1
|
Crespo B, Illera JC, Silvan G, Lopez-Plaza P, Herrera de la Muela M, de la Puente Yague M, Diaz del Arco C, de Andrés PJ, Illera MJ, Caceres S. Bicalutamide Enhances Conventional Chemotherapy in In Vitro and In Vivo Assays Using Human and Canine Inflammatory Mammary Cancer Cell Lines. Int J Mol Sci 2024; 25:7923. [PMID: 39063165 PMCID: PMC11276844 DOI: 10.3390/ijms25147923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/09/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Human inflammatory breast cancer (IBC) and canine inflammatory mammary cancer (IMC) are highly aggressive neoplastic diseases that share numerous characteristics. In IBC and IMC, chemotherapy produces a limited pathological response and anti-androgen therapies have been of interest for breast cancer treatment. Therefore, the aim was to evaluate the effect of a therapy based on bicalutamide, a non-steroidal anti-androgen, with doxorubicin and docetaxel chemotherapy on cell proliferation, migration, tumor growth, and steroid-hormone secretion. An IMC-TN cell line, IPC-366, and an IBC-TN cell line, SUM149, were used. In vitro assays revealed that SUM149 exhibited greater sensitivity, reducing cell viability and migration with all tested drugs. In contrast, IPC-366 exhibited only significant in vitro reductions with docetaxel as a single agent or in different combinations. Decreased estrogen levels reduced in vitro tumor growth in both IMC and IBC. Curiously, doxorubicin resulted in low efficacy, especially in IMC. In addition, all drugs reduced the tumor volume in IBC and IMC by increasing intratumoral testosterone (T) levels, which have been related with reduced tumor progression. In conclusion, the addition of bicalutamide to doxorubicin and docetaxel combinations may represent a potential treatment for IMC and IBC.
Collapse
Affiliation(s)
- Belen Crespo
- Department Animal Physiology, Veterinary Medicine School, Complutense University of Madrid (UCM), 28040 Madrid, Spain; (B.C.); (J.C.I.); (P.L.-P.); (M.J.I.); (S.C.)
| | - Juan Carlos Illera
- Department Animal Physiology, Veterinary Medicine School, Complutense University of Madrid (UCM), 28040 Madrid, Spain; (B.C.); (J.C.I.); (P.L.-P.); (M.J.I.); (S.C.)
| | - Gema Silvan
- Department Animal Physiology, Veterinary Medicine School, Complutense University of Madrid (UCM), 28040 Madrid, Spain; (B.C.); (J.C.I.); (P.L.-P.); (M.J.I.); (S.C.)
| | - Paula Lopez-Plaza
- Department Animal Physiology, Veterinary Medicine School, Complutense University of Madrid (UCM), 28040 Madrid, Spain; (B.C.); (J.C.I.); (P.L.-P.); (M.J.I.); (S.C.)
| | - María Herrera de la Muela
- Obstetrics and Gynecology Department, Hospital Clinico San Carlos, Instituto de Salud de la Mujer, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IsISSC), 28040 Madrid, Spain;
| | - Miriam de la Puente Yague
- Department of Public and Maternal Child Health University, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain;
| | | | - Paloma Jimena de Andrés
- Department of Animal Medicine, Surgery and Pathology, Veterinary Medicine School, Complutense University of Madrid, 28040 Madrid, Spain;
| | - Maria Jose Illera
- Department Animal Physiology, Veterinary Medicine School, Complutense University of Madrid (UCM), 28040 Madrid, Spain; (B.C.); (J.C.I.); (P.L.-P.); (M.J.I.); (S.C.)
| | - Sara Caceres
- Department Animal Physiology, Veterinary Medicine School, Complutense University of Madrid (UCM), 28040 Madrid, Spain; (B.C.); (J.C.I.); (P.L.-P.); (M.J.I.); (S.C.)
| |
Collapse
|
2
|
Liu H, Tu M, Yin Z, Zhang D, Ma J, He F. Unraveling the complexity of polycystic ovary syndrome with animal models. J Genet Genomics 2024; 51:144-158. [PMID: 37777062 DOI: 10.1016/j.jgg.2023.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/17/2023] [Accepted: 09/20/2023] [Indexed: 10/02/2023]
Abstract
Polycystic ovary syndrome (PCOS) is a highly familial and heritable endocrine disorder. Over half of the daughters born to women with PCOS may eventually develop their own PCOS-related symptoms. Progress in the treatment of PCOS is currently hindered by the complexity of its clinical manifestations and incomplete knowledge of its etiopathogenesis. Various animal models, including experimentally induced, naturally occurring, and spontaneously arising ones, have been established to emulate a wide range of phenotypical and pathological traits of human PCOS. These studies have led to a paradigm shift in understanding the genetic, developmental, and evolutionary origins of this disorder. Furthermore, emerging evidence suggests that animal models are useful in evaluating state-of-the-art drugs and treatments for PCOS. This review aims to provide a comprehensive summary of recent studies of PCOS in animal models, highlighting the power of these disease models in understanding the biology of PCOS and aiding high-throughput approaches.
Collapse
Affiliation(s)
- Huanju Liu
- Center for Genetic Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Mixue Tu
- Key Laboratory of Women's Reproductive Health of Zhejiang Province and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
| | - Zhiyong Yin
- Center for Genetic Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Dan Zhang
- Key Laboratory of Women's Reproductive Health of Zhejiang Province and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China; Zhejiang Provincial Clinical Research Center for Child Health, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China; Clinical Research Center on Birth Defect Prevention and Intervention of Zhejiang Province, Hangzhou, Zhejiang 310006, China.
| | - Jun Ma
- Center for Genetic Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; Key Laboratory of Women's Reproductive Health of Zhejiang Province and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China; Institute of Genetics, Zhejiang University International School of Medicine, Hangzhou, Zhejiang 310058, China; Zhejiang Provincial Key Laboratory of Genetic and Developmental Disorder, Hangzhou, Zhejiang 310058, China.
| | - Feng He
- Center for Genetic Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; Key Laboratory of Women's Reproductive Health of Zhejiang Province and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China; Institute of Genetics, Zhejiang University International School of Medicine, Hangzhou, Zhejiang 310058, China; Zhejiang Provincial Key Laboratory of Genetic and Developmental Disorder, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
3
|
Crespo B, Illera JC, Silvan G, Lopez-Plaza P, Herrera de la Muela M, de la Puente Yagüe M, Diaz del Arco C, Illera MJ, Caceres S. Androgen and Estrogen β Receptor Expression Enhances Efficacy of Antihormonal Treatments in Triple-Negative Breast Cancer Cell Lines. Int J Mol Sci 2024; 25:1471. [PMID: 38338747 PMCID: PMC10855276 DOI: 10.3390/ijms25031471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/10/2024] [Accepted: 01/20/2024] [Indexed: 02/12/2024] Open
Abstract
The triple-negative breast cancer (TNBC) subtype is characterized by the lack of expression of ERα (estrogen receptor α), PR (progesterone receptor) and no overexpression of HER-2. However, TNBC can express the androgen receptor (AR) or estrogen receptor β (ERβ). Also, TNBC secretes steroid hormones and is influenced by hormonal fluctuations, so the steroid inhibition could exert a beneficial effect in TNBC treatment. The aim of this study was to evaluate the effect of dutasteride, anastrozole and ASP9521 in in vitro processes using human TNBC cell lines. For this, immunofluorescence, sensitivity, proliferation and wound healing assays were performed, and hormone concentrations were studied. Results revealed that all TNBC cell lines expressed AR and ERβ; the ones that expressed them most intensely were more sensitive to antihormonal treatments. All treatments reduced cell viability, highlighting MDA-MB-453 and SUM-159. Indeed, a decrease in androgen levels was observed in these cell lines, which could relate to a reduction in cell viability. In addition, MCF-7 and SUM-159 increased cell migration under treatments, increasing estrogen levels, which could favor cell migration. Thus, antihormonal treatments could be beneficial for TNBC therapies. This study clarifies the importance of steroid hormones in AR and ERβ-positive cell lines of TNBC.
Collapse
Affiliation(s)
- Belen Crespo
- Department Animal Physiology, Veterinary Medicine School, Complutense University of Madrid (UCM), 28040 Madrid, Spain; (B.C.); (G.S.); (P.L.-P.); (M.J.I.); (S.C.)
| | - Juan Carlos Illera
- Department Animal Physiology, Veterinary Medicine School, Complutense University of Madrid (UCM), 28040 Madrid, Spain; (B.C.); (G.S.); (P.L.-P.); (M.J.I.); (S.C.)
| | - Gema Silvan
- Department Animal Physiology, Veterinary Medicine School, Complutense University of Madrid (UCM), 28040 Madrid, Spain; (B.C.); (G.S.); (P.L.-P.); (M.J.I.); (S.C.)
| | - Paula Lopez-Plaza
- Department Animal Physiology, Veterinary Medicine School, Complutense University of Madrid (UCM), 28040 Madrid, Spain; (B.C.); (G.S.); (P.L.-P.); (M.J.I.); (S.C.)
| | - María Herrera de la Muela
- Obstetrics and Gynecology Department, Hospital Clinico San Carlos, Instituto de Salud de la Mujer, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IsISSC), 28040 Madrid, Spain;
| | - Miriam de la Puente Yagüe
- Department of Public and Maternal Child Health University, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain;
| | | | - Maria Jose Illera
- Department Animal Physiology, Veterinary Medicine School, Complutense University of Madrid (UCM), 28040 Madrid, Spain; (B.C.); (G.S.); (P.L.-P.); (M.J.I.); (S.C.)
| | - Sara Caceres
- Department Animal Physiology, Veterinary Medicine School, Complutense University of Madrid (UCM), 28040 Madrid, Spain; (B.C.); (G.S.); (P.L.-P.); (M.J.I.); (S.C.)
| |
Collapse
|
4
|
Ji X, Williams KP, Zheng W. Applying a Gene Reversal Rate Computational Methodology to Identify Drugs for a Rare Cancer: Inflammatory Breast Cancer. Cancer Inform 2023; 22:11769351231202588. [PMID: 37846218 PMCID: PMC10576937 DOI: 10.1177/11769351231202588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 09/01/2023] [Indexed: 10/18/2023] Open
Abstract
The aim of this study was to utilize a computational methodology based on Gene Reversal Rate (GRR) scoring to repurpose existing drugs for a rare and understudied cancer: inflammatory breast cancer (IBC). This method uses IBC-related gene expression signatures (GES) and drug-induced gene expression profiles from the LINCS database to calculate a GRR score for each candidate drug, and is based on the idea that a compound that can counteract gene expression changes of a disease may have potential therapeutic applications for that disease. Genes related to IBC with associated differential expression data (265 up-regulated and 122 down-regulated) were collated from PubMed-indexed publications. Drug-induced gene expression profiles were downloaded from the LINCS database and candidate drugs to treat IBC were predicted using their GRR scores. Thirty-two (32) drug perturbations that could potentially reverse the pre-compiled list of 297 IBC genes were obtained using the LINCS Canvas Browser (LCB) analysis. Binary combinations of the 32 perturbations were assessed computationally to identify combined perturbations with the highest GRR scores, and resulted in 131 combinations with GRR greater than 80%, that reverse up to 264 of the 297 genes in the IBC-GES. The top 35 combinations involve 20 unique individual drug perturbations, and 19 potential drug candidates. A comprehensive literature search confirmed 17 of the 19 known drugs as having either anti-cancer or anti-inflammatory activities. AZD-7545, BMS-754807, and nimesulide target known IBC relevant genes: PDK, Met, and COX, respectively. AG-14361, butalbital, and clobenpropit are known to be functionally relevant in DNA damage, cell cycle, and apoptosis, respectively. These findings support the use of the GRR approach to identify drug candidates and potential combination therapies that could be used to treat rare diseases such as IBC.
Collapse
Affiliation(s)
- Xiaojia Ji
- BRITE Institute and Department of Pharmaceutical Sciences, College of Health and Sciences, North Carolina Central University, Durham, NC, USA
| | - Kevin P Williams
- BRITE Institute and Department of Pharmaceutical Sciences, College of Health and Sciences, North Carolina Central University, Durham, NC, USA
| | - Weifan Zheng
- BRITE Institute and Department of Pharmaceutical Sciences, College of Health and Sciences, North Carolina Central University, Durham, NC, USA
| |
Collapse
|
5
|
Crespo B, Caceres S, Silvan G, Illera MJ, Illera JC. The inhibition of steroid hormones determines the fate of IPC-366 tumor cells, highlighting the crucial role of androgen production in tumor processes. Res Vet Sci 2023; 161:1-14. [PMID: 37290206 DOI: 10.1016/j.rvsc.2023.05.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 05/01/2023] [Accepted: 05/26/2023] [Indexed: 06/10/2023]
Abstract
Inflammatory mammary cancer (IMC) is a disease that affects female dogs. It is characterized by poor treatment options and no efficient targets. However, anti-androgenic and anti-estrogenic therapies could be effective because IMC has a great endocrine influence, affecting tumor progression. IPC-366 is a triple negative IMC cell line that has been postulated as a useful model to study this disease. Therefore, the aim of this study was to inhibit steroid hormones production at different points of the steroid pathway in order to determine its effect in cell viability and migration in vitro and tumor growth in vivo. For this purpose, Dutasteride (anti-5αReductase), Anastrozole (anti-aromatase) and ASP9521 (anti-17βHSD) and their combinations have been used. Results revealed that this cell line is positive to estrogen receptor β (ERβ) and androgen receptor (AR) and endocrine therapies reduce cell viability. Our results enforced the hypothesis that estrogens promote cell viability and migration in vitro due to the function of E1SO4 as an estrogen reservoir for E2 production that promotes the IMC cells proliferation. Also, an increase in androgen secretion was associated with a reduction in cell viability. Finally, in vivo assays showed large tumor reduction. Hormone assays determined that high estrogen levels and the reduction of androgen levels promote tumor growth in Balb/SCID IMC mice. In conclusion, estrogen levels reduction may be associated with a good prognosis. Also, activation of AR by increasing androgen production could result in effective therapy for IMC because their anti-proliferative effect.
Collapse
Affiliation(s)
- Belen Crespo
- Department Animal Physiology, Veterinary Medicine School, Complutense University of Madrid (UCM), 28040 Madrid, Spain.
| | - Sara Caceres
- Department Animal Physiology, Veterinary Medicine School, Complutense University of Madrid (UCM), 28040 Madrid, Spain.
| | - Gema Silvan
- Department Animal Physiology, Veterinary Medicine School, Complutense University of Madrid (UCM), 28040 Madrid, Spain.
| | - Maria Jose Illera
- Department Animal Physiology, Veterinary Medicine School, Complutense University of Madrid (UCM), 28040 Madrid, Spain.
| | - J C Illera
- Department Animal Physiology, Veterinary Medicine School, Complutense University of Madrid (UCM), 28040 Madrid, Spain.
| |
Collapse
|