1
|
Joy JD, Malacrida B, Laforêts F, Kotantaki P, Maniati E, Manchanda R, Annibaldi A, Hopkins S, Garrobo-Calleja I, Gautrot J, Balkwill FR. Human 3D Ovarian Cancer Models Reveal Malignant Cell-Intrinsic and -Extrinsic Factors That Influence CAR T-cell Activity. Cancer Res 2024; 84:2432-2449. [PMID: 38819641 PMCID: PMC11292204 DOI: 10.1158/0008-5472.can-23-3007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/29/2024] [Accepted: 05/24/2024] [Indexed: 06/01/2024]
Abstract
In vitro preclinical testing of chimeric antigen receptor (CAR) T cells is mostly carried out in monolayer cell cultures. However, alternative strategies are needed to take into account the complexity and the effects of the tumor microenvironment. Here, we describe the modulation of CAR T-cell activity by malignant cells and fibroblasts in human three-dimensional (3D) in vitro cell models of increasing complexity. In models combining mucin-1 (MUC1) and TnMUC1 CAR T cells with human high-grade serous ovarian cancer cell spheroids, malignant cell-intrinsic resistance to CAR T-cell killing was due to defective death receptor signaling involving TNFα. Adding primary human fibroblasts to spheroids unexpectedly increased the ability of CAR T cells to kill resistant malignant cells as CCL2 produced by fibroblasts activated CCR2/4+ CAR T cells. However, culturing malignant cells and fibroblasts in collagen gels engendered production of a dense extracellular matrix that impeded CAR T-cell activity in a TGFβ-dependent manner. A vascularized microfluidic device was developed that allowed CAR T cells to flow through the vessels and penetrate the gels in a more physiological way, killing malignant cells in a TNFα-dependent manner. Complex 3D human cell models may provide an efficient way of screening multiple cytotoxic human immune cell constructs while also enabling evaluation of mechanisms of resistance involving cell-cell and cell-matrix interactions, thus accelerating preclinical research on cytotoxic immune cell therapies in solid tumors. Significance: Three-dimensional in vitro models of increasing complexity uncover mechanisms of resistance to CAR T cells in solid tumors, which could help accelerate development of improved CAR T-cell constructs.
Collapse
Affiliation(s)
- Joash D. Joy
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom.
| | - Beatrice Malacrida
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom.
| | - Florian Laforêts
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom.
| | - Panoraia Kotantaki
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom.
| | - Eleni Maniati
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom.
| | - Ranjit Manchanda
- Wolfson Institute of Population Health, Cancer Research UK, Barts Centre, Queen Mary University of London, London, United Kingdom.
- Department of Gynaecological Oncology, Royal London Hospital, Barts Health NHS Trust, London, United Kingdom.
- Department of Health Services Research and Policy, London School of Hygiene and Tropical Medicine, London, United Kingdom.
| | | | - Sarah Hopkins
- GlaxoSmithKline Medicines Research Centre, Stevenage, United Kingdom.
| | | | - Julien Gautrot
- School of Engineering and Material Science, Centre for Bioengineering, Queen Mary University of London, London, United Kingdom.
| | - Frances R. Balkwill
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom.
| |
Collapse
|
2
|
Jin Y, Dunn C, Persiconi I, Sike A, Skorstad G, Beck C, Kyte JA. Comparative Evaluation of STEAP1 Targeting Chimeric Antigen Receptors with Different Costimulatory Domains and Spacers. Int J Mol Sci 2024; 25:586. [PMID: 38203757 PMCID: PMC10778617 DOI: 10.3390/ijms25010586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/16/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
We have developed a chimeric antigen receptor (CAR) against the six-transmembrane epithelial antigen of prostate-1 (STEAP1), which is expressed in prostate cancer, Ewing sarcoma, and other malignancies. In the present study, we investigated the effect of substituting costimulatory domains and spacers in this STEAP1 CAR. We cloned four CAR constructs with either CD28 or 4-1BB costimulatory domains, combined with a CD8a-spacer (sp) or a mutated IgG-spacer. The CAR T-cells were evaluated in short- and long-term in vitro T-cell assays, measuring cytokine production, tumor cell killing, and CAR T-cell expansion and phenotype. A xenograft mouse model of prostate cancer was used for in vivo comparison. All four CAR constructs conferred CD4+ and CD8+ T cells with STEAP1-specific functionality. A CD8sp_41BBz construct and an IgGsp_CD28z construct were selected for a more extensive comparison. The IgGsp_CD28z CAR gave stronger cytokine responses and killing in overnight caspase assays. However, the 41BB-containing CAR mediated more killing (IncuCyte) over one week. Upon six repeated stimulations, the CD8sp_41BBz CAR T cells showed superior expansion and lower expression of exhaustion markers (PD1, LAG3, TIGIT, TIM3, and CD25). In vivo, both the CAR T variants had comparable anti-tumor activity, but persisting CAR T-cells in tumors were only detected for the 41BBz variant. In conclusion, the CD8sp_41BBz STEAP1 CAR T cells had superior expansion and survival in vitro and in vivo, compared to the IgGsp_CD28z counterpart, and a less exhausted phenotype upon repeated antigen exposure. Such persistence may be important for clinical efficacy.
Collapse
Affiliation(s)
- Yixin Jin
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, 0379 Oslo, Norway; (Y.J.); (C.D.); (I.P.); (A.S.); (C.B.)
| | - Claire Dunn
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, 0379 Oslo, Norway; (Y.J.); (C.D.); (I.P.); (A.S.); (C.B.)
| | - Irene Persiconi
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, 0379 Oslo, Norway; (Y.J.); (C.D.); (I.P.); (A.S.); (C.B.)
| | - Adam Sike
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, 0379 Oslo, Norway; (Y.J.); (C.D.); (I.P.); (A.S.); (C.B.)
| | - Gjertrud Skorstad
- Department of Clinical Cancer Research, Oslo University Hospital, 0424 Oslo, Norway
| | - Carole Beck
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, 0379 Oslo, Norway; (Y.J.); (C.D.); (I.P.); (A.S.); (C.B.)
| | - Jon Amund Kyte
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, 0379 Oslo, Norway; (Y.J.); (C.D.); (I.P.); (A.S.); (C.B.)
- Department of Clinical Cancer Research, Oslo University Hospital, 0424 Oslo, Norway
- Faculty of Health Sciences, Oslo Metropolitan University, 0130 Oslo, Norway
| |
Collapse
|
3
|
Zhu X, Chen J, Li W, Xu Y, Shan J, Hong J, Zhao Y, Xu H, Ma J, Shen J, Qian C. Hypoxia-Responsive CAR-T Cells Exhibit Reduced Exhaustion and Enhanced Efficacy in Solid Tumors. Cancer Res 2024; 84:84-100. [PMID: 37874330 DOI: 10.1158/0008-5472.can-23-1038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/26/2023] [Accepted: 10/20/2023] [Indexed: 10/25/2023]
Abstract
Expanding the utility of chimeric antigen receptor (CAR)-T cells in solid tumors requires improving their efficacy and safety. Hypoxia is a feature of most solid tumors that could be used to help CAR-T cells discriminate tumors from normal tissues. In this study, we developed hypoxia-responsive CAR-T cells by engineering the CAR to be under regulation of hypoxia-responsive elements and selected the optimal structure (5H1P-CEA CAR), which can be activated in the tumor hypoxic microenvironment to induce CAR-T cells with high polyfunctionality. Hypoxia-responsive CAR T cells were in a "resting" state with low CAR expression under normoxic conditions. Compared with conventional CAR-T cells, hypoxia-responsive CAR-T cells maintained lower differentiation and displayed enhanced oxidative metabolism and proliferation during cultivation, and they sowed a capacity to alleviate the negative effects of hypoxia on T-cell proliferation and metabolism. Furthermore, 5H1P-CEA CAR-T cells exhibited decreased T-cell exhaustion and improved T-cell phenotype in vivo. In patient-derived xenograft models, hypoxia-responsive CAR-T cells induced more durable antitumor activity than their conventional counterparts. Overall, this study provides an approach to limit CAR expression to the hypoxic tumor microenvironment that could help to enhance CAR T-cell efficacy and safety in solid tumors. SIGNIFICANCE Engineering CAR-T cells to upregulate CAR expression under hypoxic conditions induces metabolic reprogramming, reduces differentiation, and increases proliferation to enhance their antitumor activity, providing a strategy to improve efficacy and safety.
Collapse
Affiliation(s)
- Xiuxiu Zhu
- College of Bioengineering, Chongqing University, Chongqing, China
- Center for Precision Medicine of Cancer, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Jun Chen
- Chongqing Key Laboratory of Gene and Cell Therapy, Chongqing Precision Biotech Co., Ltd., Chongqing, China
- Chongqing New High-End Research and Development Institution, Chongqing Institute of Precision Medicine and Biotechnology Co, Ltd., Chongqing, China
| | - Wuling Li
- Chongqing Key Laboratory of Gene and Cell Therapy, Chongqing Precision Biotech Co., Ltd., Chongqing, China
- Chongqing New High-End Research and Development Institution, Chongqing Institute of Precision Medicine and Biotechnology Co, Ltd., Chongqing, China
| | - Yanmin Xu
- Chongqing Key Laboratory of Gene and Cell Therapy, Chongqing Precision Biotech Co., Ltd., Chongqing, China
- Chongqing New High-End Research and Development Institution, Chongqing Institute of Precision Medicine and Biotechnology Co, Ltd., Chongqing, China
| | - Juanjuan Shan
- Center for Precision Medicine of Cancer, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Juan Hong
- Chongqing Key Laboratory of Gene and Cell Therapy, Chongqing Precision Biotech Co., Ltd., Chongqing, China
- Chongqing New High-End Research and Development Institution, Chongqing Institute of Precision Medicine and Biotechnology Co, Ltd., Chongqing, China
| | - Yongchun Zhao
- Chongqing Key Laboratory of Gene and Cell Therapy, Chongqing Precision Biotech Co., Ltd., Chongqing, China
- Chongqing New High-End Research and Development Institution, Chongqing Institute of Precision Medicine and Biotechnology Co, Ltd., Chongqing, China
| | - Huailong Xu
- Chongqing Key Laboratory of Gene and Cell Therapy, Chongqing Precision Biotech Co., Ltd., Chongqing, China
| | - Jiabin Ma
- Chongqing New High-End Research and Development Institution, Chongqing Institute of Precision Medicine and Biotechnology Co, Ltd., Chongqing, China
| | - Junjie Shen
- Chongqing Key Laboratory of Gene and Cell Therapy, Chongqing Precision Biotech Co., Ltd., Chongqing, China
- Chongqing New High-End Research and Development Institution, Chongqing Institute of Precision Medicine and Biotechnology Co, Ltd., Chongqing, China
| | - Cheng Qian
- College of Bioengineering, Chongqing University, Chongqing, China
- Center for Precision Medicine of Cancer, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| |
Collapse
|
4
|
De Camilli A, Fischer G. Novel Cellular and Immunotherapy: Toxicities and Perioperative Implications. Curr Oncol 2023; 30:7638-7653. [PMID: 37623035 PMCID: PMC10453139 DOI: 10.3390/curroncol30080554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/19/2023] [Accepted: 08/04/2023] [Indexed: 08/26/2023] Open
Abstract
Targeted cellular and immunotherapies have welcomed a new chapter in multi-modal cancer therapy. These agents harness our innate immune system and destroy malignant cells in a precise way as compared with "legacy" chemotherapeutic agents that largely rely on abolishing cell division. New therapies can augment the T-cell recognition of tumor antigens and effectively prevent tumor cells from their historically successful ability to evade immune recognition. These novel agents cause acute and chronic toxicities to a variety of organ systems (enteritis, pneumonitis, hypophysitis, and hepatitis), and this may masquerade as other chronic illnesses or paraneoplastic effects. As the perioperative footprint of cancer patients increases, it is essential that perioperative providers-anesthesiologists, surgeons, nurse anesthetists, and inpatient hospital medicine providers-be up to date on the physiologic mechanisms that underlie these new therapies as well as their acute and subacute toxicity profiles. Immunotherapy toxicity can significantly impact perioperative morbidity as well as influence perioperative management, such as prophylaxis for adrenal insufficiency, preoperative pulmonary assessment, and screening for thyroid dysfunction, among others.
Collapse
Affiliation(s)
| | - Gregory Fischer
- Memorial Sloan Kettering, 1275 York Avenue, New York, NY 10065, USA
| |
Collapse
|
5
|
Zhang Y, Yang J, Zhang T, Gu H. Emerging advances in nanobiomaterials-assisted chimeric antigen receptor (CAR)-macrophages for tumor immunotherapy. Front Bioeng Biotechnol 2023; 11:1211687. [PMID: 37388769 PMCID: PMC10301827 DOI: 10.3389/fbioe.2023.1211687] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/06/2023] [Indexed: 07/01/2023] Open
Abstract
Adoptive cell immunotherapy, especially chimeric antigen receptor (CAR)-T-cells therapy, has made great progress in the clinical treatment of hematological malignancies. However, restricted by the complex tumor microenvironment, the potential efficiency of T-cell infiltration and activated immune cells are limited, thus failure prevented the progression of the solid tumor. Alternatively, tumor-associated macrophages (TAMs), one sustentacular and heterogeneous cellular population within the tumor microenvironment, are regarded as potential therapeutic targets. Recently, CARs have shown tremendous promise in treating malignancies by equipping macrophages. This novel therapeutic strategy circumvents the tumor microenvironment's limitations and provides a safer therapeutic approach. Meanwhile, nanobiomaterials as gene delivery carriers not only substantially reduce the treatment cost of this novel therapeutic strategy, but also set the foundation for in vivo CAR-M therapy. Here, we highlight the major strategies prepared for CAR-M, emphasizing the challenges and opportunities of these approaches. First, the common therapeutic strategies for macrophages are summarized in clinical and preclinical trials. Namely, TAM-targeted therapeutic strategies: 1) Inhibit monocyte or macrophage recruitment into tumors, 2) deplete TAMs, and 3) reprogramme TAMs to antitumor M1 phenotype. Second, the current development and progress of CAR-M therapy are reviewed, including the researchers' attempts in CAR structure design, cell origin, and gene delivery vectors, especially nanobiomaterials as an alternative to viral vectors, as well as some challenges faced by current CAR-M therapy are also summarized and discussed. Finally, the field of genetically engineered macrophages integration with nanotechnology for the future in oncology has been prospected.
Collapse
Affiliation(s)
- Yanan Zhang
- Nano Biomedical Research Center, School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Jingxing Yang
- Nano Biomedical Research Center, School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | | | - Hongchen Gu
- Nano Biomedical Research Center, School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
6
|
Mirzaei A, Deyhimfar R, Azodian Ghajar H, Mashhadi R, Noori M, Dialameh H, Aghsaeifard Z, Aghamir SMK. Quercetin can be a more reliable treatment for metastatic prostate cancer than the localized disease: An in vitro study. J Cell Mol Med 2023; 27:1725-1734. [PMID: 37232542 PMCID: PMC10273064 DOI: 10.1111/jcmm.17783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 04/19/2023] [Accepted: 05/10/2023] [Indexed: 05/27/2023] Open
Abstract
Quercetin is a plant flavonoid that has been recognized to have anti-inflammatory, antioxidant and anti-proliferative activities. This study aims to evaluate the inhibitory effects of quercetin against prostate malignancy in vitro and the underlying resistance mechanism. IC50 values of quercetin were determined by MTT assay. Annexin-V/PI staining was used to measure the rate of apoptosis. DNA cell cycle was analysed by PI staining method. Real-time PCR was performed to assess mRNA levels of OPN isoforms, VEGF isoforms, P53 and KLK2. Migration potential, proliferative capability and nucleus morphology of cells were evaluated by the scratch-wound assay, colony-forming assay and Hoechst staining, respectively. Quercetin significantly increased the apoptosis rate of PC-3 and LNCaP cell lines, arrested the cell cycle at the sub-G1/G1 phase, and reduced the migration potential and colony-forming capability. Moreover, upregulation of apoptosis-related genes and downregulation of genes involved in proliferation and angiogenesis was also observed. Although our results elucidated that quercetin has antitumor effects on PC-3 and LNCaP, for the first time, we showed that quercetin treatment causes alterations in the expression of OPN and VEGF isoforms, which are cancer-promoting modulators through various processes such as angiogenesis and drug-resistance. Prostate malignant cells can dodge the anti-carcinogenic properties of quercetin via modulation of OPN and VEGF isoforms in vitro. Therefore, quercetin acts as a double-edged sword in prostate cancer treatment.
Collapse
Affiliation(s)
- Akram Mirzaei
- Urology Research CenterTehran University of Medical SciencesTehranIran
| | - Roham Deyhimfar
- Urology Research CenterTehran University of Medical SciencesTehranIran
| | | | - Rahil Mashhadi
- Urology Research CenterTehran University of Medical SciencesTehranIran
| | - Maryam Noori
- Student Research Committee, School of MedicineIran University of Medical SciencesTehranIran
| | - Hossein Dialameh
- Urology Research CenterTehran University of Medical SciencesTehranIran
| | - Ziba Aghsaeifard
- Urology Research CenterTehran University of Medical SciencesTehranIran
| | | |
Collapse
|
7
|
Celichowski P, Turi M, Charvátová S, Radhakrishnan D, Feizi N, Chyra Z, Šimíček M, Jelínek T, Bago JR, Hájek R, Hrdinka M. Tuning CARs: recent advances in modulating chimeric antigen receptor (CAR) T cell activity for improved safety, efficacy, and flexibility. J Transl Med 2023; 21:197. [PMID: 36922828 PMCID: PMC10015723 DOI: 10.1186/s12967-023-04041-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/07/2023] [Indexed: 03/17/2023] Open
Abstract
Cancer immunotherapies utilizing genetically engineered T cells have emerged as powerful personalized therapeutic agents showing dramatic preclinical and clinical results, particularly in hematological malignancies. Ectopically expressed chimeric antigen receptors (CARs) reprogram immune cells to target and eliminate cancer. However, CAR T cell therapy's success depends on the balance between effective anti-tumor activity and minimizing harmful side effects. To improve CAR T cell therapy outcomes and mitigate associated toxicities, scientists from different fields are cooperating in developing next-generation products using the latest molecular cell biology and synthetic biology tools and technologies. The immunotherapy field is rapidly evolving, with new approaches and strategies being reported at a fast pace. This comprehensive literature review aims to provide an up-to-date overview of the latest developments in controlling CAR T cell activity for improved safety, efficacy, and flexibility.
Collapse
Affiliation(s)
- Piotr Celichowski
- Department of Haematooncology, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
- Department of Haematooncology, University Hospital Ostrava, Ostrava, Czech Republic
| | - Marcello Turi
- Department of Haematooncology, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
- Department of Haematooncology, University Hospital Ostrava, Ostrava, Czech Republic
- Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Sandra Charvátová
- Department of Haematooncology, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
- Department of Haematooncology, University Hospital Ostrava, Ostrava, Czech Republic
- Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Dhwani Radhakrishnan
- Department of Haematooncology, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
- Department of Haematooncology, University Hospital Ostrava, Ostrava, Czech Republic
- Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Neda Feizi
- Department of Internal Clinical Sciences, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Zuzana Chyra
- Department of Haematooncology, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
- Department of Haematooncology, University Hospital Ostrava, Ostrava, Czech Republic
| | - Michal Šimíček
- Department of Haematooncology, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
- Department of Haematooncology, University Hospital Ostrava, Ostrava, Czech Republic
| | - Tomáš Jelínek
- Department of Haematooncology, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
- Department of Haematooncology, University Hospital Ostrava, Ostrava, Czech Republic
| | - Juli Rodriguez Bago
- Department of Haematooncology, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
- Department of Haematooncology, University Hospital Ostrava, Ostrava, Czech Republic
| | - Roman Hájek
- Department of Haematooncology, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
- Department of Haematooncology, University Hospital Ostrava, Ostrava, Czech Republic
| | - Matouš Hrdinka
- Department of Haematooncology, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic.
- Department of Haematooncology, University Hospital Ostrava, Ostrava, Czech Republic.
| |
Collapse
|
8
|
Fang L, Tian W, Zhang C, Wang X, Li W, Zhang Q, Zhang Y, Zheng J. Oncolytic adenovirus-mediated expression of CCL5 and IL12 facilitates CA9-targeting CAR-T therapy against renal cell carcinoma. Pharmacol Res 2023; 189:106701. [PMID: 36796464 DOI: 10.1016/j.phrs.2023.106701] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/22/2022] [Accepted: 02/13/2023] [Indexed: 02/16/2023]
Abstract
Chimeric antigen receptor T-cell (CAR-T) is particularly prominent in hematological but not in solid tumors, mainly based on the complex tumor immune microenvironment. Oncolytic virus (OVs) is an emerging adjuvant therapy method. OVs may prime tumor lesions to induce anti-tumor immune response, thereby enhancing CAR-T cells functionality and possibly increasing response rates. Here, we combined CAR-T cells targeting carbonic anhydrase 9 (CA9) and an oncolytic adenovirus (OAV) carrying chemokine (C-C motif) ligand 5 (CCL5), cytokine interleukin-12 (IL12) to explore the anti-tumor effects of this combination strategy. The data showed that Ad5-ZD55-hCCL5-hIL12 could infect and replicate in renal cancer cell lines and induced a moderate inhibition of xenografted tumor in nude mice. IL12 mediated by Ad5-ZD55-hCCL5-hIL12 promoted the phosphorylation of Stat4 in CAR-T cells, induced CAR-T cells to secrete more IFN-γ. We also found that Ad5-ZD55-hCCL5-hIL-12 combined with CA9-CAR-T cells significantly increased the infiltration of CAR-T cells in tumor mass, prolonged the survival of the mice and restrained tumor growth in immunodeficient mice. Ad5-ZD55-mCCL5-mIL-12 could also increase CD45+CD3+T cell infiltration and prolong mice survival in immunocompetent mice. These results provided feasibility for the combination of oncolytic adenovirus and CAR-T cells, which demonstrated the sufficient potential and prospects of CAR-T for the treatment of solid tumors.
Collapse
Affiliation(s)
- Lin Fang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China; Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| | - Weiping Tian
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| | - Chen Zhang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China; Department of Oncology, The First People's Hospital of Yancheng, Jiangsu, China
| | - Xueyan Wang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| | - Wanjing Li
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| | - Qi Zhang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| | - Yuxin Zhang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| | - Junnian Zheng
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China; Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China.
| |
Collapse
|
9
|
Hagel KR, Arafeh R, Gang S, Arnoff TE, Larson RC, Doench JG, Mathewson ND, Wucherpfennig KW, Maus MV, Hahn WC. Systematic Interrogation of Tumor Cell Resistance to Chimeric Antigen Receptor T-cell Therapy in Pancreatic Cancer. Cancer Res 2023; 83:613-625. [PMID: 36548402 PMCID: PMC9929516 DOI: 10.1158/0008-5472.can-22-2245] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/18/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022]
Abstract
Chimeric antigen receptor (CAR) T-cell therapy can lead to dramatic clinical responses in B-cell malignancies. However, early clinical trials with CAR T-cell therapy in non-B-cell malignancies have been disappointing to date, suggesting that tumor-intrinsic features contribute to resistance. To investigate tumor-intrinsic modes of resistance, we performed genome scale CRISPR-Cas9 screens in mesothelin (MSLN)-expressing pancreatic cancer cells. Co-culture with MSLN-targeting CAR T cells identified both antigen-dependent and antigen-independent modes of resistance. In particular, loss of the majority of the genes involved in the pathway responsible for GPI-anchor biosynthesis and attachment abrogated the ability of CAR T cells to target pancreatic cancer cells, suggesting that disruption of this pathway may permit MSLN CAR T-cell evasion in the clinic. Antigen-independent mediators of CAR T-cell response included members of the death receptor pathway as well as genes that regulate tumor transcriptional responses, including TFAP4 and INTS12. TFAP4-mediated CAR T resistance depended on the NFκB transcription factor p65, indicating that tumor resistance to CAR T-cell therapy likely involves alterations in tumor-intrinsic states. Overall, this study uncovers multiple antigen-dependent and -independent mechanisms of CAR T-cell evasion by pancreatic cancer, paving the way for overcoming resistance in this disease that is notoriously refractory to immunotherapy. SIGNIFICANCE The identification and validation of key determinants of CAR T-cell response in pancreatic cancer provide insights into the landscape of tumor cell intrinsic resistance mechanisms and into approaches to improve therapeutic efficacy.
Collapse
Affiliation(s)
- Kimberly R Hagel
- Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Rand Arafeh
- Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Sydney Gang
- Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Taylor E Arnoff
- Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Rebecca C Larson
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - John G Doench
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Nathan D Mathewson
- Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Kai W Wucherpfennig
- Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Marcela V Maus
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - William C Hahn
- Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts.,Brigham and Women's Hospital, Boston, Massachusetts
| |
Collapse
|
10
|
Development of a TGFβ-IL-2/15 Switch Receptor for Use in Adoptive Cell Therapy. Biomedicines 2023; 11:biomedicines11020459. [PMID: 36830995 PMCID: PMC9953633 DOI: 10.3390/biomedicines11020459] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/27/2023] [Accepted: 02/02/2023] [Indexed: 02/08/2023] Open
Abstract
Therapy employing T cells modified with chimeric antigen receptors (CARs) is effective in hematological malignancies but not yet in solid cancers. CAR T cell activity in solid tumors is limited by immunosuppressive factors, including transforming growth factor β (TGFβ). Here, we describe the development of a switch receptor (SwR), in which the extracellular domains of the TGFβ receptor are fused to the intracellular domains from the IL-2/15 receptor. We evaluated the SwR in tandem with two variants of a CAR that we have developed against STEAP1, a protein highly expressed in prostate cancer. The SwR-CAR T cell activity was assessed against a panel of STEAP1+/- prostate cancer cell lines with or without over-expression of TGFβ, or with added TGFβ, by use of flow cytometry cytokine and killing assays, Luminex cytokine profiling, cell counts, and flow cytometry phenotyping. The results showed that the SwR-CAR constructs improved the functionality of CAR T cells in TGFβ-rich environments, as measured by T cell proliferation and survival, cytokine response, and cytotoxicity. In assays with four repeated target-cell stimulations, the SwR-CAR T cells developed an activated effector memory phenotype with retained STEAP1-specific activity. In conclusion, the SwR confers CAR T cells with potent and durable in vitro functionality in TGFβ-rich environments. The SwR may be used as an add-on construct for CAR T cells or other forms of adoptive cell therapy.
Collapse
|
11
|
Zhu X, Li W, Gao J, Shen J, Xu Y, Zhang C, Qian C. RUNX3 improves CAR-T cell phenotype and reduces cytokine release while maintaining CAR-T function. Med Oncol 2023; 40:89. [PMID: 36735165 DOI: 10.1007/s12032-022-01913-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/23/2022] [Indexed: 02/04/2023]
Abstract
CAR-T therapy has shown successful in the treatment of certain types of hematological malignancy, while the efficacy of CAR-T cell in treating solid tumors has been limited due to the exhaustion of CAR-T caused by the tumor microenvironment in solid tumors. Therefore, improving the exhaustion of CAR-T cell is one of the inspiring strategies for CAR-T treatment of solid tumors. As an important regulator in T cell immunity, the transcription factor RUNX3 not only negatively regulates the terminal differentiation T-bet gene, reducing the ultimate differentiation of T cells, but also increases the residency of T cells in non-lymphoid tissues and tumors. By overexpressing RUNX3 in CAR-T cells, we found that increasing the expression of RUNX3 maintained the low differentiation of CAR-T cells, further improving the exhaustion of CAR-T cells during antigen stimulation. In vitro, we found that RUNX3 could reduce the release of cytokines while maintaining CAR-T cells function. In re-challenge experiments, CAR-T cells overexpressing RUNX3 (Runx3-OE CAR-T) were safer than conventional CAR-T cells, while RUNX3 could also maintain the anti-tumor efficacy of CAR-T cells in vivo. Collectively, we found that Runx3-OE CAR-T cells can improve CAR-T phenotype and reduce cytokines release while maintaining CAR-T cells function, which may improve the safety of CAR-T therapy in clinical trials.
Collapse
Affiliation(s)
- Xiuxiu Zhu
- College of Bioengineering, Chongqing University, Chongqing, China.,Center for Precision Medicine of Cancer, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Wuling Li
- College of Bioengineering, Chongqing University, Chongqing, China.,Center for Precision Medicine of Cancer, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Jiadong Gao
- Chongqing Key Laboratory of Gene and Cell Therapy, Chongqing Institute of Precision Medicine and Biotechnology Co, Ltd, Chongqing, China
| | - Junjie Shen
- Chongqing Key Laboratory of Gene and Cell Therapy, Chongqing Institute of Precision Medicine and Biotechnology Co, Ltd, Chongqing, China
| | - Yanmin Xu
- Chongqing Key Laboratory of Gene and Cell Therapy, Chongqing Institute of Precision Medicine and Biotechnology Co, Ltd, Chongqing, China
| | - Chengcheng Zhang
- Center of Biotherapy, Southwest Hospital, Army Medical University, Chongqing, China.
| | - Cheng Qian
- College of Bioengineering, Chongqing University, Chongqing, China. .,Center of Biotherapy, Southwest Hospital, Army Medical University, Chongqing, China. .,Center for Precision Medicine of Cancer, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, China.
| |
Collapse
|
12
|
Eulberg D, Frömming A, Lapid K, Mangasarian A, Barak A. The prospect of tumor microenvironment-modulating therapeutical strategies. Front Oncol 2022; 12:1070243. [PMID: 36568151 PMCID: PMC9772844 DOI: 10.3389/fonc.2022.1070243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/10/2022] [Indexed: 12/13/2022] Open
Abstract
Multiple mechanisms promote tumor prosperity, which does not only depend on cell-autonomous, inherent abnormal characteristics of the malignant cells that facilitate rapid cell division and tumor expansion. The neoplastic tissue is embedded in a supportive and dynamic tumor microenvironment (TME) that nurtures and protects the malignant cells, maintaining and perpetuating malignant cell expansion. The TME consists of different elements, such as atypical vasculature, various innate and adaptive immune cells with immunosuppressive or pro-inflammatory properties, altered extracellular matrix (ECM), activated stromal cells, and a wide range of secreted/stroma-tethered bioactive molecules that contribute to malignancy, directly or indirectly. In this review, we describe the various TME components and provide examples of anti-cancer therapies and novel drugs under development that aim to target these components rather than the intrinsic processes within the malignant cells. Combinatory TME-modulating therapeutic strategies may be required to overcome the resistance to current treatment options and prevent tumor recurrence.
Collapse
|
13
|
Kim TJ, Lee YH, Koo KC. Current and future perspectives on CAR-T cell therapy for renal cell carcinoma: A comprehensive review. Investig Clin Urol 2022; 63:486-498. [PMID: 36067994 PMCID: PMC9448669 DOI: 10.4111/icu.20220103] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 05/22/2022] [Accepted: 07/06/2022] [Indexed: 01/02/2023] Open
Abstract
In the clinical setting of renal cell carcinoma (RCC), immune reactions such as tumor-specific T cell responses can be spontaneous events or can be elicited by checkpoint inhibitors, cytokines, and other immunotherapy modalities. The results from immunotherapy have led to significant advances in treatment methods and patient outcomes. The approval of nivolumab primarily as a second-line monotherapy and the latest approval of novel combination therapies as first-line treatment have established the significance of immunotherapy in the treatment of RCC. In this perspective, chimeric antigen receptor (CAR)-T cell therapy represents a major advance in the developing field of immunotherapy. This treatment modality facilitates T cells to express specific CARs on the cell surface which are reinfused to the patient to treat the analogous tumor cells. After showing treatment potential in hematological malignancies, this new therapeutic approach has become a strong candidate as a therapeutic modality for solid neoplasms. Although CAR-T cell therapy has shown promise and clinical benefit compared to previous T-cell modulated immunotherapies, further studies are warranted to overcome unfavorable physiological settings and hindrances such as the lack of specific molecular targets, depletion of CAR-T cells, a hostile tumor microenvironment, and on/off-tumor toxicities. Several approaches are being considered and research is ongoing to overcome these problems. In this comprehensive review, we provide the rationale and preliminary results of CAR-T cell therapy in RCC and discuss emerging novel strategies and future directions.
Collapse
Affiliation(s)
- Tae Jin Kim
- Department of Urology, CHA University College of Medicine, CHA Bundang Medical Center, Seongnam, Korea
| | - Young Hwa Lee
- Department of Urology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Kyo Chul Koo
- Department of Urology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|