1
|
Nyirő G, Szeredás BK, Decmann Á, Herold Z, Vékony B, Borka K, Dezső K, Zalatnai A, Kovalszky I, Igaz P. miRNA Expression Profiling in G1 and G2 Pancreatic Neuroendocrine Tumors. Cancers (Basel) 2024; 16:2528. [PMID: 39061169 PMCID: PMC11275009 DOI: 10.3390/cancers16142528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Pancreatic neuroendocrine neoplasms pose a growing clinical challenge due to their rising incidence and variable prognosis. The current study aims to investigate microRNAs (miRNA; miR) as potential biomarkers for distinguishing between grade 1 (G1) and grade 2 (G2) pancreatic neuroendocrine tumors (PanNET). A total of 33 formalin-fixed, paraffin-embedded samples were analyzed, comprising 17 G1 and 16 G2 tumors. Initially, literature-based miRNAs were validated via real-time quantitative reverse transcription polymerase chain reaction (RT-qPCR), confirming significant downregulation of miR-130b-3p and miR-106b in G2 samples. Through next-generation sequencing, we have identified and selected the top six miRNAs showing the highest difference between G1 and G2 tumors, which were further validated. RT-qPCR validation confirmed the downregulation of miR-30d-5p in G2 tumors. miRNA combinations were created to distinguish between the two PanNET grades. The highest diagnostic performance in distinguishing between G1 and G2 PanNETs by a machine learning algorithm was achieved when using the combination miR-106b + miR-130b-3p + miR-127-3p + miR-129-5p + miR-30d-5p. The ROC analysis resulted in a sensitivity of 83.33% and a specificity of 87.5%. The findings underscore the potential use of miRNAs as biomarkers for stratifying PanNET grades, though further research is warranted to enhance diagnostic accuracy and clinical utility.
Collapse
Affiliation(s)
- Gábor Nyirő
- Department of Endocrinology, Faculty of Medicine, Semmelweis University, Korányi Str. 2/a, 1083 Budapest, Hungary; (G.N.); (B.K.S.); (B.V.)
- Department of Internal Medicine and Oncology, Faculty of Medicine, Semmelweis University, Korányi Str. 2/a, 1083 Budapest, Hungary
- Department of Laboratory Medicine, Faculty of Medicine, Semmelweis University, Nagyvárad sq. 4., 1089 Budapest, Hungary
| | - Bálint Kende Szeredás
- Department of Endocrinology, Faculty of Medicine, Semmelweis University, Korányi Str. 2/a, 1083 Budapest, Hungary; (G.N.); (B.K.S.); (B.V.)
| | - Ábel Decmann
- Dr. László Vass Health Center, Municipality of District XV, 1152 Budapest, Hungary;
| | - Zoltan Herold
- Division of Oncology, Department of Internal Medicine and Oncology, Semmelweis University, Baross Str. 23-25, 1082 Budapest, Hungary
| | - Bálint Vékony
- Department of Endocrinology, Faculty of Medicine, Semmelweis University, Korányi Str. 2/a, 1083 Budapest, Hungary; (G.N.); (B.K.S.); (B.V.)
- Department of Internal Medicine and Oncology, Faculty of Medicine, Semmelweis University, Korányi Str. 2/a, 1083 Budapest, Hungary
| | - Katalin Borka
- Department of Pathology, Forensic and Insurance Medicine, Faculty of Medicine, Semmelweis University, Üllői Str. 93, 1083 Budapest, Hungary;
| | - Katalin Dezső
- Department of Pathology and Experimental Cancer Research, Faculty of Medicine, Semmelweis University, Üllői Str. 26, 1085 Budapest, Hungary; (K.D.); (A.Z.); (I.K.)
| | - Attila Zalatnai
- Department of Pathology and Experimental Cancer Research, Faculty of Medicine, Semmelweis University, Üllői Str. 26, 1085 Budapest, Hungary; (K.D.); (A.Z.); (I.K.)
| | - Ilona Kovalszky
- Department of Pathology and Experimental Cancer Research, Faculty of Medicine, Semmelweis University, Üllői Str. 26, 1085 Budapest, Hungary; (K.D.); (A.Z.); (I.K.)
| | - Peter Igaz
- Department of Endocrinology, Faculty of Medicine, Semmelweis University, Korányi Str. 2/a, 1083 Budapest, Hungary; (G.N.); (B.K.S.); (B.V.)
- Department of Internal Medicine and Oncology, Faculty of Medicine, Semmelweis University, Korányi Str. 2/a, 1083 Budapest, Hungary
| |
Collapse
|
2
|
Liu C, Dong Z, Li M, Bai G, Zhao Z. RCOR1 is targeted by miR-23b-3p to modulate growth, colony formation, migration, and invasion of prostate cancer cells. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2024; 17:29-38. [PMID: 38455506 PMCID: PMC10915288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/23/2024] [Indexed: 03/09/2024]
Abstract
OBJECTIVES Prostate cancer holds the second-highest incidence rate among all male malignancies, with a noticeable scarcity of effective treatment approaches. The REST Corepressor 1 (RCOR1) protein exhibits elevated expression across various tumors, acting as an oncogene. Nevertheless, its functions and mechanisms in prostate cancer have yet to be documented. While miR-23 demonstrates reduced expression in prostate cancer, the downstream genes it regulates remain unclear. METHODS RT-qPCR and Western blotting assays were utilized to elucidate the mRNA and protein levels of miR-23b-3p and RCOR1. The luciferase reporter assay was employed to unveil the targeting relationship between miR-23b-3p and RCOR1. Additionally, a CCK-8 assay demonstrated cell growth, while colony formation and Transwell assays were performed to observe clone formation, cell migration, and invasion. RESULTS In this study, we observed substantial mRNA and protein levels of RCOR1 in prostate cancer cells such as DU145, PC3, and LNCap. RCOR1 overexpression enhanced the growth, colony formation, migration, and invasion of prostate cancer cells, whereas genetic silencing of RCOR1 suppressed these processes. Bioinformatics analysis identified miR-23b-3p as a potential regulator of RCOR1, and luciferase assays validated RCOR1 as a downstream target of miR-23b-3p. Increasing miR-23b-3p mimics diminished RCOR1's mRNA and protein levels, while raising miR-23b-3p levels boosted RCOR1's expression. Moreover, the stimulatory impact of RCOR1 on prostate cancer cell development could be countered by elevating miR-23b-3p mimics. CONCLUSION In summary, our findings confirm that RCOR1 is indeed under the influence of miR-23, shedding light on the miR-23/RCOR1 pathway's role in prostate cancer development. This offers novel theoretical and experimental support for comprehending the underlying mechanisms of prostate cancer and for targeted therapeutic avenues.
Collapse
Affiliation(s)
| | | | - Maozhang Li
- Department of Urology, Huizhou Central People’s HospitalHuizhou 516000, Guangdong, China
| | - Guangwei Bai
- Department of Urology, Huizhou Central People’s HospitalHuizhou 516000, Guangdong, China
| | - Zhixiang Zhao
- Department of Urology, Huizhou Central People’s HospitalHuizhou 516000, Guangdong, China
| |
Collapse
|
3
|
Pateras IS, Igea A, Nikas IP, Leventakou D, Koufopoulos NI, Ieronimaki AI, Bergonzini A, Ryu HS, Chatzigeorgiou A, Frisan T, Kittas C, Panayiotides IG. Diagnostic Challenges during Inflammation and Cancer: Current Biomarkers and Future Perspectives in Navigating through the Minefield of Reactive versus Dysplastic and Cancerous Lesions in the Digestive System. Int J Mol Sci 2024; 25:1251. [PMID: 38279253 PMCID: PMC10816510 DOI: 10.3390/ijms25021251] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/28/2024] Open
Abstract
In the setting of pronounced inflammation, changes in the epithelium may overlap with neoplasia, often rendering it impossible to establish a diagnosis with certainty in daily clinical practice. Here, we discuss the underlying molecular mechanisms driving tissue response during persistent inflammatory signaling along with the potential association with cancer in the gastrointestinal tract, pancreas, extrahepatic bile ducts, and liver. We highlight the histopathological challenges encountered in the diagnosis of chronic inflammation in routine practice and pinpoint tissue-based biomarkers that could complement morphology to differentiate reactive from dysplastic or cancerous lesions. We refer to the advantages and limitations of existing biomarkers employing immunohistochemistry and point to promising new markers, including the generation of novel antibodies targeting mutant proteins, miRNAs, and array assays. Advancements in experimental models, including mouse and 3D models, have improved our understanding of tissue response. The integration of digital pathology along with artificial intelligence may also complement routine visual inspections. Navigating through tissue responses in various chronic inflammatory contexts will help us develop novel and reliable biomarkers that will improve diagnostic decisions and ultimately patient treatment.
Collapse
Affiliation(s)
- Ioannis S. Pateras
- 2nd Department of Pathology, “Attikon” University Hospital, Medical School, National and Kapodistrian University of Athens, 124 62 Athens, Greece; (D.L.); (N.I.K.); (A.I.I.); (I.G.P.)
| | - Ana Igea
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain;
- Mobile Genomes, Centre for Research in Molecular Medicine and Chronic Diseases (CiMUS), University of Santiago de Compostela (USC), 15706 Santiago de Compostela, Spain
| | - Ilias P. Nikas
- Medical School, University of Cyprus, 2029 Nicosia, Cyprus
| | - Danai Leventakou
- 2nd Department of Pathology, “Attikon” University Hospital, Medical School, National and Kapodistrian University of Athens, 124 62 Athens, Greece; (D.L.); (N.I.K.); (A.I.I.); (I.G.P.)
| | - Nektarios I. Koufopoulos
- 2nd Department of Pathology, “Attikon” University Hospital, Medical School, National and Kapodistrian University of Athens, 124 62 Athens, Greece; (D.L.); (N.I.K.); (A.I.I.); (I.G.P.)
| | - Argyro Ioanna Ieronimaki
- 2nd Department of Pathology, “Attikon” University Hospital, Medical School, National and Kapodistrian University of Athens, 124 62 Athens, Greece; (D.L.); (N.I.K.); (A.I.I.); (I.G.P.)
| | - Anna Bergonzini
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Alfred Nobels Allé 8, 141 52 Stockholm, Sweden;
- Department of Molecular Biology and Umeå Centre for Microbial Research (UCMR), Umeå University, 901 87 Umeå, Sweden;
| | - Han Suk Ryu
- Department of Pathology, Seoul National University Hospital, Seoul 03080, Republic of Korea;
| | - Antonios Chatzigeorgiou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 115 27 Athens, Greece;
| | - Teresa Frisan
- Department of Molecular Biology and Umeå Centre for Microbial Research (UCMR), Umeå University, 901 87 Umeå, Sweden;
| | - Christos Kittas
- Department of Histopathology, Biomedicine Group of Health Company, 156 26 Athens, Greece;
| | - Ioannis G. Panayiotides
- 2nd Department of Pathology, “Attikon” University Hospital, Medical School, National and Kapodistrian University of Athens, 124 62 Athens, Greece; (D.L.); (N.I.K.); (A.I.I.); (I.G.P.)
| |
Collapse
|
4
|
Midan HM, Helal GK, Abulsoud AI, Elshaer SS, El-Husseiny AA, Fathi D, Abdelmaksoud NM, Abdel Mageed SS, Elballal MS, Zaki MB, Abd-Elmawla MA, Al-Noshokaty TM, Rizk NI, Elrebehy MA, El-Dakroury WA, Hashem AH, Doghish AS. The potential role of miRNAs in the pathogenesis of adrenocortical carcinoma - A focus on signaling pathways interplay. Pathol Res Pract 2023; 248:154690. [PMID: 37473498 DOI: 10.1016/j.prp.2023.154690] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/22/2023]
Abstract
Adrenocortical carcinoma (ACC) is a highly malignant infrequent tumor with a dismal prognosis. microRNAs (miRNAs, miRs) are crucial in post-transcriptional gene expression regulation. Due to their ability to regulate multiple gene networks, miRNAs are central to the hallmarks of cancer, including sustained proliferative signaling, evasion of growth suppressors, resistance to cell death, replicative immortality, induction/access to the vasculature, activation of invasion and metastasis, reprogramming of cellular metabolism, and avoidance of immune destruction. ACC represents a singular form of neoplasia associated with aberrations in the expression of evolutionarily conserved short, non-coding RNAs. Recently, the role of miRNAs in ACC has been examined extensively despite the disease's rarity. Hence, the current review is a fast-intensive track elucidating the potential role of miRNAs in the pathogenesis of ACC besides their association with the survival of ACC.
Collapse
Affiliation(s)
- Heba M Midan
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Gouda Kamel Helal
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo 11231, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt; Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt.
| | - Shereen Saeid Elshaer
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt; Department of Biochemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, Cairo 11823, Egypt
| | - Ahmed A El-Husseiny
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt; Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City 11829, Cairo, Egypt
| | - Doaa Fathi
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | | | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mohamed Bakr Zaki
- Biochemistry, Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Menoufia 32897, Egypt
| | - Mai A Abd-Elmawla
- Biochemistry, Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Tohada M Al-Noshokaty
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Nehal I Rizk
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Amr H Hashem
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City 11884, Cairo, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| |
Collapse
|
5
|
El-Dakroury WA, Midan HM, Abulsoud AI, Elshaer SS, El-Husseiny AA, Fathi D, Abdelmaksoud NM, Abdel Mageed SS, Elballal MS, Zaki MB, Abd-Elmawla MA, Al-Noshokaty TM, Rizk NI, Elrebehy MA, Hashem AH, Moustafa YM, Doghish AS. miRNAs orchestration of adrenocortical carcinoma - Particular emphasis on diagnosis, progression and drug resistance. Pathol Res Pract 2023; 248:154665. [PMID: 37418996 DOI: 10.1016/j.prp.2023.154665] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 06/30/2023] [Accepted: 07/01/2023] [Indexed: 07/09/2023]
Abstract
Adrenocortical carcinoma (ACC) is an uncommon aggressive endocrine malignancy that is nonetheless associated with significant mortality and morbidity rates because of endocrine and oncological consequences. Recent genome-wide investigations of ACC have advanced our understanding of the disease, but substantial obstacles remain to overcome regarding diagnosis and prognosis. MicroRNAs (miRNAs, miRs) play a crucial role in the development and metastasis of a wide range of carcinomas by regulating the expression of their target genes through various mechanisms causing translational repression or messenger RNA (mRNA) degradation. Along with miRNAs in the adrenocortical cancerous tissue, circulating miRNAs are considered barely invasive diagnostic or prognostic biomarkers of ACC. miRNAs may serve as treatment targets that expand the rather-limited therapeutic repertoire in the field of ACC. Patients with advanced ACC still have a poor prognosis when using the available treatments, despite a substantial improvement in understanding of the illness over the previous few decades. Accordingly, in this review, we provide a crucial overview of the recent studies in ACC-associated miRNAs regarding their diagnostic, prognostic, and potential therapeutic relevance.
Collapse
Affiliation(s)
- Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829 Egypt
| | - Heba M Midan
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231 Cairo, Egypt; Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Shereen Saeid Elshaer
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt; Department of Biochemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr city, Cairo 11823, Egypt
| | - Ahmed A El-Husseiny
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231 Cairo, Egypt; Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City 11829 Cairo, Egypt
| | - Doaa Fathi
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | | | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mohamed Bakr Zaki
- Biochemistry, Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Menoufia 32897, Egypt
| | - Mai A Abd-Elmawla
- Biochemistry, Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Tohada M Al-Noshokaty
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Nehal I Rizk
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt.
| | - Amr H Hashem
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City 11884 Cairo, Egypt
| | - Yasser M Moustafa
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231 Cairo, Egypt.
| |
Collapse
|
6
|
Oikonomakos IT, Steenblock C, Bornstein SR. Artificial intelligence in diabetes mellitus and endocrine diseases - what can we expect? Nat Rev Endocrinol 2023:10.1038/s41574-023-00852-1. [PMID: 37225823 DOI: 10.1038/s41574-023-00852-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Affiliation(s)
- Ioannis T Oikonomakos
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Charlotte Steenblock
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Stefan R Bornstein
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
- School of Cardiovascular and Metabolic Medicine and Sciences, Faculty of Life Sciences & Medicine, King's College London, London, UK.
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), Zurich, Switzerland.
| |
Collapse
|
7
|
Bhattacharjee B, Syeda AF, Rynjah D, Hussain SM, Chandra Bora S, Pegu P, Sahu RK, Khan J. Pharmacological impact of microRNAs in head and neck squamous cell carcinoma: Prevailing insights on molecular pathways, diagnosis, and nanomedicine treatment. Front Pharmacol 2023; 14:1174330. [PMID: 37205904 PMCID: PMC10188950 DOI: 10.3389/fphar.2023.1174330] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 04/11/2023] [Indexed: 05/21/2023] Open
Abstract
Head and neck squamous cell carcinoma is a disease that most commonly produce tumours from the lining of the epithelial cells of the lips, larynx, nasopharynx, mouth, or oro-pharynx. It is one of the most deadly forms of cancer. About one to two percent of all neo-plasm-related deaths are attributed to head and neck squamous cell carcinoma, which is responsible for about six percent of all cancers. MicroRNAs play a critical role in cell proliferation, differentiation, tumorigenesis, stress response, triggering apoptosis, and other physiological process. MicroRNAs regulate gene expression and provide new diagnostic, prognostic, and therapeutic options for head and neck squamous cell carcinoma. In this work, the role of molecular signaling pathways related to head and neck squamous cell carcinoma is emphasized. We also provide an overview of MicroRNA downregulation and overexpression and its role as a diagnostic and prognostic marker in head and neck squamous cell carcinoma. In recent years, MicroRNA nano-based therapies for head and neck squamous cell carcinoma have been explored. In addition, nanotechnology-based alternatives have been discussed as a promising strategy in exploring therapeutic paradigms aimed at improving the efficacy of conventional cytotoxic chemotherapeutic agents against head and neck squamous cell carcinoma and attenuating their cytotoxicity. This article also provides information on ongoing and recently completed clinical trials for therapies based on nanotechnology.
Collapse
Affiliation(s)
| | - Ayesha Farhana Syeda
- Department of Pharmaceutics, Unaiza College of Pharmacy, Qassim University, Unaizah, Saudi Arabia
| | | | - Shalam M. Hussain
- Department of Clinical Pharmacy, College of Nursing and Health Sciences, Al-Rayyan Medical College, Madinah, Saudi Arabia
| | | | - Padmanath Pegu
- Girijananda Chowdhury Institute of Pharmaceutical Science, Tezpur, India
| | - Ram Kumar Sahu
- Department of Pharmaceutical Sciences, Hemvati Nandan Bahuguna Garhwal University (A Central University), Chauras Campus, Tehri Garhwal, Uttarakhand, India
| | - Jiyauddin Khan
- School of Pharmacy, Management and Science University, Shah Alam, Malaysia
| |
Collapse
|
8
|
Igaz P. New Insights in the Genetics and Genomics of Adrenocortical Tumors and Pheochromocytomas. Cancers (Basel) 2022; 14:cancers14041094. [PMID: 35205841 PMCID: PMC8870129 DOI: 10.3390/cancers14041094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 02/17/2022] [Indexed: 11/21/2022] Open
Affiliation(s)
- Peter Igaz
- Department of Endocrinology, ENS@T Research Center of Excellence, Faculty of Medicine, Semmelweis University, H-1083 Budapest, Hungary; ; Tel.: +36-1-266-0816
- Department of Internal Medicine and Oncology, Faculty of Medicine, Semmelweis University, H-1083 Budapest, Hungary
- MTA-SE Molecular Medicine Research Group, Eötvös Loránd Research Network, H-1083 Budapest, Hungary
| |
Collapse
|
9
|
Bolger GB. The cAMP-signaling cancers: Clinically-divergent disorders with a common central pathway. Front Endocrinol (Lausanne) 2022; 13:1024423. [PMID: 36313756 PMCID: PMC9612118 DOI: 10.3389/fendo.2022.1024423] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 09/27/2022] [Indexed: 12/01/2022] Open
Abstract
The cAMP-signaling cancers, which are defined by functionally-significant somatic mutations in one or more elements of the cAMP signaling pathway, have an unexpectedly wide range of cell origins, clinical manifestations, and potential therapeutic options. Mutations in at least 9 cAMP signaling pathway genes (TSHR, GPR101, GNAS, PDE8B, PDE11A, PRKARA1, PRKACA, PRKACB, and CREB) have been identified as driver mutations in human cancer. Although all cAMP-signaling pathway cancers are driven by mutation(s) that impinge on a single signaling pathway, the ultimate tumor phenotype reflects interactions between five critical variables: (1) the precise gene(s) that undergo mutation in each specific tumor type; (2) the effects of specific allele(s) in any given gene; (3) mutations in modifier genes (mutational "context"); (4) the tissue-specific expression of various cAMP signaling pathway elements in the tumor stem cell; and (5) and the precise biochemical regulation of the pathway components in tumor cells. These varying oncogenic mechanisms reveal novel and important targets for drug discovery. There is considerable diversity in the "druggability" of cAMP-signaling components, with some elements (GPCRs, cAMP-specific phosphodiesterases and kinases) appearing to be prime drug candidates, while other elements (transcription factors, protein-protein interactions) are currently refractory to robust drug-development efforts. Further refinement of the precise driver mutations in individual tumors will be essential for directing priorities in drug discovery efforts that target these mutations.
Collapse
|