1
|
Jensen C, Maarup S, Poulsen HS, Hasselbalch B, Karsdal M, Svane IM, Lassen U, Willumsen N. Degradation fragments of Tau and type IV collagen as serum biomarkers in patients with recurrent glioblastoma treated with nivolumab and bevacizumab. Clin Transl Oncol 2024:10.1007/s12094-024-03775-z. [PMID: 39499486 DOI: 10.1007/s12094-024-03775-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 10/18/2024] [Indexed: 11/07/2024]
Abstract
PURPOSE There is an unmet need for new treatment options and biomarkers for patients with glioblastoma (GBM). Here we investigated three non-invasive biomarkers: type VI collagen degraded by granzyme B (C4G) and matrix metalloproteases (C4M), respectively, and ADAM10-degraded Tau (Tau-A). METHODS Biomarker levels in pre- and on-treatment serum samples from patients with recurrent GBM (n = 39) treated with nivolumab and bevacizumab (NCT03890952) were compared to healthy levels (n = 22) and associated with overall survival (OS) outcome (median cutpoint). Longitudinal changes in biomarkers were investigated by a Mixed-effects analysis. RESULTS Tau-A (p < 0.0001) and C4G (p = 0.005), but not C4M (p = 0.106), were increased in patients. High Tau-A and C4G associated with improved OS (Tau-A: HR = 0.41, 95%CI = 0.20-0.86, C4G: HR = 0.47, 95%CI = 0.24-0.94). Only C4G increased with treatment (p = 0.024-0.005). CONCLUSIONS Tau-A and C4G are elevated in serum from patients with recurrent GBM and prognostic for OS. If validated, these biomarkers could be applied to clinical trials.
Collapse
Affiliation(s)
| | - Simone Maarup
- The DCCC Brain Tumor Center, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Oncology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Hans Skovgaard Poulsen
- The DCCC Brain Tumor Center, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Oncology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Benedikte Hasselbalch
- The DCCC Brain Tumor Center, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Oncology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | | | - Inge Marie Svane
- National Center for Cancer Immune Therapy, CCIT-DK, Copenhagen University Hospital, Herlev, Denmark
- Department of Oncology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Ulrik Lassen
- The DCCC Brain Tumor Center, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Oncology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | | |
Collapse
|
2
|
Relave ET, Hedna R, Di Maio A, Devred F, Kovacic H, Robin M, Breuzard G. Therapeutic Contribution of Tau-Binding Thiazoloflavonoid Hybrid Derivatives Against Glioblastoma Using Pharmacological Approach in 3D Spheroids. Int J Mol Sci 2024; 25:11785. [PMID: 39519336 PMCID: PMC11546706 DOI: 10.3390/ijms252111785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/25/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Growing evidence has unveiled the pathological significance of Tau in many cancers, including the most aggressive and lethal brain tumor glioblastoma multiform (GBM). In this regard, we have recently examined the structure-activity relationship of a new series of seventeen 2-aminothiazole-fused to flavonoid hybrid compounds (TZF) on Tau-overexpressing GBM cells. Here, we evaluated the anticancer activities of the two lead compounds 2 and 9 using multi-cellular spheroids (MCSs) which represent an easy 3D human cell model to mimic GBM organization, physical constraints and drug penetration. The two compounds reduced cell evasion from spheroids up to three times, especially for Tau-expressing cells. As a first step towards a therapeutic approach, we quantified the effects of these compounds on MCS growth using two complementary protocols: single and repeated treatments. A single injection with compound 9 slowed down the growth of MCSs formed with U87 shCTRL cells by 40% at 10 µM. More interestingly, multiple treatment with compound 9 slowed the growth of U87 shCTRL spheroids by 40% at a concentration of 5 µM, supporting the increased bioavailability of compound 9 within MCSs. In conclusion, compound 9 deserves particular attention as promising candidate for specifically targeting Tau-expressing cancers such as GBM.
Collapse
Affiliation(s)
- Emmanuelle T. Relave
- Faculté des Sciences Médicales et Paramédicales, Institut de Neurophysiopathologie (INP), UMR 7051, CNRS, Aix Marseille Université, 13005 Marseille, France; (E.T.R.); (R.H.); (F.D.); (H.K.)
| | - Rayane Hedna
- Faculté des Sciences Médicales et Paramédicales, Institut de Neurophysiopathologie (INP), UMR 7051, CNRS, Aix Marseille Université, 13005 Marseille, France; (E.T.R.); (R.H.); (F.D.); (H.K.)
| | - Attilio Di Maio
- Mediterranean Institute of Marine and Terrestrial Biodiversity and Ecology, IRD, CNRS UMR7263, Aix-Marseille Université, 13013 Marseille, France; (A.D.M.); (M.R.)
- Mediterranean Institute of Marine and Terrestrial Biodiversity and Ecology, IRD, NRS UMR7263, Avignon University, 84029 Avignon, France
| | - François Devred
- Faculté des Sciences Médicales et Paramédicales, Institut de Neurophysiopathologie (INP), UMR 7051, CNRS, Aix Marseille Université, 13005 Marseille, France; (E.T.R.); (R.H.); (F.D.); (H.K.)
| | - Hervé Kovacic
- Faculté des Sciences Médicales et Paramédicales, Institut de Neurophysiopathologie (INP), UMR 7051, CNRS, Aix Marseille Université, 13005 Marseille, France; (E.T.R.); (R.H.); (F.D.); (H.K.)
| | - Maxime Robin
- Mediterranean Institute of Marine and Terrestrial Biodiversity and Ecology, IRD, CNRS UMR7263, Aix-Marseille Université, 13013 Marseille, France; (A.D.M.); (M.R.)
- Mediterranean Institute of Marine and Terrestrial Biodiversity and Ecology, IRD, NRS UMR7263, Avignon University, 84029 Avignon, France
| | - Gilles Breuzard
- Faculté des Sciences Médicales et Paramédicales, Institut de Neurophysiopathologie (INP), UMR 7051, CNRS, Aix Marseille Université, 13005 Marseille, France; (E.T.R.); (R.H.); (F.D.); (H.K.)
| |
Collapse
|
3
|
Costa A, Forte IM, Pentimalli F, Iannuzzi CA, Alfano L, Capone F, Camerlingo R, Calabrese A, von Arx C, Benot Dominguez R, Quintiliani M, De Laurentiis M, Morrione A, Giordano A. Pharmacological inhibition of CDK4/6 impairs diffuse pleural mesothelioma 3D spheroid growth and reduces viability of cisplatin-resistant cells. Front Oncol 2024; 14:1418951. [PMID: 39011477 PMCID: PMC11246887 DOI: 10.3389/fonc.2024.1418951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 06/11/2024] [Indexed: 07/17/2024] Open
Abstract
Introduction Diffuse pleural mesothelioma (DPM) of the pleura is a highly aggressive and treatment-resistant cancer linked to asbestos exposure. Despite multimodal treatment, the prognosis for DPM patients remains very poor, with an average survival of 2 years from diagnosis. Cisplatin, a platinum-based chemotherapy drug, is commonly used in the treatment of DPM. However, the development of resistance to cisplatin significantly limits its effectiveness, highlighting the urgent need for alternative therapeutic strategies. New selective inhibitors of cyclin-dependent kinases 4 and 6 (CDK4/6) have shown promise in various malignancies by inhibiting cell cycle progression and suppressing tumor growth. Recent studies have indicated the potential of abemaciclib for DPM therapy, and a phase II clinical trial has shown preliminary encouraging results. Methods Here, we tested abemaciclib, palbociclib, and ribociclib on a panel of DPM cell lines and non-tumor mesothelial(MET-5A) cells. Results Specifically, we focused on abemaciclib, which was the mosteffective cytotoxic agent on all the DPM cell lines tested. Abemaciclib reduced DPM cell viability, clonogenic potential, and ability to grow as three-dimensional (3D) spheroids. In addition, abemaciclib induced prolonged effects, thereby impairing second-generation sphere formation and inducing G0/G1 arrest and apoptosis/ necrosis. Interestingly, single silencing of RB family members did not impair cell response to abemaciclib, suggesting that they likely complement each other in triggering abemaciclib's cytostatic effect. Interestingly, abemaciclib reduced the phosphorylation of AKT, which is hyperactive in DPM and synergized with the pharmacological AKT inhibitor (AKTi VIII). Abemaciclib also synergized with cisplatin and reduced the viability of DPM cells with acquired resistance to cisplatin. Discussion Overall, our results suggest that CDK4/6 inhibitors alone or in combination with standard of care should be further explored for DPM therapy.
Collapse
Affiliation(s)
- Aurora Costa
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Iris Maria Forte
- Experimental ClinicalOncology of Breast Unit, Department of Breast and Thoracic Oncology, Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", Naples, Italy
| | - Francesca Pentimalli
- Department of Medicine and Surgery, LUM University "Giuseppe De Gennaro", Bari, Italy
| | - Carmelina Antonella Iannuzzi
- Experimental ClinicalOncology of Breast Unit, Department of Breast and Thoracic Oncology, Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", Naples, Italy
| | - Luigi Alfano
- Experimental ClinicalOncology of Breast Unit, Department of Breast and Thoracic Oncology, Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", Naples, Italy
| | - Francesca Capone
- Experimental Pharmacology Unit-Laboratories of Naples andMercogliano (AV), Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", Naples, Italy
| | - Rosa Camerlingo
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori, IRCCS, Fondazione G. Pascale, Naples, Italy
| | - Alessandra Calabrese
- Experimental ClinicalOncology of Breast Unit, Department of Breast and Thoracic Oncology, Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", Naples, Italy
| | - Claudia von Arx
- Experimental ClinicalOncology of Breast Unit, Department of Breast and Thoracic Oncology, Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", Naples, Italy
| | - Reyes Benot Dominguez
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA, United States
| | | | - Michelino De Laurentiis
- Experimental ClinicalOncology of Breast Unit, Department of Breast and Thoracic Oncology, Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", Naples, Italy
| | - Andrea Morrione
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA, United States
| | - Antonio Giordano
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA, United States
| |
Collapse
|
4
|
Valerius AR, Webb MJ, Hammad N, Sener U, Malani R. Cerebrospinal Fluid Liquid Biopsies in the Evaluation of Adult Gliomas. Curr Oncol Rep 2024; 26:377-390. [PMID: 38488990 DOI: 10.1007/s11912-024-01517-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2024] [Indexed: 03/17/2024]
Abstract
PURPOSE OF REVIEW This review aims to discuss recent research regarding the biomolecules explored in liquid biopsies and their potential clinical uses for adult-type diffuse gliomas. RECENT FINDINGS Evaluation of tumor biomolecules via cerebrospinal fluid (CSF) is an emerging technology in neuro-oncology. Studies to date have already identified various circulating tumor DNA, extracellular vesicle, micro-messenger RNA and protein biomarkers of interest. These biomarkers show potential to assist in multiple avenues of central nervous system (CNS) tumor evaluation, including tumor differentiation and diagnosis, treatment selection, response assessment, detection of tumor progression, and prognosis. In addition, CSF liquid biopsies have the potential to better characterize tumor heterogeneity compared to conventional tissue collection and CNS imaging. Current imaging modalities are not sufficient to establish a definitive glioma diagnosis and repeated tissue sampling via conventional biopsy is risky, therefore, there is a great need to improve non-invasive and minimally invasive sampling methods. CSF liquid biopsies represent a promising, minimally invasive adjunct to current approaches which can provide diagnostic and prognostic information as well as aid in response assessment.
Collapse
Affiliation(s)
| | - Mason J Webb
- Department of Medical Oncology, Mayo Clinic, Rochester, MN, USA
| | - Nouran Hammad
- Jordan University of Science and Technology School of Medicine, Irbid, Jordan
| | - Ugur Sener
- Department of Neurology, Department of Medical Oncology, Mayo Clinic, Rochester, MN, USA
| | - Rachna Malani
- University of UT - Huntsman Cancer Institute (Department of Neurosurgery), Salt Lake City, UT, USA
| |
Collapse
|
5
|
Kyriatzis G, Bernard A, Bôle A, Khrestchatisky M, Ferhat L. In the Rat Hippocampus, Pilocarpine-Induced Status Epilepticus Is Associated with Reactive Glia and Concomitant Increased Expression of CD31, PDGFRβ, and Collagen IV in Endothelial Cells and Pericytes of the Blood-Brain Barrier. Int J Mol Sci 2024; 25:1693. [PMID: 38338969 PMCID: PMC10855308 DOI: 10.3390/ijms25031693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
In humans and animal models, temporal lobe epilepsy (TLE) is associated with reorganization of hippocampal neuronal networks, gliosis, neuroinflammation, and loss of integrity of the blood-brain barrier (BBB). More than 30% of epilepsies remain intractable, and characterization of the molecular mechanisms involved in BBB dysfunction is essential to the identification of new therapeutic strategies. In this work, we induced status epilepticus in rats through injection of the proconvulsant drug pilocarpine, which leads to TLE. Using RT-qPCR, double immunohistochemistry, and confocal imaging, we studied the regulation of reactive glia and vascular markers at different time points of epileptogenesis (latent phase-3, 7, and 14 days; chronic phase-1 and 3 months). In the hippocampus, increased expression of mRNA encoding the glial proteins GFAP and Iba1 confirmed neuroinflammatory status. We report for the first time the concomitant induction of the specific proteins CD31, PDGFRβ, and ColIV-which peak at the same time points as inflammation-in the endothelial cells, pericytes, and basement membrane of the BBB. The altered expression of these proteins occurs early in TLE, during the latent phase, suggesting that they could be associated with the early rupture and pathogenicity of the BBB that will contribute to the chronic phase of epilepsy.
Collapse
Affiliation(s)
| | | | | | - Michel Khrestchatisky
- Aix-Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Marseille, France, Institut de Neurophysiopathologie, Faculté de Médecine, 27 Bd Jean Moulin, 13005 Marseille, France; (G.K.); (A.B.); (A.B.)
| | - Lotfi Ferhat
- Aix-Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Marseille, France, Institut de Neurophysiopathologie, Faculté de Médecine, 27 Bd Jean Moulin, 13005 Marseille, France; (G.K.); (A.B.); (A.B.)
| |
Collapse
|
6
|
Hedna R, DiMaio A, Robin M, Allegro D, Tatoni M, Peyrot V, Barbier P, Kovacic H, Breuzard G. 2-Aminothiazole-Flavonoid Hybrid Derivatives Binding to Tau Protein and Responsible for Antitumor Activity in Glioblastoma. Int J Mol Sci 2023; 24:15050. [PMID: 37894731 PMCID: PMC10606064 DOI: 10.3390/ijms242015050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 10/29/2023] Open
Abstract
Tau protein has been described for several decades as a promoter of tubulin assembly into microtubules. Dysregulation or alterations in Tau expression have been related to various brain cancers, including the highly aggressive and lethal brain tumor glioblastoma multiform (GBM). In this respect, Tau holds significant promise as a target for the development of novel therapies. Here, we examined the structure-activity relationship of a new series of seventeen 2-aminothiazole-fused to flavonoid hybrid compounds (TZF) on Tau binding, Tau fibrillation, and cellular effects on Tau-expressing cancer cells. By spectrofluorometric approach, we found that two compounds, 2 and 9, demonstrated high affinity for Tau and exhibited a strong propensity to inhibit Tau fibrillation. Then, the biological activity of these compounds was evaluated on several Tau-expressing cells derived from glioblastoma. The two lead compounds displayed a high anti-metabolic activity on cells related to an increased fission of the mitochondria network. Moreover, we showed that both compounds induced microtubule bundling within newly formed neurite-like protrusions, as well as with defection of cell migration. Taken together, our results provide a strong experimental basis to develop new potent molecules targeting Tau-expressing cancer cells, such as GBM.
Collapse
Affiliation(s)
- Rayane Hedna
- Faculté des Sciences Médicales et Paramédicales, Institut de Neurophysiopathologie (INP), UMR 7051, CNRS, Aix Marseille Université, 13005 Marseille, France; (R.H.); (D.A.); (M.T.); (V.P.); (P.B.); (H.K.)
| | - Attilio DiMaio
- Faculté de Pharmacie, Institut Méditerranéen de Biodiversité et Ecologie Marine et Continentale (IMBE), UMR 7263, CNRS, IRD 237, Aix-Marseille Université, 13005 Marseille, France; (A.D.); (M.R.)
| | - Maxime Robin
- Faculté de Pharmacie, Institut Méditerranéen de Biodiversité et Ecologie Marine et Continentale (IMBE), UMR 7263, CNRS, IRD 237, Aix-Marseille Université, 13005 Marseille, France; (A.D.); (M.R.)
| | - Diane Allegro
- Faculté des Sciences Médicales et Paramédicales, Institut de Neurophysiopathologie (INP), UMR 7051, CNRS, Aix Marseille Université, 13005 Marseille, France; (R.H.); (D.A.); (M.T.); (V.P.); (P.B.); (H.K.)
| | - Mario Tatoni
- Faculté des Sciences Médicales et Paramédicales, Institut de Neurophysiopathologie (INP), UMR 7051, CNRS, Aix Marseille Université, 13005 Marseille, France; (R.H.); (D.A.); (M.T.); (V.P.); (P.B.); (H.K.)
| | - Vincent Peyrot
- Faculté des Sciences Médicales et Paramédicales, Institut de Neurophysiopathologie (INP), UMR 7051, CNRS, Aix Marseille Université, 13005 Marseille, France; (R.H.); (D.A.); (M.T.); (V.P.); (P.B.); (H.K.)
| | - Pascale Barbier
- Faculté des Sciences Médicales et Paramédicales, Institut de Neurophysiopathologie (INP), UMR 7051, CNRS, Aix Marseille Université, 13005 Marseille, France; (R.H.); (D.A.); (M.T.); (V.P.); (P.B.); (H.K.)
| | - Hervé Kovacic
- Faculté des Sciences Médicales et Paramédicales, Institut de Neurophysiopathologie (INP), UMR 7051, CNRS, Aix Marseille Université, 13005 Marseille, France; (R.H.); (D.A.); (M.T.); (V.P.); (P.B.); (H.K.)
| | - Gilles Breuzard
- Faculté des Sciences Médicales et Paramédicales, Institut de Neurophysiopathologie (INP), UMR 7051, CNRS, Aix Marseille Université, 13005 Marseille, France; (R.H.); (D.A.); (M.T.); (V.P.); (P.B.); (H.K.)
| |
Collapse
|
7
|
Kałuzińska-Kołat Ż, Kołat D, Kośla K, Płuciennik E, Bednarek AK. Molecular landscapes of glioblastoma cell lines revealed a group of patients that do not benefit from WWOX tumor suppressor expression. Front Neurosci 2023; 17:1260409. [PMID: 37781246 PMCID: PMC10540236 DOI: 10.3389/fnins.2023.1260409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 08/28/2023] [Indexed: 10/03/2023] Open
Abstract
INTRODUCTION Glioblastoma (GBM) is notorious for its clinical and molecular heterogeneity, contributing to therapeutic failure and a grim prognosis. WWOX is one of the tumor suppressor genes important in nervous tissue or related pathologies, which was scarcely investigated in GBM for reliable associations with prognosis or disease progression despite known alterations. Recently, we observed a phenotypic heterogeneity between GBM cell lines (U87MG, T98G, U251MG, DBTRG-05MG), among which the anti-GBM activity of WWOX was generally corresponding, but colony growth and formation were inconsistent in DBTRG-05MG. This prompted us to investigate the molecular landscapes of these cell lines, intending to translate them into the clinical context. METHODS U87MG/T98G/U251MG/DBTRG-05MG were subjected to high-throughput sequencing, and obtained data were explored via weighted gene co-expression network analysis, differential expression analysis, functional annotation, and network building. Following the identification of the most relevant DBTRG-distinguishing driver genes, data from GBM patients were employed for, e.g., differential expression analysis, survival analysis, and principal component analysis. RESULTS Although most driver genes were unique for each cell line, some were inversely regulated in DBTRG-05MG. Alongside driver genes, the differentially-expressed genes were used to build a WWOX-related network depicting protein-protein interactions in U87MG/T98G/U251MG/DBTRG-05MG. This network revealed processes distinctly regulated in DBTRG-05MG, e.g., microglia proliferation or neurofibrillary tangle assembly. POLE4 and HSF2BP were selected as DBTRG-discriminating driver genes based on the gene significance, module membership, and fold-change. Alongside WWOX, POLE4 and HSF2BP expression was used to stratify patients into cell lines-resembling groups that differed in, e.g., prognosis and treatment response. Some differences from a WWOX-related network were certified in patients, revealing genes that clarify clinical outcomes. Presumably, WWOX overexpression in DBTRG-05MG resulted in expression profile change resembling that of patients with inferior prognosis and drug response. Among these patients, WWOX may be inaccessible for its partners and does not manifest its anti-cancer activity, which was proposed in the literature but not regarding glioblastoma or concerning POLE4 and HSF2BP. CONCLUSION Cell lines data enabled the identification of patients among which, despite high expression of WWOX tumor suppressor, no advantageous outcomes were noted due to the cancer-promoting profile ensured by other genes.
Collapse
Affiliation(s)
| | - Damian Kołat
- Department of Molecular Carcinogenesis, Medical University of Lodz, Lodz, Poland
| | - Katarzyna Kośla
- Department of Molecular Carcinogenesis, Medical University of Lodz, Lodz, Poland
| | | | - Andrzej K. Bednarek
- Department of Molecular Carcinogenesis, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
8
|
Mu J, Gong J, Shi M, Zhang Y. Analysis and validation of aging-related genes in prognosis and immune function of glioblastoma. BMC Med Genomics 2023; 16:109. [PMID: 37208656 DOI: 10.1186/s12920-023-01538-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 05/09/2023] [Indexed: 05/21/2023] Open
Abstract
BACKGROUND Glioblastoma (GBM) is a common malignant brain tumor with poor prognosis and high mortality. Numerous reports have identified the correlation between aging and the prognosis of patients with GBM. The purpose of this study was to establish a prognostic model for GBM patients based on aging-related gene (ARG) to help determine the prognosis of GBM patients. METHODS 143 patients with GBM from The Cancer Genomic Atlas (TCGA), 218 patients with GBM from the Chinese Glioma Genomic Atlas (CGGA) of China and 50 patients from Gene Expression Omnibus (GEO) were included in the study. R software (V4.2.1) and bioinformatics statistical methods were used to develop prognostic models and study immune infiltration and mutation characteristics. RESULTS Thirteen genes were screened out and used to establish the prognostic model finally, and the risk scores of the prognostic model was an independent factor (P < 0.001), which indicated a good prediction ability. In addition, there are significant differences in immune infiltration and mutation characteristics between the two groups with high and low risk scores. CONCLUSION The prognostic model of GBM patients based on ARGs can predict the prognosis of GBM patients. However, this signature requires further investigation and validation in larger cohort studies.
Collapse
Affiliation(s)
- Jianhua Mu
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Jianan Gong
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Miao Shi
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| | - Yinian Zhang
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
9
|
Bonnett SA, Rosenbloom AB, Ong GT, Conner M, Rininger AB, Newhouse D, New F, Phan CQ, Ilcisin S, Sato H, Lyssand JS, Geiss G, Beechem JM. Ultra High-plex Spatial Proteogenomic Investigation of Giant Cell Glioblastoma Multiforme Immune Infiltrates Reveals Distinct Protein and RNA Expression Profiles. CANCER RESEARCH COMMUNICATIONS 2023; 3:763-779. [PMID: 37377888 PMCID: PMC10155752 DOI: 10.1158/2767-9764.crc-22-0396] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/20/2023] [Accepted: 04/04/2023] [Indexed: 06/29/2023]
Abstract
A deeper understanding of complex biological processes, including tumor development and immune response, requires ultra high-plex, spatial interrogation of multiple "omes". Here we present the development and implementation of a novel spatial proteogenomic (SPG) assay on the GeoMx Digital Spatial Profiler platform with next-generation sequencing readout that enables ultra high-plex digital quantitation of proteins (>100-plex) and RNA (whole transcriptome, >18,000-plex) from a single formalin-fixed paraffin-embedded (FFPE) sample. This study highlighted the high concordance, R > 0.85 and <15% change in sensitivity between the SPG assay and the single-analyte assays on various cell lines and tissues from human and mouse. Furthermore, we demonstrate that the SPG assay was reproducible across multiple users. When used in conjunction with advanced cellular neighborhood segmentation, distinct immune or tumor RNA and protein targets were spatially resolved within individual cell subpopulations in human colorectal cancer and non-small cell lung cancer. We used the SPG assay to interrogate 23 different glioblastoma multiforme (GBM) samples across four pathologies. The study revealed distinct clustering of both RNA and protein based on pathology and anatomic location. The in-depth investigation of giant cell glioblastoma multiforme (gcGBM) revealed distinct protein and RNA expression profiles compared with that of the more common GBM. More importantly, the use of spatial proteogenomics allowed simultaneous interrogation of critical protein posttranslational modifications alongside whole transcriptomic profiles within the same distinct cellular neighborhoods. Significance We describe ultra high-plex spatial proteogenomics; profiling whole transcriptome and high-plex proteomics on a single FFPE tissue section with spatial resolution. Investigation of gcGBM versus GBM revealed distinct protein and RNA expression profiles.
Collapse
Affiliation(s)
| | | | | | - Mark Conner
- NanoString Technologies, Seattle, Washington
| | | | | | - Felicia New
- NanoString Technologies, Seattle, Washington
| | - Chi Q. Phan
- NanoString Technologies, Seattle, Washington
| | | | - Hiromi Sato
- NanoString Technologies, Seattle, Washington
| | | | - Gary Geiss
- NanoString Technologies, Seattle, Washington
| | | |
Collapse
|
10
|
Progress in targeting PTEN/PI3K/Akt axis in glioblastoma therapy: Revisiting molecular interactions. Biomed Pharmacother 2023; 158:114204. [PMID: 36916430 DOI: 10.1016/j.biopha.2022.114204] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/16/2022] [Accepted: 12/30/2022] [Indexed: 01/05/2023] Open
Abstract
Glioblastoma (GBM) is one of the most malignant cancers of central nervous system and due to its sensitive location, surgical resection has high risk and therefore, chemotherapy and radiotherapy are utilized for its treatment. However, chemoresistance and radio-resistance are other problems in GBM treatment. Hence, new therapies based on genes are recommended for treatment of GBM. PTEN is a tumor-suppressor operator in cancer that inhibits PI3K/Akt/mTOR axis in diminishing growth, metastasis and drug resistance. In the current review, the function of PTEN/PI3K/Akt axis in GBM progression is evaluated. Mutation or depletion of PTEN leads to increase in GBM progression. Low expression level of PTEN mediates poor prognosis in GBM and by increasing proliferation and invasion, promotes malignancy of tumor cells. Moreover, loss of PTEN signaling can result in therapy resistance in GBM. Activation of PTEN signaling impairs GBM metabolism via glycolysis inhibition. In contrast to PTEN, PI3K/Akt signaling has oncogenic function and during tumor progression, expression level of PI3K/Akt enhances. PI3K/Akt signaling shows positive association with oncogenic pathways and its expression similar to PTEN signaling, is regulated by non-coding RNAs. PTEN upregulation and PI3K/Akt signaling inhibition by anti-cancer agents can be beneficial in interfering GBM progression. This review emphasizes on the signaling networks related to PTEN/PI3K/Akt and provides new insights for targeting this axis in effective GBM treatment.
Collapse
|
11
|
Corsi A, Bombieri C, Valenti MT, Romanelli MG. Tau Isoforms: Gaining Insight into MAPT Alternative Splicing. Int J Mol Sci 2022; 23:ijms232315383. [PMID: 36499709 PMCID: PMC9735940 DOI: 10.3390/ijms232315383] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/27/2022] [Accepted: 12/04/2022] [Indexed: 12/13/2022] Open
Abstract
Tau microtubule-associated proteins, encoded by the MAPT gene, are mainly expressed in neurons participating in axonal transport and synaptic plasticity. Six major isoforms differentially expressed during cell development and differentiation are translated by alternative splicing of MAPT transcripts. Alterations in the expression of human Tau isoforms and their aggregation have been linked to several neurodegenerative diseases called tauopathies, including Alzheimer's disease, progressive supranuclear palsy, Pick's disease, and frontotemporal dementia with parkinsonism linked to chromosome 17. Great efforts have been dedicated in recent years to shed light on the complex regulatory mechanism of Tau splicing, with a perspective to developing new RNA-based therapies. This review summarizes the most recent contributions to the knowledge of Tau isoform expression and experimental models, highlighting the role of cis-elements and ribonucleoproteins that regulate the alternative splicing of Tau exons.
Collapse
|
12
|
Hedna R, Kovacic H, Pagano A, Peyrot V, Robin M, Devred F, Breuzard G. Tau Protein as Therapeutic Target for Cancer? Focus on Glioblastoma. Cancers (Basel) 2022; 14:5386. [PMID: 36358803 PMCID: PMC9653627 DOI: 10.3390/cancers14215386] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/28/2022] [Accepted: 10/28/2022] [Indexed: 08/27/2023] Open
Abstract
Despite being extensively studied for several decades, the microtubule-associated protein Tau has not finished revealing its secrets. For long, Tau has been known for its ability to promote microtubule assembly. A less known feature of Tau is its capability to bind to cancer-related protein kinases, suggesting a possible role of Tau in modulating microtubule-independent cellular pathways that are associated with oncogenesis. With the intention of finding new therapeutic targets for cancer, it appears essential to examine the interaction of Tau with these kinases and their consequences. This review aims at collecting the literature data supporting the relationship between Tau and cancer with a particular focus on glioblastoma tumors in which the pathological significance of Tau remains largely unexplored. We will first treat this subject from a mechanistic point of view showing the pivotal role of Tau in oncogenic processes. Then, we will discuss the involvement of Tau in dysregulating critical pathways in glioblastoma. Finally, we will outline promising strategies to target Tau protein for the therapy of glioblastoma.
Collapse
Affiliation(s)
- Rayane Hedna
- Faculté des Sciences Médicales et Paramédicales, Institut de Neurophysiopathologie (INP), UMR 7051, CNRS, Aix Marseille Université, 13005 Marseille, France
| | - Hervé Kovacic
- Faculté des Sciences Médicales et Paramédicales, Institut de Neurophysiopathologie (INP), UMR 7051, CNRS, Aix Marseille Université, 13005 Marseille, France
| | - Alessandra Pagano
- Faculté des Sciences Médicales et Paramédicales, Institut de Neurophysiopathologie (INP), UMR 7051, CNRS, Aix Marseille Université, 13005 Marseille, France
| | - Vincent Peyrot
- Faculté des Sciences Médicales et Paramédicales, Institut de Neurophysiopathologie (INP), UMR 7051, CNRS, Aix Marseille Université, 13005 Marseille, France
| | - Maxime Robin
- Faculté de Pharmacie, Institut Méditerranéen de Biodiversité et Ecologie marine et continentale (IMBE), UMR 7263, CNRS, IRD 237, Aix-Marseille Université, 13005 Marseille, France
| | - François Devred
- Faculté des Sciences Médicales et Paramédicales, Institut de Neurophysiopathologie (INP), UMR 7051, CNRS, Aix Marseille Université, 13005 Marseille, France
| | - Gilles Breuzard
- Faculté des Sciences Médicales et Paramédicales, Institut de Neurophysiopathologie (INP), UMR 7051, CNRS, Aix Marseille Université, 13005 Marseille, France
| |
Collapse
|
13
|
Barbolina MV. Targeting Microtubule-Associated Protein Tau in Chemotherapy-Resistant Models of High-Grade Serous Ovarian Carcinoma. Cancers (Basel) 2022; 14:4535. [PMID: 36139693 PMCID: PMC9496900 DOI: 10.3390/cancers14184535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/04/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022] Open
Abstract
Relapsed, recurrent, chemotherapy-resistant high-grade serous ovarian carcinoma is the deadliest stage of this disease. Expression of microtubule-associated protein tau (tau) has been linked to resistance to paclitaxel treatment. Here, I used models of platinum-resistant and created models of platinum/paclitaxel-resistant high-grade serous ovarian carcinoma to examine the impact of reducing tau expression on cell survival and tumor burden in cell culture and xenograft and syngeneic models of the disease. Tau was overexpressed in platinum/paclitaxel-resistant models; expression of phosphoSer396 and phosphoThr181 species was also found. A treatment with leucomethylene blue reduced the levels of tau in treated cells, was cytotoxic in cell cultures, and efficiently reduced the tumor burden in xenograft models. Furthermore, a combination of leucomethylene blue and paclitaxel synergized in eliminating cancer cells in cell culture and xenograft models. These findings underscore the feasibility of targeting tau as a treatment option in terminal-stage high-grade serous ovarian cancer.
Collapse
Affiliation(s)
- Maria V Barbolina
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Illinois at Chicago, 833 South Wood Street, Chicago, IL 60091, USA
| |
Collapse
|
14
|
Yu DC, Chen XY, Zhou HY, Yu DQ, Yu XL, Hu YC, Zhang RH, Zhang XB, Zhang K, Lin MQ, Gao XD, Guo TW. TRIP13 knockdown inhibits the proliferation, migration, invasion, and promotes apoptosis by suppressing PI3K/AKT signaling pathway in U2OS cells. Mol Biol Rep 2022; 49:3055-3064. [PMID: 35032258 DOI: 10.1007/s11033-022-07133-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 01/07/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Although osteosarcoma (OS) is the most common malignant bone tumor, the biological mechanism underlying its incidence and improvement remains unclear. This study investigated early diagnosis and treatment objectives using bioinformatics strategies and performed experimental verification. METHODS AND RESULTS The top 10 OS hub genes-CCNA2, CCNB1, AURKA, TRIP13, RFC4, DLGAP5, NDC80, CDC20, CDK1, and KIF20A-were screened using bioinformatics methods. TRIP13 was chosen for validation after reviewing literature. TRIP13 was shown to be substantially expressed in OS tissues and cells, according to Western blotting (WB) and quantitative real-time polymerase chain reaction data. Subsequently, TRIP13 knockdown enhanced apoptosis and decreased proliferation, migration, and invasion in U2OS cells, as validated by the cell counting kit-8 test, Hoechst 33,258 staining, wound healing assay, and WB. In addition, the levels of p-PI3K/PI3K and p-AKT/AKT in U2OS cells markedly decreased after TRIP13 knockdown. Culturing U2OS cells, in which TRIP13 expression was downregulated, in a medium supplemented with a PI3K/AKT inhibitor further reduced their proliferation, migration, and invasion and increased their apoptosis. CONCLUSIONS TRIP13 knockdown reduced U2OS cell proliferation, migration, and invasion via a possible mechanism involving the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- De-Chen Yu
- Department of Orthopedics, Lanzhou University Second Hospital, 730000, Lanzhou, China.,Department of Orthopedics, Xigu Branch of the Second Hospital of Lanzhou University, 730000, Lanzhou, China
| | - Xiang-Yi Chen
- Department of Orthopedics, Lanzhou University Second Hospital, 730000, Lanzhou, China
| | - Hai-Yu Zhou
- Department of Orthopedics, Lanzhou University Second Hospital, 730000, Lanzhou, China. .,Department of Orthopedics, Xigu Branch of the Second Hospital of Lanzhou University, 730000, Lanzhou, China.
| | - De-Quan Yu
- Department of Radiotherapy, Air Force Medical University Tangdu Hospital, 710000, Xi'an, China
| | - Xiao-Lei Yu
- Department of cardiology, Air Force Medical University Tangdu Hospital, 710000, Xi'an, China
| | - Yi-Cun Hu
- Department of Orthopedics, Lanzhou University Second Hospital, 730000, Lanzhou, China
| | - Rui-Hao Zhang
- Department of Orthopedics, Lanzhou University Second Hospital, 730000, Lanzhou, China
| | - Xiao-Bo Zhang
- Department of Orthopedics, Lanzhou University Second Hospital, 730000, Lanzhou, China
| | - Kun Zhang
- Department of Orthopedics, Lanzhou University Second Hospital, 730000, Lanzhou, China
| | - Mao-Qiang Lin
- Department of Orthopedics, Lanzhou University Second Hospital, 730000, Lanzhou, China
| | - Xi-Dan Gao
- Department of Orthopedics, Lanzhou University Second Hospital, 730000, Lanzhou, China
| | - Tao-Wen Guo
- Department of Orthopedics, Lanzhou University Second Hospital, 730000, Lanzhou, China
| |
Collapse
|