1
|
Bowley TY, Ortiz MC, Lagutina IV, Steinkamp MP, Fahy BN, Tawfik B, Harari-Turquie M, Marchetti D. A Melanoma Brain Metastasis CTC Signature and CTC:B-cell Clusters Associate with Secondary Liver Metastasis: A Melanoma Brain-Liver Metastasis Axis. CANCER RESEARCH COMMUNICATIONS 2025; 5:295-308. [PMID: 39831781 DOI: 10.1158/2767-9764.crc-24-0498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/20/2024] [Accepted: 01/15/2025] [Indexed: 01/22/2025]
Abstract
SIGNIFICANCE This study provides important insights into the relevance of prometastatic CTC:B-cell clusters in melanoma progression, extends the importance of the CTC RPL/RPS gene signature beyond primary metastasis/melanoma brain metastasis driving targeted organ specificity for liver metastasis ("metastasis of metastasis"), and identifies new targets for clinical melanoma metastasis therapies.
Collapse
Affiliation(s)
- Tetiana Y Bowley
- Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Mireya C Ortiz
- Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Irina V Lagutina
- Animal Models Shared Resource, The University of New Mexico Comprehensive Cancer Center, Albuquerque, New Mexico
| | - Mara P Steinkamp
- Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Bridget N Fahy
- Division of Surgical Oncology and Palliative Medicine, University of New Mexico Comprehensive Cancer Center, Albuquerque, New Mexico
| | - Bernard Tawfik
- Division of Hematology and Oncology, Department of Internal Medicine, University of New Mexico Comprehensive Cancer Center, Albuquerque, New Mexico
| | - Moises Harari-Turquie
- Division of Hematology and Oncology, Department of Internal Medicine, University of New Mexico Comprehensive Cancer Center, Albuquerque, New Mexico
| | - Dario Marchetti
- Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
- Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| |
Collapse
|
2
|
Nafissi N, Azad Armaki S, Babaee E, Babaheidarian P, Safari E, Sayad S, Saghafinia S, Safaee M. Association between EPCAM upregulation and clinicopathological parameters and outcomes of breast cancer. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2024; 17:421-428. [PMID: 39660329 PMCID: PMC11626292 DOI: 10.62347/egxs1506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 10/13/2024] [Indexed: 12/12/2024]
Abstract
INTRODUCTION EpCAM (epithelial cell adhesion molecule) protein expression was detected in 45 to 90% of breast cancers in different studies, and high expression levels were associated with poor outcomes in several retrospective analyses. This study aims to investigate the relationship between EpCAM and clinicopathological parameters and survival in breast cancer. METHODOLOGY This study was conducted as a Quasi-Experimental Cohort Study to explore 100 breast cancer patients. After the surgical excision of breast cancer, pathology blocks were deparaffinized and subjected to IHC (immunohistochemistry) for EpCAM examination. Using a Roche VENTANA Benchmark GX automated staining instrument and a well-established IHC staining protocol, the expression of EpCAM in breast cancer tissue was assessed. Independent sample T-test and Chi squared and Logistic Regression test with STATA version 17 software were used for data analysis. RESULTS The difference in the distribution of the negative state of biomarkers (ER = estrogen receptor, PR = Progesterone receptor) and EPCAM positive group was significant (P-value = 0.002) (P-value = 0.006). A statistically insignificant distinction was observed in the distribution of the HER2 (human epidermal growth factor receptor) and EPCAM groups (P-value = 0.198). With 30.95% of those in the EPCAM-positive cohort experienced metastasis or recurrence. ER+ and PR+ decreased the chance of EPCAM positive by 0.25 and 0.29, respectively. HER2+ and Basal like breast cancer increase the chances of EPCAM being positive by 1.9 and 2.08, respectively. Basal like breast cancer increases the odds of EpCAM positive 2.19 times. Similarly, N2 and stage 3 increase the odds of EpCAM positive by 1.95 and 0.5 times, respectively. CONCLUSION We found that Basal like breast cancer, HER2+, and stage 3 increase the chance of EpCAM positivity. It seems that EPCAM positive cancer has more chance for recurrence and metastasis.
Collapse
Affiliation(s)
- Nahid Nafissi
- Department of Breast Diseases Surgery, Breast Health and Cancer Research Center, Iran University of Medical SciencesTehran, Iran
| | | | - Ebrahim Babaee
- Department of Epidemiology, Preventive Medicine and Public Health Research Center, Psychosocial Health Research Institute, Community and Family Medicine Department, School of Medicine, Breast Health and Cancer Research Center, Iran University of Medical SciencesTehran, Iran
| | - Pegah Babaheidarian
- Department of Pathology, School of Medicine, Breast Health and Cancer Research Center, Iran University of Medical SciencesTehran, Iran
| | - Elaheh Safari
- Department of Immunology, School of Medicine, Breast Health and Cancer Research Center, Iran University of Medical SciencesTehran, Iran
| | - Soheila Sayad
- Department of Surgery, Breast Health and Cancer Research Center, Iran University of Medical SciencesTehran, Iran
| | - Samine Saghafinia
- Department of Medical Education, Student Research Committee, School of Medicine, Iran University of Medical SciencesTehran, Iran
| | - Masoumeh Safaee
- Department of Surgery, School of Medicine, Isfahan University of Medical SciencesIsfahan, Iran
| |
Collapse
|
3
|
Bowley TY, Marchetti D. Application of CTC discoveries for liquid biopsy: the RPL/RPS gene signature of melanoma CTCs is linked to brain metastasis onset. Clin Exp Metastasis 2024; 41:413-415. [PMID: 38212568 DOI: 10.1007/s10585-023-10255-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/04/2023] [Indexed: 01/13/2024]
Affiliation(s)
- Tetiana Y Bowley
- Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131, USA
| | - Dario Marchetti
- Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131, USA.
| |
Collapse
|
4
|
Salu P, Reindl KM. Advancements in Preclinical Models of Pancreatic Cancer. Pancreas 2024; 53:e205-e220. [PMID: 38206758 PMCID: PMC10842038 DOI: 10.1097/mpa.0000000000002277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
ABSTRACT Pancreatic cancer remains one of the deadliest of all cancer types with a 5-year overall survival rate of just 12%. Preclinical models available for understanding the disease pathophysiology have evolved significantly in recent years. Traditionally, commercially available 2-dimensional cell lines were developed to investigate mechanisms underlying tumorigenesis, metastasis, and drug resistance. However, these cells grow as monolayer cultures that lack heterogeneity and do not effectively represent tumor biology. Developing patient-derived xenografts and genetically engineered mouse models led to increased cellular heterogeneity, molecular diversity, and tissues that histologically represent the original patient tumors. However, these models are relatively expensive and very timing consuming. More recently, the advancement of fast and inexpensive in vitro models that better mimic disease conditions in vivo are on the rise. Three-dimensional cultures like organoids and spheroids have gained popularity and are considered to recapitulate complex disease characteristics. In addition, computational genomics, transcriptomics, and metabolomic models are being developed to simulate pancreatic cancer progression and predict better treatment strategies. Herein, we review the challenges associated with pancreatic cancer research and available analytical models. We suggest that an integrated approach toward using these models may allow for developing new strategies for pancreatic cancer precision medicine.
Collapse
Affiliation(s)
- Philip Salu
- From the Department of Biological Sciences, North Dakota State University, Fargo, ND
| | | |
Collapse
|
5
|
Bowley TY, Merkley SD, Lagutina IV, Ortiz MC, Lee M, Tawfik B, Marchetti D. Targeting Translation and the Cell Cycle Inversely Affects CTC Metabolism but Not Metastasis. Cancers (Basel) 2023; 15:5263. [PMID: 37958436 PMCID: PMC10650766 DOI: 10.3390/cancers15215263] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/26/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Melanoma brain metastasis (MBM) is significantly associated with poor prognosis and is diagnosed in 80% of patients at autopsy. Circulating tumor cells (CTCs) are "seeds" of metastasis and the smallest functional units of cancer. Our multilevel approach has previously identified a CTC RPL/RPS gene signature directly linked to MBM onset. We hypothesized that targeting ribogenesis prevents MBM/metastasis in CTC-derived xenografts. We treated parallel cohorts of MBM mice with FDA-approved protein translation inhibitor omacetaxine with or without CDK4/CDK6 inhibitor palbociclib, and monitored metastatic development and cell proliferation. Necropsies and IVIS imaging showed decreased MBM/extracranial metastasis in drug-treated mice, and RNA-Seq on mouse-blood-derived CTCs revealed downregulation of four RPL/RPS genes. However, mitochondrial stress tests and RT-qPCR showed that omacetaxine and palbociclib inversely affected glycolytic metabolism, demonstrating that dual targeting of cell translation/proliferation is critical to suppress plasticity in metastasis-competent CTCs. Equally relevant, we provide the first-ever functional metabolic characterization of patient-derived circulating neoplastic cells/CTCs.
Collapse
Affiliation(s)
- Tetiana Y. Bowley
- Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; (T.Y.B.); (S.D.M.); (M.C.O.); (M.L.)
| | - Seth D. Merkley
- Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; (T.Y.B.); (S.D.M.); (M.C.O.); (M.L.)
| | - Irina V. Lagutina
- Animal Models Shared Resource, University of New Mexico Comprehensive Cancer Center, Albuquerque, NM 87120, USA;
| | - Mireya C. Ortiz
- Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; (T.Y.B.); (S.D.M.); (M.C.O.); (M.L.)
| | - Margaret Lee
- Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; (T.Y.B.); (S.D.M.); (M.C.O.); (M.L.)
| | - Bernard Tawfik
- Division of Hematology and Oncology, Department of Internal Medicine, University of New Mexico Comprehensive Cancer Center, Albuquerque, NM 87120, USA;
| | - Dario Marchetti
- Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; (T.Y.B.); (S.D.M.); (M.C.O.); (M.L.)
| |
Collapse
|
6
|
Gallerani G, Rossi T, Ferracin M, Bonafè M. Settling the uncertainty about unconventional circulating tumor cells: Epithelial-to-mesenchymal transition, cell fusion and trogocytosis. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 381:99-111. [PMID: 37739485 DOI: 10.1016/bs.ircmb.2023.07.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Circulating tumor cells (CTCs) were first described 150 years ago. The so-called "classical" CTC populations (EpCAM+/CK+/CD45-) have been fully characterized and proposed as the most representative CTC subset, with clinical relevance. Nonetheless, other "atypical" or "unconventional" CTCs have also been identified, and their critical role in metastasis formation was demonstrated. In this chapter we illustrate the studies that led to the discovery of unconventional CTCs, defined as CTCs that display both epithelial and mesenchymal markers, or both cancer and immune markers, also in the form of hybrid cancer-immune cells. We also present biological explanations for the origin of these unconventional CTCs: epithelial to mesenchymal transition, cell-cell fusion and trogocytosis. We believe that a deeper knowledge on the biology of CTCs is needed to fully elucidate their role in cancer progression and their use as cancer biomarkers.
Collapse
Affiliation(s)
- Giulia Gallerani
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy.
| | - Tania Rossi
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Manuela Ferracin
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy; IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Massimiliano Bonafè
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy; IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| |
Collapse
|
7
|
Orrapin S, Thongkumkoon P, Udomruk S, Moonmuang S, Sutthitthasakul S, Yongpitakwattana P, Pruksakorn D, Chaiyawat P. Deciphering the Biology of Circulating Tumor Cells through Single-Cell RNA Sequencing: Implications for Precision Medicine in Cancer. Int J Mol Sci 2023; 24:12337. [PMID: 37569711 PMCID: PMC10418766 DOI: 10.3390/ijms241512337] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Circulating tumor cells (CTCs) hold unique biological characteristics that directly involve them in hematogenous dissemination. Studying CTCs systematically is technically challenging due to their extreme rarity and heterogeneity and the lack of specific markers to specify metastasis-initiating CTCs. With cutting-edge technology, single-cell RNA sequencing (scRNA-seq) provides insights into the biology of metastatic processes driven by CTCs. Transcriptomics analysis of single CTCs can decipher tumor heterogeneity and phenotypic plasticity for exploring promising novel therapeutic targets. The integrated approach provides a perspective on the mechanisms underlying tumor development and interrogates CTCs interactions with other blood cell types, particularly those of the immune system. This review aims to comprehensively describe the current study on CTC transcriptomic analysis through scRNA-seq technology. We emphasize the workflow for scRNA-seq analysis of CTCs, including enrichment, single cell isolation, and bioinformatic tools applied for this purpose. Furthermore, we elucidated the translational knowledge from the transcriptomic profile of individual CTCs and the biology of cancer metastasis for developing effective therapeutics through targeting key pathways in CTCs.
Collapse
Affiliation(s)
- Santhasiri Orrapin
- Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Muang, Chiang Mai 50200, Thailand; (S.O.); (P.T.); (S.U.); (S.M.); (S.S.); (P.Y.); (D.P.)
| | - Patcharawadee Thongkumkoon
- Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Muang, Chiang Mai 50200, Thailand; (S.O.); (P.T.); (S.U.); (S.M.); (S.S.); (P.Y.); (D.P.)
| | - Sasimol Udomruk
- Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Muang, Chiang Mai 50200, Thailand; (S.O.); (P.T.); (S.U.); (S.M.); (S.S.); (P.Y.); (D.P.)
- Musculoskeletal Science and Translational Research (MSTR) Center, Faculty of Medicine, Chiang Mai University, Muang, Chiang Mai 50200, Thailand
| | - Sutpirat Moonmuang
- Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Muang, Chiang Mai 50200, Thailand; (S.O.); (P.T.); (S.U.); (S.M.); (S.S.); (P.Y.); (D.P.)
| | - Songphon Sutthitthasakul
- Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Muang, Chiang Mai 50200, Thailand; (S.O.); (P.T.); (S.U.); (S.M.); (S.S.); (P.Y.); (D.P.)
| | - Petlada Yongpitakwattana
- Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Muang, Chiang Mai 50200, Thailand; (S.O.); (P.T.); (S.U.); (S.M.); (S.S.); (P.Y.); (D.P.)
| | - Dumnoensun Pruksakorn
- Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Muang, Chiang Mai 50200, Thailand; (S.O.); (P.T.); (S.U.); (S.M.); (S.S.); (P.Y.); (D.P.)
- Musculoskeletal Science and Translational Research (MSTR) Center, Faculty of Medicine, Chiang Mai University, Muang, Chiang Mai 50200, Thailand
- Department of Orthopedics, Faculty of Medicine, Chiang Mai University, Muang, Chiang Mai 50200, Thailand
| | - Parunya Chaiyawat
- Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Muang, Chiang Mai 50200, Thailand; (S.O.); (P.T.); (S.U.); (S.M.); (S.S.); (P.Y.); (D.P.)
- Musculoskeletal Science and Translational Research (MSTR) Center, Faculty of Medicine, Chiang Mai University, Muang, Chiang Mai 50200, Thailand
| |
Collapse
|
8
|
Extracellular Vesicles as Biomarkers in Head and Neck Squamous Cell Carcinoma: From Diagnosis to Disease-Free Survival. Cancers (Basel) 2023; 15:cancers15061826. [PMID: 36980712 PMCID: PMC10046514 DOI: 10.3390/cancers15061826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/22/2023] Open
Abstract
Head and neck squamous cell carcinomas (HNSCCs) arising from different anatomical sites present with different incidences and characteristics, which requires a personalized treatment strategy. Despite the extensive research that has conducted on this malignancy, HNSCC still has a poor overall survival rate. Many attempts have been made to improve the outcomes, but one of the bottlenecks is thought to be the lack of an effective biomarker with high sensitivity and specificity. Extracellular vesicles (EVs) are secreted by various cells and participate in a great number of intercellular communications. Based on liquid biopsy, EV detection in several biofluids, such as blood, saliva, and urine, has been applied to identify the existence and progression of a variety of cancers. In HNSCC, tumor-derived EVs exhibit many functionalities by transporting diverse cargoes, which highlights their importance in tumor screening, the determination of multidisciplinary therapy, prediction of prognosis, and evaluation of therapeutic effects. This review illustrates the classification and formation of EV subtypes, the cargoes conveyed by these vesicles, and their respective functions in HNSCC cancer biology, and discloses their potential as biomarkers during the whole process of tumor diagnosis, treatment, and follow-up.
Collapse
|
9
|
Menyailo ME, Zainullina VR, Khozyainova AA, Tashireva LA, Zolotareva SY, Gerashchenko TS, Alifanov VV, Savelieva OE, Grigoryeva ES, Tarabanovskaya NA, Popova NO, Choinzonov EL, Cherdyntseva NV, Perelmuter VM, Denisov EV. Heterogeneity of Circulating Epithelial Cells in Breast Cancer at Single-Cell Resolution: Identifying Tumor and Hybrid Cells. Adv Biol (Weinh) 2023; 7:e2200206. [PMID: 36449636 DOI: 10.1002/adbi.202200206] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 11/13/2022] [Indexed: 12/03/2022]
Abstract
Circulating tumor cells and hybrid cells formed by the fusion of tumor cells with normal cells are leading players in metastasis and have prognostic relevance. This study applies single-cell RNA sequencing to profile CD45-negative and CD45-positive circulating epithelial cells (CECs) in nonmetastatic breast cancer patients. CECs are represented by transcriptionally-distinct populations that include both aneuploid and diploid cells. CD45- CECs are predominantly aneuploid, but one population contained more diploid than aneuploid cells. CD45+ CECs mostly diploid: only two populations have aneuploid cells. Diploid CD45+ CECs annotated as different immune cells, surprisingly harbored many copy number aberrations, and positively correlated to tumor grade. It is noteworthy that cancer-associated signaling pathways areabundant only in one aneuploid CD45- CEC population, which may represent an aggressive subset of circulating tumor cells. Thus, CD45- and CD45+ CECs are highly heterogeneous in breast cancer patients and include aneuploid cells, which are most likely circulating tumor and hybrid cells, respectively, and diploid cells. DNA ploidy analysis can be an effective instrument for identifying tumor and hybrid cells among CECs. Further follow-up study is needed to determine which subsets of circulating tumor and hybrid cells contribute to breast cancer metastasis.
Collapse
Affiliation(s)
- Maxim E Menyailo
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Viktoria R Zainullina
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Anna A Khozyainova
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Liubov A Tashireva
- Department of General and Molecular Pathology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Sofia Yu Zolotareva
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Tatiana S Gerashchenko
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Vladimir V Alifanov
- Department of General and Molecular Pathology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Olga E Savelieva
- Department of General and Molecular Pathology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Evgeniya S Grigoryeva
- Laboratory of Molecular Oncology and Immunology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Nataliya A Tarabanovskaya
- Department of General Oncology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Nataliya O Popova
- Department of Chemotherapy, Cancer Research Institute, Tomsk National Research Medical Center Russian Academy of Sciences, Tomsk, Russia
| | - Evgeny L Choinzonov
- Department of Head and Neck Cancer, Cancer Research Institute, Tomsk National Research Medical Center Russian Academy of Sciences, Tomsk, Russia
| | - Nadezhda V Cherdyntseva
- Laboratory of Molecular Oncology and Immunology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Vladimir M Perelmuter
- Department of General and Molecular Pathology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Evgeny V Denisov
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| |
Collapse
|
10
|
Signatures of Breast Cancer Progression in the Blood: What Could Be Learned from Circulating Tumor Cell Transcriptomes. Cancers (Basel) 2022; 14:cancers14225668. [PMID: 36428760 PMCID: PMC9688726 DOI: 10.3390/cancers14225668] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/03/2022] [Accepted: 11/08/2022] [Indexed: 11/19/2022] Open
Abstract
Gene expression profiling has revolutionized our understanding of cancer biology, showing an unprecedented ability to impact patient management especially in breast cancer. The vast majority of breast cancer gene expression signatures derive from the analysis of the tumor bulk, an experimental approach that limits the possibility to dissect breast cancer heterogeneity thoroughly and might miss the message hidden in biologically and clinically relevant cell populations. During disease progression or upon selective pressures, cancer cells undergo continuous transcriptional changes, which inevitably affect tumor heterogeneity, response to therapy and tendency to disseminate. Therefore, metastasis-associated signatures and transcriptome-wide gene expression measurement at single-cell resolution hold great promise for the future of breast cancer clinical care. Seen from this perspective, transcriptomics of circulating tumor cells (CTCs) represent an attractive opportunity to bridge the knowledge gap and develop novel biomarkers. This review summarizes the current state-of-the-science on CTC gene expression analysis in breast cancer, addresses technical and clinical issues related to the application of CTC-derived signatures, and discusses potential research directions.
Collapse
|
11
|
Rossi T, Angeli D, Martinelli G, Fabbri F, Gallerani G. From phenotypical investigation to RNA-sequencing for gene expression analysis: A workflow for single and pooled rare cells. Front Genet 2022; 13:1012191. [PMID: 36452152 PMCID: PMC9703136 DOI: 10.3389/fgene.2022.1012191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/28/2022] [Indexed: 08/30/2023] Open
Abstract
Combining phenotypical and molecular characterization of rare cells is challenging due to their scarcity and difficult handling. In oncology, circulating tumor cells (CTCs) are considered among the most important rare cell populations. Their phenotypic and molecular characterization is necessary to define the molecular mechanisms underlying their metastatic potential. Several approaches that require cell fixation make difficult downstream molecular investigations on RNA. Conversely, the DEPArray technology allows phenotypic analysis and handling of both fixed and unfixed cells, enabling a wider range of applications. Here, we describe an experimental workflow that allows the transcriptomic investigation of single and pooled OE33 cells undergone to DEPArray analysis and recovery. In addition, cells were tested at different conditions (unfixed, CellSearch fixative (CSF)- and ethanol (EtOH)-fixed cells). In a forward-looking perspective, this workflow will pave the way for novel strategies to characterize gene expression profiles of rare cells, both single-cell and low-resolution input.
Collapse
Affiliation(s)
- Tania Rossi
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Davide Angeli
- Unit of Biostatistics and Clinical Trials, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Giovanni Martinelli
- Scientific Directorate, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Francesco Fabbri
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Giulia Gallerani
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| |
Collapse
|
12
|
Bowley TY, Lagutina IV, Francis C, Sivakumar S, Selwyn RG, Taylor E, Guo Y, Fahy BN, Tawfik B, Marchetti D. The RPL/RPS gene signature of melanoma CTCs associates with brain metastasis. CANCER RESEARCH COMMUNICATIONS 2022; 2:1436-1448. [PMID: 36407834 PMCID: PMC9668078 DOI: 10.1158/2767-9764.crc-22-0337] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/07/2022] [Accepted: 10/31/2022] [Indexed: 11/17/2022]
Abstract
Melanoma brain metastasis (MBM) is linked to poor prognosis and low overall survival. We hypothesized that melanoma circulating tumor cells (CTCs) possess a gene signature significantly expressed and associated with MBM. Employing a multi-pronged approach, we provide first-time evidence identifying a common CTC gene signature for ribosomal protein large/small subunits (RPL/RPS) which associate with MBM onset and progression. Experimental strategies involved capturing, transcriptional profiling and interrogating CTCs, either directly isolated from blood of melanoma patients at distinct stages of MBM progression or from CTC-driven MBM in experimental animals. Second, we developed the first Magnetic Resonance Imaging (MRI) CTC-derived MBM xenograft model (MRI-MBM CDX) to discriminate MBM spatial and temporal growth, recreating MBM clinical presentation and progression. Third, we performed the comprehensive transcriptional profiling of MRI-MBM CDXs, along with longitudinal monitoring of CTCs from CDXs possessing/not possessing MBM. Our findings suggest that enhanced ribosomal protein content/ribogenesis may contribute to MBM onset. Since ribosome modifications drive tumor progression and metastatic development by remodeling CTC translational events, overexpression of the CTC RPL/RPS gene signature could be implicated in MBM development. Collectively, this study provides important insights for relevance of the CTC RPL/RPS gene signature in MBM, and identify potential targets for therapeutic intervention to improve patient care for melanoma patients diagnosed with or at high-risk of developing MBM.
Collapse
Affiliation(s)
- Tetiana Y. Bowley
- Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Irina V. Lagutina
- Animal Models Shared Resource, The University of New Mexico Comprehensive Cancer Center, Albuquerque, New Mexico
| | - Carol Francis
- Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Sinduja Sivakumar
- Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Reed G. Selwyn
- Department of Radiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Erik Taylor
- Department of Radiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Yan Guo
- Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Bridget N. Fahy
- Division of Surgical Oncology and Palliative Medicine, University of New Mexico Comprehensive Cancer Center, Albuquerque, New Mexico
| | - Bernard Tawfik
- Division of Hematology and Oncology, Department of Internal Medicine, University of New Mexico Comprehensive Cancer Center, Albuquerque, New Mexico
| | - Dario Marchetti
- Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| |
Collapse
|
13
|
Trapp EK, Fasching PA, Fehm T, Schneeweiss A, Mueller V, Harbeck N, Lorenz R, Schumacher C, Heinrich G, Schochter F, de Gregorio A, Tzschaschel M, Rack B, Janni W, Friedl TWP. Does the Presence of Circulating Tumor Cells in High-Risk Early Breast Cancer Patients Predict the Site of First Metastasis-Results from the Adjuvant SUCCESS A Trial. Cancers (Basel) 2022; 14:3949. [PMID: 36010945 PMCID: PMC9406108 DOI: 10.3390/cancers14163949] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/03/2022] [Accepted: 08/09/2022] [Indexed: 02/07/2023] Open
Abstract
The prognostic relevance of circulating tumor cells (CTCs) in breast cancer is well established. However, little is known about the association of CTCs and site of first metastasis. In the SUCCESS A trial, 373 out of 3754 randomized high-risk breast cancer patients developed metastatic disease. CTC status was assessed by the FDA-approved CellSearch®-System (Menarini Silicon Biosystems, Bologna, Italy) in 206 of these patients before chemotherapy and additionally in 159 patients after chemotherapy. CTCs were detected in 70 (34.0%) of 206 patients before (median 2 CTCs, 1-827) and in 44 (27.7%) of 159 patients after chemotherapy (median 1 CTC, 1-124); 16 (10.1%) of 159 patients were CTC-positive at both timepoints. The site of first distant disease was bone-only, visceral-only, and other-site-only in 44 (21.4%), 60 (29.1%), and 74 (35.9%) patients, respectively, while 28 (13.6%) patients had multiple sites of first metastatic disease. Patients with CTCs at both timepoints more often showed bone-only first distant disease (37.5% vs. 21.0%) and first distant disease at multiple sites (31.3% vs. 12.6%) than patients without CTCs before and/or after chemotherapy (p = 0.027). In conclusion, the presence of CTCs before and after chemotherapy is associated with multiple-site or bone-only first-distant disease and may trigger intensified follow-up and perhaps further treatment.
Collapse
Affiliation(s)
- Elisabeth K. Trapp
- Department of Gynecology and Obstetrics, Medical University of Graz, 8036 Graz, Austria
| | - Peter A. Fasching
- Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, 91054 Erlangen, Germany
| | - Tanja Fehm
- Department of Gynecology and Obstetrics, University Hospital Duesseldorf, Heinrich-Heine University Duesseldorf, 40225 Düsseldorf, Germany
| | - Andreas Schneeweiss
- National Center for Tumor Diseases, Heidelberg University Hospital and German Cancer Research Center, 69120 Heidelberg, Germany
| | - Volkmar Mueller
- Department of Gynecology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Nadia Harbeck
- Breast Center, Department of Gynecology and Obstetrics and CCC Munich, LMU University Hospital, 81337 München, Germany
| | - Ralf Lorenz
- Gynecologic Practice Dr. Lorenz, N. Hecker, Dr. Kreiss-Sender, 38100 Braunschweig, Germany
| | - Claudia Schumacher
- Department of Gynecology and Obstetrics, St. Elisabeth’s Hospital, 50935 Cologne, Germany
| | | | - Fabienne Schochter
- Department of Gynecology and Obstetrics, University Hospital Ulm, 89081 Ulm, Germany
| | - Amelie de Gregorio
- Department of Gynecology and Obstetrics, University Hospital Ulm, 89081 Ulm, Germany
| | - Marie Tzschaschel
- Department of Gynecology and Obstetrics, University Hospital Ulm, 89081 Ulm, Germany
| | - Brigitte Rack
- Department of Gynecology and Obstetrics, University Hospital Ulm, 89081 Ulm, Germany
| | - Wolfgang Janni
- Department of Gynecology and Obstetrics, University Hospital Ulm, 89081 Ulm, Germany
| | - Thomas W. P. Friedl
- Department of Gynecology and Obstetrics, University Hospital Ulm, 89081 Ulm, Germany
| |
Collapse
|
14
|
Papadaki MA, Agelaki S. Single-Cell RNA Sequencing Uncovers Heterogeneous Circulating Tumor Cell Subsets in Breast Cancer. Cancers (Basel) 2022; 14:cancers14051314. [PMID: 35267622 PMCID: PMC8909171 DOI: 10.3390/cancers14051314] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 02/05/2023] Open
Affiliation(s)
- Maria A. Papadaki
- Laboratory of Translational Oncology, School of Medicine, University of Crete, 70013 Heraklion, Greece;
| | - Sofia Agelaki
- Laboratory of Translational Oncology, School of Medicine, University of Crete, 70013 Heraklion, Greece;
- Department of Medical Oncology, University General Hospital of Heraklion, 71110 Heraklion, Greece
- Correspondence: ; Tel.: +30-2810-394712
| |
Collapse
|
15
|
TLR4 and pSTAT3 Expression on Circulating Tumor Cells (CTCs) and Immune Cells in the Peripheral Blood of Breast Cancer Patients: Prognostic Implications. Cancers (Basel) 2022; 14:cancers14041053. [PMID: 35205801 PMCID: PMC8869985 DOI: 10.3390/cancers14041053] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/09/2022] [Accepted: 02/16/2022] [Indexed: 02/01/2023] Open
Abstract
TLR4 and pSTAT3 are key players in cancer inflammation and immune evasion; however, their role in the peripheral blood (PB) is largely unexplored. Herein we evaluated their expression in the circulating tumor cells (CTCs) and peripheral-blood mononuclear cells (PBMCs) of patients with early (n = 99) and metastatic (n = 100) breast cancer (BC). PB samples obtained prior to adjuvant and first-line therapy, were immunofluorescently stained for Cytokeratins/TLR4/pSTAT3/DAPI and analyzed via Ariol microscopy. TLR4+ CTCs were detected in 50% and 68% of early and metastatic CTC-positive patients, respectively, and pSTAT3+ CTCs in 83% and 68%, respectively. In metastatic patients, CTC detection was associated with a high risk of death (HR: 1.764, p = 0.038), while TLR4+ CTCs correlated with a high risk of disease progression (HR: 1.964, p = 0.030). Regarding PBMCs, TLR4 expression prevailed in metastatic disease (p = 0.029), while pSTAT3 expression was more frequent in early disease (p = 0.014). In early BC, TLR4 expression on PBMCs independently predicted for high risk of relapse (HR: 3.549; p = 0.009), whereas in metastatic BC, TLR4+/pSTAT3- PBMCs independently predicted for high risk of death (HR: 2.925; p = 0.012). These results suggest that TLR4/pSTAT3 signaling on tumor- and immune-cell compartments in the PB could play a role in BC progression, and may hold independent prognostic implications for BC patients.
Collapse
|
16
|
Semina SE, Alejo LH, Chopra S, Kansara NS, Kastrati I, Sartorius CA, Frasor J. Identification of a novel ER-NFĸB-driven stem-like cell population associated with relapse of ER+ breast tumors. Breast Cancer Res 2022; 24:88. [PMID: 36482488 PMCID: PMC9733334 DOI: 10.1186/s13058-022-01585-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Up to 40% of patients with estrogen receptor-positive (ER+) breast cancer experience relapse. This can be attributed to breast cancer stem cells (BCSCs), which are known to be involved in therapy resistance, relapse, and metastasis. Therefore, there is an urgent need to identify genes/pathways that drive stem-like cell properties in ER+ breast tumors. METHODS Using single-cell RNA sequencing and various bioinformatics approaches, we identified a unique stem-like population and established its clinical relevance. With follow-up studies, we validated our bioinformatics findings and confirmed the role of ER and NFĸB in the promotion of stem-like properties in breast cancer cell lines and patient-derived models. RESULTS We identified a novel quiescent stem-like cell population that is driven by ER and NFĸB in multiple ER+ breast cancer models. Moreover, we found that a gene signature derived from this stem-like population is expressed in primary ER+ breast tumors, endocrine therapy-resistant and metastatic cell populations and predictive of poor patient outcome. CONCLUSIONS These findings indicate a novel role for ER and NFĸB crosstalk in BCSCs biology and understanding the mechanism by which these pathways promote stem properties can be exploited to improve outcomes for ER+ breast cancer patients at risk of relapse.
Collapse
Affiliation(s)
- Svetlana E. Semina
- grid.185648.60000 0001 2175 0319Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, 909 S Wolcott Avenue (MC 901), 2040 COMRB, Chicago, IL 60612 USA
| | - Luis H. Alejo
- grid.185648.60000 0001 2175 0319Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, 909 S Wolcott Avenue (MC 901), 2040 COMRB, Chicago, IL 60612 USA
| | - Shivani Chopra
- grid.185648.60000 0001 2175 0319Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, 909 S Wolcott Avenue (MC 901), 2040 COMRB, Chicago, IL 60612 USA
| | - Nidhi S. Kansara
- grid.185648.60000 0001 2175 0319Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, 909 S Wolcott Avenue (MC 901), 2040 COMRB, Chicago, IL 60612 USA
| | - Irida Kastrati
- grid.185648.60000 0001 2175 0319Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, 909 S Wolcott Avenue (MC 901), 2040 COMRB, Chicago, IL 60612 USA ,grid.164971.c0000 0001 1089 6558Present Address: Department of Cancer Biology, Loyola University Chicago, Maywood, IL 60153 USA
| | - Carol A. Sartorius
- grid.430503.10000 0001 0703 675XDepartment of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045 USA
| | - Jonna Frasor
- grid.185648.60000 0001 2175 0319Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, 909 S Wolcott Avenue (MC 901), 2040 COMRB, Chicago, IL 60612 USA
| |
Collapse
|