosurgery, Jinling Hospital, Nanjing, China.,Department of Neurosurgery, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, China
| |
Collapse
|