1
|
Vokacova K, Landecka A, Selvi S, Horak J, Novosadova V, Manakova K, Levy M, Vymetalkova V. Plasma miR-122-5p and miR-142-5p and their role in chemoresistance of patients with colon cancer. Mutagenesis 2025; 40:80-86. [PMID: 39275807 DOI: 10.1093/mutage/geae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 09/11/2024] [Indexed: 09/16/2024] Open
Abstract
Chemoresistance represents a major issue affecting cancer therapy efficacy. Because microRNAs (miRNAs) regulate gene expression on multiple levels, their role in chemoresistance development is reasonably certain. In our previous study, miR-122-5p and miR-142-5p were identified as diagnostic, prognostic, and predictive biomarkers for primary and metastatic rectal cancer. The aim of the present study was to investigate whether these miRNAs can also reflect the disease course of patients with colon cancer (CC). Further, we focused on a deeper understanding of their involvement in 5-fluorouracil (5-FU) chemoresistance development.
Collapse
Affiliation(s)
- Klara Vokacova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, 142 20, Czech Republic
- 1st Medical Faculty, Institute of Biology and Medical Genetics, Charles University, Prague, 142 20, Czech Republic
| | - Aneta Landecka
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, 142 20, Czech Republic
| | - Saba Selvi
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, 142 20, Czech Republic
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Prague, 128 00, Czech Republic
| | - Josef Horak
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, 142 20, Czech Republic
- Third Faculty of Medicine, Charles University, Ruska 87, Prague, 10000, Czech Republic
| | - Vendula Novosadova
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Prague, 252 50, Czech Republic
| | - Katerina Manakova
- 1st Medical Faculty, Charles University, Prague, 142 20, Czech Republic
| | - Miroslav Levy
- First Faculty of Medicine, Department of Surgery, Charles University and Thomayer Hospital, Prague, 140 59, Czech Republic
| | - Veronika Vymetalkova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, 142 20, Czech Republic
| |
Collapse
|
2
|
Shadab A, Farokhi S, Fakouri A, Mohagheghzadeh N, Noroozi A, Razavi ZS, Karimi Rouzbahani A, Zalpoor H, Mahjoor M. Hydrogel-based nanoparticles: revolutionizing brain tumor treatment and paving the way for future innovations. Eur J Med Res 2025; 30:71. [PMID: 39905470 DOI: 10.1186/s40001-025-02310-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 01/17/2025] [Indexed: 02/06/2025] Open
Abstract
Brain tumor treatment remains a significant challenge due to their high mortality and resistance to current therapies. This paper discusses the promising potential of hydrogel-based nanoparticles as innovative drug delivery systems for brain tumor therapy. Extensive characterization techniques reveal the ability of these Nano-systems to demonstrate prolonged blood circulation and targeted delivery, leading to improved survival rates. Designed with optimized physicochemical characteristics, these nanoparticles effectively cross the blood-brain barrier, circumventing a major impediment to drug delivery to the brain. By delivering drugs directly to the tumor bed, these nanoparticles enhance therapeutic outcomes and minimize adverse effects. In addition, this review investigates the techniques for characterizing, visualizing, and modifying these nanoparticles, as well as the standing challenges and promising research avenues for their clinical application. Further investigations are encouraged by this review to investigate potential advancements in hydrogel-based nanoparticle therapeutic approaches for brain tumors. This includes investigating tailored hydrogels, hybrid systems, computational modeling, and the integration of gene therapy and immunotherapy techniques. The study also addresses the need for enhanced synthesis techniques, stability, scalability, and cost-cutting measures to overcome obstacles and advance the clinical use of hydrogel-based nanoparticles in treating brain tumors.
Collapse
Affiliation(s)
- Alireza Shadab
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
- Deputy of Health, Iran University of Medical Sciences, Tehran, Iran
| | - Simin Farokhi
- Student Research Committee, Lorestan University of Medical Sciences, Khorramabad, Iran
- USERN Office, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Arshia Fakouri
- Student Research Committee, Lorestan University of Medical Sciences, Khorramabad, Iran
- USERN Office, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Neda Mohagheghzadeh
- Department of Bacteriology & Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Noroozi
- Dental Research Center, Faculty of Dentistry, Mazandaran University of Medical Sciences, Sari, Iran
| | - Zahra Sadat Razavi
- Physiology Research Center, Iran University Medical Sciences, Tehran, Iran
- Biochemistry Research Center, Iran University Medical Sciences, Tehran, Iran
- Advanced Bioengineering Initiative Center, Computational Medicine Center, K. N. Toosi University of Technology, Tehran, Iran
| | - Arian Karimi Rouzbahani
- Student Research Committee, Lorestan University of Medical Sciences, Khorramabad, Iran
- USERN Office, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Hamidreza Zalpoor
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran.
| | - Mohamad Mahjoor
- Cellular and Molecular Research Centre, Qom University of Medical Sciences, Qom, Iran.
- Department of Immunology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Kumari P, Mishra R, Mazumder R, Mazumder A. Acyl Urea Compounds Therapeutics and its Inhibition for Cancers in Women: A Review. Anticancer Agents Med Chem 2025; 25:86-98. [PMID: 39318218 DOI: 10.2174/0118715206330232240913100744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 09/03/2024] [Accepted: 09/03/2024] [Indexed: 09/26/2024]
Abstract
Acyl urea compounds have garnered significant attention in cancer therapeutics, particularly for their potential effectiveness against cancers that predominantly affect women, such as breast and ovarian cancers. The paper presents a report on the investigation of acyl urea compounds that are reported to involve a multi-faceted approach, including synthetic chemistry, biological assays, and computational modeling. A wealth of information on acyl urea and its purported effects on cancer affecting women has been gathered from different sources and condensed to provide readers with a broad understanding of the role of acyl urea in combating cancer. Acylureas demonstrate promising results by selectively inhibiting key molecular targets associated with cancer progressions, such as EGFR, ALK, HER2, and the Wnt/β-catenin signaling pathway. Specifically, targeting acyl ureas impedes tumor proliferation and metastasis while minimizing harm to healthy tissues, offering a targeted therapeutic approach with reduced side effects compared to conventional chemotherapy. Continued research and clinical trials are imperative to optimize the efficacy and safety profiles of acylurea-based therapies and broaden their applicability across various cancer types. Acyl urea compounds represent a promising class of therapeutics for the treatment of cancers in women, particularly due to their ability to selectively inhibit key molecular targets involved in tumor growth and progression. The combination of synthetic optimization, biological evaluation, and computational modeling has facilitated the identification of several lead compounds with significant anticancer potential. This abstract explores the therapeutic mechanisms and targeted pathways of acyl ureas in combating these malignancies, which will be useful for future studies.
Collapse
Affiliation(s)
- Preeti Kumari
- Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, 201306, India
| | - Rakhi Mishra
- Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, 201306, India
| | - Rupa Mazumder
- Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, 201306, India
| | - Avijit Mazumder
- Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, 201306, India
| |
Collapse
|
4
|
Rodrigues JAO, Kiran NS, Chatterjee A, Prajapati BG, Dhas N, Dos Santos AO, de Sousa FF, Souto EB. Metallodrugs: Synthesis, mechanism of action and nanoencapsulation for targeted chemotherapy. Biochem Pharmacol 2025; 231:116644. [PMID: 39577705 DOI: 10.1016/j.bcp.2024.116644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/31/2024] [Accepted: 11/19/2024] [Indexed: 11/24/2024]
Abstract
As a multifactorial and heterogeneous disease, cancer has a high mortality rate, and the search for more effective treatments is an enormous challenge. Metal coordination compounds open a range of possibilities that conventional organic and biological molecules can no longer fulfil due to increasing drug resistance. Metallodrugs still have tremendous potential to help overcome drug resistance and find new cures in medicine, considering that at least 25 metallic elements participate in healthy functioning of the human body. Transition metal ions, such as copper, zinc and iron, are incorporated into catalytic proteins, the so-called metalloenzymes, which participate in various chemical reactions necessary for life. The interaction of metal complexes in different pathways with the structural richness of deoxyribonucleic acid encouraged to seek to understand the mechanisms of action and overcome the obstacles encountered for a promising future of these drugs. The success of platinum-based metallodrugs is one of the great inspirations for the search of new metallodrugs, although the approval of these molecules has been slow in recent years due to the risk of systemic toxicity and insufficient understanding of their mechanisms. To overcome the clinical limitations encountered in some metallodrugs, nanoencapsulation has been proposed as a new approach to improve therapeutic index in chemotherapy. The remarkable selectivity of nanoencapsulated metallodrugs and their enhanced capacity to bypass various biological barriers allow site-specific targeting. In this review, we present the advances in the development and use of the most relevant metallodrugs, and new delivery approaches, in the fight against cancer.
Collapse
Affiliation(s)
- Jessica A O Rodrigues
- Center for Social Sciences, Health and Technology, Federal University of Maranhão (UFMA), 65900-410 Imperatriz, MA, Brazil.
| | - Neelakanta S Kiran
- Department of Biotechnology, School of Applied Sciences, REVA University, Bengaluru, Karnataka, India
| | - Ankita Chatterjee
- Department of Biotechnology, School of Applied Sciences, REVA University, Bengaluru, Karnataka, India
| | - Bhupendra G Prajapati
- Shree. S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Mehsana 384012, Gujarat, India; Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, 73000, Thailand
| | - Namdev Dhas
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Adenilson O Dos Santos
- Center for Social Sciences, Health and Technology, Federal University of Maranhão (UFMA), 65900-410 Imperatriz, MA, Brazil
| | - Francisco F de Sousa
- Center for Social Sciences, Health and Technology, Federal University of Maranhão (UFMA), 65900-410 Imperatriz, MA, Brazil; Institute of Exact and Natural Sciences, Federal University of Pará (UFPA), 66075-110, Belem, PA, Brazil
| | - Eliana B Souto
- UCD School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin 4, D04 V1W8, Ireland.
| |
Collapse
|
5
|
Gerashchenko G, Gulkovskyi R, Melnichuk N, Hryshchenko N, Marchyshak T, Mankovska O, Bezverkhiy A, Kotuza I, Rosha L, Kotuza A, Tkachuk Z, Kashuba V, Tukalo M. IDENTIFICATION OF CLINICALLY RELEVANT GENE VARIANTS IN COLON ADENOCARCINOMA SAMPLES OF UKRAINIAN PATIENTS USING A COMPREHENSIVE CANCER PANEL: A PILOT STUDY. Exp Oncol 2024; 46:221-227. [PMID: 39704459 DOI: 10.15407/exp-oncology.2024.03.221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Indexed: 12/21/2024]
Abstract
The study aimed to identify the clinically relevant gene variants in colon adenocarcinoma samples of Ukrainian patients using the NGS Comprehensive Cancer Panel (CCP) to implement them conveniently in clinical practice. METHODS We have studied 20 samples of Ukrainian patients with colorectal adenocarcinomas of various differentiation grades. To identify the clinically relevant gene variants, the CCP data were filtered using the Franklin by Genoox database. RESULTS A total of 79 clinically relevant gene variant alterations (SNVs, INDELs) were found in 28 of 409 genes. The largest number of mutations was found in 3 genes, APC, TP53, and KRAS (16, 14, and 8, accordingly). We revealed 4 variants in PTEN and SMAD4, 3 variants in CHEK2, ERBB2, and PIK3CA genes, and 2 variants in AKT1, ATM, DST, IDH1, and TCF12. Mutations for 7 genes, KRAS, TP53, CHEK2, PTEN, AKT1, APC, and SMAD4, were found in more than 1 tumor tissue sample. Tier 1-2 gene variants rate was about 50% of all genetic variants. The therapeutic significance was found in more than 55% of mutations. Additionally, 11 novel genetic mutations in 9 genes have been identified, including G6PD, APC, DST, SINE1, SMAD2, and FLCN. CONCLUSIONS These data suggest a high level of clinical relevance of the NGS CCP approach. Further confirmation on a larger number of samples and using a deeper analysis by other approaches is required.
Collapse
Affiliation(s)
- G Gerashchenko
- Institute of Molecular Biology and Genetics NAS of Ukraine, Kyiv, Ukraine
| | - R Gulkovskyi
- Institute of Molecular Biology and Genetics NAS of Ukraine, Kyiv, Ukraine
| | - N Melnichuk
- Institute of Molecular Biology and Genetics NAS of Ukraine, Kyiv, Ukraine
| | - N Hryshchenko
- Institute of Molecular Biology and Genetics NAS of Ukraine, Kyiv, Ukraine
| | - T Marchyshak
- Institute of Molecular Biology and Genetics NAS of Ukraine, Kyiv, Ukraine
| | - O Mankovska
- Institute of Molecular Biology and Genetics NAS of Ukraine, Kyiv, Ukraine
| | - A Bezverkhiy
- Institute of Molecular Biology and Genetics NAS of Ukraine, Kyiv, Ukraine
| | - I Kotuza
- Feofaniya Clinical Hospital of the State Management of Affairs, Kyiv, Ukraine
| | - L Rosha
- Feofaniya Clinical Hospital of the State Management of Affairs, Kyiv, Ukraine
| | - A Kotuza
- Feofaniya Clinical Hospital of the State Management of Affairs, Kyiv, Ukraine
| | - Z Tkachuk
- Institute of Molecular Biology and Genetics NAS of Ukraine, Kyiv, Ukraine
| | - V Kashuba
- Institute of Molecular Biology and Genetics NAS of Ukraine, Kyiv, Ukraine
| | - M Tukalo
- Institute of Molecular Biology and Genetics NAS of Ukraine, Kyiv, Ukraine
| |
Collapse
|
6
|
He YZ, Li XN, Li HT, Bai XH, Liu YC, Li FN, Lv BL, Qi TJ, Zhao XM, Li S. FTO promotes gefitinib-resistance by enhancing PELI3 expression and autophagy in non-small cell lung cancer. Pulm Pharmacol Ther 2024; 87:102317. [PMID: 39154901 DOI: 10.1016/j.pupt.2024.102317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/27/2024] [Accepted: 08/11/2024] [Indexed: 08/20/2024]
Abstract
The established recognition of N6-methyladenosine (m6A) modification as an indispensable regulatory agent in human cancer is widely accepted. However, the understanding of m6A's role and the mechanisms underlying its contribution to gefitinib resistance is notably limited. Herein, using RT-qPCR, Western blot, Cell proliferation and apoptosis, as well as RNA m6A modification assays, we substantiated that heightened FTO (Fat Mass and Obesity-associated protein) expression substantially underpins the emergence of gefitinib resistance in NSCLC cells. This FTO-driven gefitinib resistance is hinged upon the co-occurrence of PELI3 (Pellino E3 Ubiquitin Protein Ligase Family Member 3) expression and concurrent autophagy activation. Manipulation of PELI3 expression and autophagy activation, including its attenuation, was efficacious in both inducing and overcoming gefitinib resistance within NSCLC cells, as validated in vitro and in vivo. In summary, this study has successfully elucidated the intricate interplay involving FTO-mediated m6A modification, its consequential downstream effect on PELI3, and the concurrent involvement of autophagy in fostering the emergence of gefitinib resistance within the therapeutic context of NSCLC.
Collapse
Affiliation(s)
- Yu-Zheng He
- Department of Thoracic Surgery, The Second Hospital of Hebei Medical University, No.215 Heping West Road, Shijiazhuang, Hebei, 050000, China
| | - Xiao-Ning Li
- Department of Thoracic Surgery, Hebei General Hospital, No. 348 Heping West Road, Shijiazhuang, Hebei, 050000, China
| | - Hai-Tao Li
- The First Department of Pulmonary and Critical Care Medicine, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Respiratory Critical Care, Hebei Institute of Respiratory Diseases, No. 215 Heping West Road, Shijiazhuang, Hebei, 050000, China
| | - Xian-Hua Bai
- Department of Medical Imaging, The Second Hospital of Hebei Medical University, No. 215 Heping West Road, Shijiazhuang, Hebei, 050000, China
| | - Yan-Chao Liu
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Hebei Medical University, No. 215 Heping West Road, Shijiazhuang, Hebei, 050000, China
| | - Fan-Nian Li
- Department of Thoracic Surgery, The First Hospital of XingTai, No.376 Shunde Road, XingTai City, Hebei Province, 054001, China
| | - Bao-Lei Lv
- Department of Thoracic Surgery, Shijiazhuang People's Hospital, No.365 Jianhua South Street, Shijiazhuang, 050000, Hebei Province, China
| | - Tian-Jie Qi
- The First Department of Pulmonary and Critical Care Medicine, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Respiratory Critical Care, Hebei Institute of Respiratory Diseases, No. 215 Heping West Road, Shijiazhuang, Hebei, 050000, China
| | - Xiu-Min Zhao
- Department of The integrated treatment of traditional Chinese and Western Medicine, The Second Hospital of Hebei Medical University, No.215 Heping West Road, Shijiazhuang, Hebei, 050000, China
| | - Shuai Li
- The First Department of Pulmonary and Critical Care Medicine, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Respiratory Critical Care, Hebei Institute of Respiratory Diseases, No. 215 Heping West Road, Shijiazhuang, Hebei, 050000, China.
| |
Collapse
|
7
|
Rajaram J, Mende LK, Kuthati Y. A Review of the Efficacy of Nanomaterial-Based Natural Photosensitizers to Overcome Multidrug Resistance in Cancer. Pharmaceutics 2024; 16:1120. [PMID: 39339158 PMCID: PMC11434998 DOI: 10.3390/pharmaceutics16091120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/27/2024] [Accepted: 08/20/2024] [Indexed: 09/30/2024] Open
Abstract
Natural photosensitizers (PS) are compounds derived from nature, with photodynamic properties. Natural PSs have a similar action to that of commercial PSs, where cancer cell death occurs by necrosis, apoptosis, and autophagy through ROS generation. Natural PSs have garnered great interest over the last few decades because of their high biocompatibility and good photoactivity. Specific wavelengths could cause phytochemicals to produce harmful ROS for photodynamic therapy (PDT). However, natural PSs have some shortcomings, such as reduced solubility and lower uptake, making them less appropriate for PDT. Nanotechnology offers an opportunity to develop suitable carriers for various natural PSs for PDT applications. Various nanoparticles have been developed to improve the outcome with enhanced solubility, optical adsorption, and tumor targeting. Multidrug resistance (MDR) is a phenomenon in which tumor cells develop resistance to a wide range of structurally and functionally unrelated drugs. Over the last decade, several researchers have extensively studied the effect of natural PS-based photodynamic treatment (PDT) on MDR cells. Though the outcomes of clinical trials for natural PSs were inconclusive, significant advancement is still required before PSs can be used as a PDT agent for treating MDR tumors. This review addresses the increasing literature on MDR tumor progression and the efficacy of PDT, emphasizing the importance of developing new nano-based natural PSs in the fight against MDR that have the required features for an MDR tumor photosensitizing regimen.
Collapse
Affiliation(s)
- Jagadeesh Rajaram
- Department of Biochemistry and Molecular Medicine, National Dong Hwa University, Hualien 974, Taiwan;
| | - Lokesh Kumar Mende
- Department of Anesthesiology, Cathy General Hospital, Taipei 106, Taiwan;
| | - Yaswanth Kuthati
- Department of Anesthesiology, Cathy General Hospital, Taipei 106, Taiwan;
| |
Collapse
|
8
|
Cao W, Zhang X, Feng Y, Li R, Lu A, Li Z, Yu F, Sun L, Wang J, Wang Z, He H. Lipid Nanoparticular Codelivery System for Enhanced Antitumor Effects by Ferroptosis-Apoptosis Synergistic with Programmed Cell Death-Ligand 1 Downregulation. ACS NANO 2024; 18:17267-17281. [PMID: 38871478 DOI: 10.1021/acsnano.4c04901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Intrinsic or acquired resistance to chemical drugs severely limits their therapeutic efficacy in cancer treatment. Various intracellular antioxidant molecules, particularly glutathione (GSH), play a crucial role in maintaining intracellular redox homeostasis by mitigating the overproduced reactive oxygen species (ROS) due to rapid cell proliferation. Notably, these antioxidants also eliminate chemical-drug-induced ROS, eventually diminishing their cytotoxicity and rendering them less effective. In this study, we combined erastin, a GSH biosynthesis inhibitor, with 2'-deoxy-5-fluorouridine 5'-monophosphate sodium salt (FdUMP), an ROS-based drug, to effectively disrupt intracellular redox homeostasis and reverse chemotherapy resistance. Therefore, efficient ferroptosis and apoptosis were simultaneously induced for enhanced antitumor effects. Additionally, we employed small interfering RNA targeting PD-L1 (siPD-L1) as a third agent to block immune-checkpoint recognition by CD8+ T cells. The highly immunogenic cell peroxidates or damage-associated molecular patterns (DAMPs) induced by erastin acted synergistically with downregulated PD-L1 to enhance the antitumor effects. To codeliver these three drugs simultaneously and efficiently, we designed GE11 peptide-modified lipid nanoparticles (LNPs) containing calcium phosphate cores to achieve high encapsulation efficiencies. In vitro studies verified its enhanced cytotoxicity, efficient intracellular ROS induction and GSH/GPX4 downregulation, substantial lipid peroxidation product accumulation, and mitochondrial depolarization. In vivo, this formulation effectively accumulated at tumor sites and achieved significant tumor inhibition in subcutaneous colon cancer (CRC) mouse models with a maximum tumor inhibition rate of 83.89% at a relatively low dose. Overall, a strategy to overcome clinical drug resistance was verified in this study by depleting GSH and activating adaptive immunity.
Collapse
Affiliation(s)
- Weiran Cao
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, International Joint Laboratory of Ocular Diseases, School of Pharmacy, School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin 300070, China
| | - Xue Zhang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, International Joint Laboratory of Ocular Diseases, School of Pharmacy, School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin 300070, China
| | - Yaxuan Feng
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, International Joint Laboratory of Ocular Diseases, School of Pharmacy, School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin 300070, China
| | - Rui Li
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, International Joint Laboratory of Ocular Diseases, School of Pharmacy, School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin 300070, China
| | - An Lu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Zijie Li
- Department of Immuno-oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, China
| | - Fei Yu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, International Joint Laboratory of Ocular Diseases, School of Pharmacy, School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin 300070, China
| | - Lu Sun
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, International Joint Laboratory of Ocular Diseases, School of Pharmacy, School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin 300070, China
| | - Jiancheng Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Zhiyu Wang
- Department of Immuno-oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, China
| | - Huining He
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, International Joint Laboratory of Ocular Diseases, School of Pharmacy, School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin 300070, China
| |
Collapse
|
9
|
Jiang J, Duan M, Wang Z, Lai Y, Zhang C, Duan C. RNA epigenetics in pulmonary diseases: Insights into methylation modification of lncRNAs in lung cancer. Biomed Pharmacother 2024; 175:116704. [PMID: 38749181 DOI: 10.1016/j.biopha.2024.116704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/26/2024] [Accepted: 05/02/2024] [Indexed: 06/03/2024] Open
Abstract
Long non-coding RNAs (lncRNAs) are pivotal controllers of gene expression through epigenetic mechanisms, Methylation, a prominent area of study in epigenetics, significantly impacts cellular processes. Various RNA base methylations, including m6A, m5C, m1A, and 2'-O-methylation, profoundly influence lncRNA folding, interactions, and stability, thereby shaping their functionality. LncRNAs and methylation significantly contribute to tumor development, especially in lung cancer. Their roles encompass cell differentiation, proliferation, the generation of cancer stem cells, and modulation of immune responses. Recent studies have suggested that dysregulation of lncRNA methylation can contribute to lung cancer development. Furthermore, methylation modifications of lncRNAs hold potential for clinical application in lung cancer. Dysregulated lncRNA methylation can promote lung cancer progression and may offer insights into potential biomarker or therapeutic target. This review summarizes the current knowledge of lncRNA methylation in lung cancer and its implications for RNA epigenetics and pulmonary diseases.
Collapse
Affiliation(s)
- Junjie Jiang
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People's Republic of China; Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis & Treatment, Changsha, 410008, Hunan, People's Republic of China
| | - Minghao Duan
- Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 412017, Hunan, People's Republic of China
| | - Zheng Wang
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People's Republic of China; Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis & Treatment, Changsha, 410008, Hunan, People's Republic of China
| | - Yuwei Lai
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People's Republic of China; Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis & Treatment, Changsha, 410008, Hunan, People's Republic of China
| | - Chunfang Zhang
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People's Republic of China; Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis & Treatment, Changsha, 410008, Hunan, People's Republic of China; Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People's Republic of China
| | - Chaojun Duan
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People's Republic of China; Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis & Treatment, Changsha, 410008, Hunan, People's Republic of China; Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People's Republic of China; Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People's Republic of China; National Clinical Research Center for Geriatric Disorders, Changsha 410008, Hunan, People's Republic of China.
| |
Collapse
|
10
|
Tufail M, Wan WD, Jiang C, Li N. Targeting PI3K/AKT/mTOR signaling to overcome drug resistance in cancer. Chem Biol Interact 2024; 396:111055. [PMID: 38763348 DOI: 10.1016/j.cbi.2024.111055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/06/2024] [Accepted: 05/13/2024] [Indexed: 05/21/2024]
Abstract
This review comprehensively explores the challenge of drug resistance in cancer by focusing on the pivotal PI3K/AKT/mTOR pathway, elucidating its role in oncogenesis and resistance mechanisms across various cancer types. It meticulously examines the diverse mechanisms underlying resistance, including genetic mutations, feedback loops, and microenvironmental factors, while also discussing the associated resistance patterns. Evaluating current therapeutic strategies targeting this pathway, the article highlights the hurdles encountered in drug development and clinical trials. Innovative approaches to overcome resistance, such as combination therapies and precision medicine, are critically analyzed, alongside discussions on emerging therapies like immunotherapy and molecularly targeted agents. Overall, this comprehensive review not only sheds light on the complexities of resistance in cancer but also provides a roadmap for advancing cancer treatment.
Collapse
Affiliation(s)
- Muhammad Tufail
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Wen-Dong Wan
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Canhua Jiang
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China; Institute of Oral Precancerous Lesions, Central South University, Changsha, China; Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Ning Li
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China; Institute of Oral Precancerous Lesions, Central South University, Changsha, China; Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
11
|
Alkafaas SS, Elsalahaty MI, Ismail DF, Radwan MA, Elkafas SS, Loutfy SA, Elshazli RM, Baazaoui N, Ahmed AE, Hafez W, Diab M, Sakran M, El-Saadony MT, El-Tarabily KA, Kamal HK, Hessien M. The emerging roles of sphingosine 1-phosphate and SphK1 in cancer resistance: a promising therapeutic target. Cancer Cell Int 2024; 24:89. [PMID: 38419070 PMCID: PMC10903003 DOI: 10.1186/s12935-024-03221-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 01/09/2024] [Indexed: 03/02/2024] Open
Abstract
Cancer chemoresistance is a problematic dilemma that significantly restrains numerous cancer management protocols. It can promote cancer recurrence, spreading of cancer, and finally, mortality. Accordingly, enhancing the responsiveness of cancer cells towards chemotherapies could be a vital approach to overcoming cancer chemoresistance. Tumour cells express a high level of sphingosine kinase-1 (SphK1), which acts as a protooncogenic factor and is responsible for the synthesis of sphingosine-1 phosphate (S1P). S1P is released through a Human ATP-binding cassette (ABC) transporter to interact with other phosphosphingolipids components in the interstitial fluid in the tumor microenvironment (TME), provoking communication, progression, invasion, and tumor metastasis. Also, S1P is associated with several impacts, including anti-apoptotic behavior, metastasis, mesenchymal transition (EMT), angiogenesis, and chemotherapy resistance. Recent reports addressed high levels of S1P in several carcinomas, including ovarian, prostate, colorectal, breast, and HCC. Therefore, targeting the S1P/SphK signaling pathway is an emerging therapeutic approach to efficiently attenuate chemoresistance. In this review, we comprehensively discussed S1P functions, metabolism, transport, and signaling. Also, through a bioinformatic framework, we pointed out the alterations of SphK1 gene expression within different cancers with their impact on patient survival, and we demonstrated the protein-protein network of SphK1, elaborating its sparse roles. Furthermore, we made emphasis on different machineries of cancer resistance and the tight link with S1P. We evaluated all publicly available SphK1 inhibitors and their inhibition activity using molecular docking and how SphK1 inhibitors reduce the production of S1P and might reduce chemoresistance, an approach that might be vital in the course of cancer treatment and prognosis.
Collapse
Affiliation(s)
- Samar Sami Alkafaas
- Molecular Cell Biology Unit, Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Mohamed I Elsalahaty
- Biochemistry Division, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Doha F Ismail
- Biochemistry Division, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Mustafa Ali Radwan
- Biochemistry Division, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Sara Samy Elkafas
- Production Engineering and Mechanical Design Department, Faculty of Engineering, Menofia University, Menofia, Egypt
- Faculty of Control System and Robotics, ITMO University, Saint-Petersburg, 197101, Russia
| | - Samah A Loutfy
- Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
- Nanotechnology Research Center, British University, Cairo, Egypt
| | - Rami M Elshazli
- Biochemistry and Molecular Genetics Unit, Department of Basic Sciences, Faculty of Physical Therapy, Horus University-Egypt, New Damietta, 34517, Egypt
| | - Narjes Baazaoui
- Biology Department, College of Sciences and Arts Muhayil Assir, King Khalid University, Abha 61421, Saudi Arabia
| | - Ahmed Ezzat Ahmed
- Biology Department, College of Science, King Khalid University, Abha 61413, Saudi Arabia
| | - Wael Hafez
- NMC Royal Hospital, 16th Street, 35233, Khalifa, Abu Dhabi, United Arab Emirates
- Medical Research Division, Department of Internal Medicine, The National Research Centre, Cairo 11511, Egypt
| | - Mohanad Diab
- Burjeel Hospital Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Mohamed Sakran
- Biochemistry Division, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt
- Biochemistry Department, Faculty of Science, University of Tabuk, Tabuk 47512, Saudi Arabia
| | - Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Khaled A El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
| | - Hani K Kamal
- Anatomy and Histology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohamed Hessien
- Molecular Cell Biology Unit, Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| |
Collapse
|
12
|
Yang J, Cheng R, Pan X, Pan S, Du M, Yao H, Hu Z, Zhang S, Zhang X. Single-Cell Unsaturated Lipid Profiling for Studying Chemoresistance Heterogeneity of Triple-Negative Breast Cancer Cells. Anal Chem 2024. [PMID: 38334074 DOI: 10.1021/acs.analchem.3c04887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Chemoresistance to triple-negative breast cancer (TNBC) is a critical issue in clinical practice. Lipid metabolism takes a unique role in breast cancer cells; especially, unsaturated lipids involving cell membrane fluidity and peroxidation are highly remarked. At present, for the lack of a high-resolution molecular recognition platform at the single-cell level, it is still hard to systematically study chemoresistance heterogeneity based on lipid unsaturation proportion. By designing a single-cell mass spectrometry workflow based on CyESI-MS, we profiled the unsaturated lipids of TNBC cells to evaluate lipidomic remodeling under platinum stress. Profiling revealed the heterogeneity of the polyunsaturated lipid proportion of TNBC cells under cisplatin treatment. A cluster of cells identified by polyunsaturated lipid accumulation was found to be involved in platinum sensitivity. Furthermore, we found that the chemoresistance of TNBC cells could be regulated by fatty acid supplementation, which determinates the composition of unsaturated lipids. These discoveries provide insights for monitoring and controlling cellular unsaturated lipid proportions to overcome chemoresistance in breast cancer.
Collapse
Affiliation(s)
- Jinlei Yang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Runsong Cheng
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xingyu Pan
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Siyuan Pan
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Murong Du
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Huan Yao
- National Institute of Metrology, Beijing 100029, China
- Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, Beijing 100029, China
| | - Zhian Hu
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology, Beijing 100083, China
| | - Sichun Zhang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xinrong Zhang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
13
|
Martynov I, Dhaka L, Wilke B, Hoyer P, Vahdad MR, Seitz G. Contemporary preclinical mouse models for pediatric rhabdomyosarcoma: from bedside to bench to bedside. Front Oncol 2024; 14:1333129. [PMID: 38371622 PMCID: PMC10869630 DOI: 10.3389/fonc.2024.1333129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 01/02/2024] [Indexed: 02/20/2024] Open
Abstract
Background Rhabdomyosarcoma (RMS) is the most common pediatric soft-tissue malignancy, characterized by high clinicalopathological and molecular heterogeneity. Preclinical in vivo models are essential for advancing our understanding of RMS oncobiology and developing novel treatment strategies. However, the diversity of scholarly data on preclinical RMS studies may challenge scientists and clinicians. Hence, we performed a systematic literature survey of contemporary RMS mouse models to characterize their phenotypes and assess their translational relevance. Methods We identified papers published between 01/07/2018 and 01/07/2023 by searching PubMed and Web of Science databases. Results Out of 713 records screened, 118 studies (26.9%) were included in the qualitative synthesis. Cell line-derived xenografts (CDX) were the most commonly utilized (n = 75, 63.6%), followed by patient-derived xenografts (PDX) and syngeneic models, each accounting for 11.9% (n = 14), and genetically engineered mouse models (GEMM) (n = 7, 5.9%). Combinations of different model categories were reported in 5.9% (n = 7) of studies. One study employed a virus-induced RMS model. Overall, 40.0% (n = 30) of the studies utilizing CDX models established alveolar RMS (aRMS), while 38.7% (n = 29) were embryonal phenotypes (eRMS). There were 20.0% (n = 15) of studies that involved a combination of both aRMS and eRMS subtypes. In one study (1.3%), the RMS phenotype was spindle cell/sclerosing. Subcutaneous xenografts (n = 66, 55.9%) were more frequently used compared to orthotopic models (n = 29, 24.6%). Notably, none of the employed cell lines were derived from primary untreated tumors. Only a minority of studies investigated disseminated RMS phenotypes (n = 16, 13.6%). The utilization areas of RMS models included testing drugs (n = 64, 54.2%), studying tumorigenesis (n = 56, 47.5%), tumor modeling (n = 19, 16.1%), imaging (n = 9, 7.6%), radiotherapy (n = 6, 5.1%), long-term effects related to radiotherapy (n = 3, 2.5%), and investigating biomarkers (n = 1, 0.8%). Notably, no preclinical studies focused on surgery. Conclusions This up-to-date review highlights the need for mouse models with dissemination phenotypes and cell lines from primary untreated tumors. Furthermore, efforts should be directed towards underexplored areas such as surgery, radiotherapy, and biomarkers.
Collapse
Affiliation(s)
- Illya Martynov
- Department of Pediatric Surgery and Urology, University Hospital Giessen-Marburg, Marburg, Germany
- Department of Pediatric Surgery, University Hospital Giessen-Marburg, Giessen, Germany
| | - Lajwanti Dhaka
- Department of Pediatric Surgery and Urology, University Hospital Giessen-Marburg, Marburg, Germany
| | - Benedikt Wilke
- Department of Pediatric Surgery and Urology, University Hospital Giessen-Marburg, Marburg, Germany
| | - Paul Hoyer
- Department of Pediatric Surgery and Urology, University Hospital Giessen-Marburg, Marburg, Germany
| | - M. Reza Vahdad
- Department of Pediatric Surgery and Urology, University Hospital Giessen-Marburg, Marburg, Germany
- Department of Pediatric Surgery, University Hospital Giessen-Marburg, Giessen, Germany
| | - Guido Seitz
- Department of Pediatric Surgery and Urology, University Hospital Giessen-Marburg, Marburg, Germany
- Department of Pediatric Surgery, University Hospital Giessen-Marburg, Giessen, Germany
| |
Collapse
|
14
|
Verma A, Chauhan A, Awasthi A. Transcending Molecules: Paving the Way from Lab to Life in Drug Transport Innovation. Curr Drug Targets 2024; 25:445-448. [PMID: 38639289 DOI: 10.2174/0113894501305312240414073623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/19/2024] [Accepted: 03/27/2024] [Indexed: 04/20/2024]
Affiliation(s)
- Abhishek Verma
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Abhishek Chauhan
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Ankit Awasthi
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, 142001, India
| |
Collapse
|
15
|
Hassani S, Ghanbari F, Lotfi M, Alam W, Aschner M, Popović-Djordjević J, Shahcheraghi SH, Khan H. How gallic acid regulates molecular signaling: role in cancer drug resistance. Med Oncol 2023; 40:308. [PMID: 37755616 DOI: 10.1007/s12032-023-02178-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/30/2023] [Indexed: 09/28/2023]
Abstract
Cancer is one of the deadliest and most heterogeneous diseases. Cancers often develop drug resistance, which can lead to treatment failure or recurrence. Accordingly, anticancer compounds are essential for chemotherapy-resistant cancer cells. Phenolic compounds are of interest in the development of cancer drugs due to their medicinal properties and ability to target different molecular pathways. Gallic acid (GA), as one of the main components of phenol, which is abundantly present in plant compounds such as walnut, sumac, grapes, tea leaves, oak bark, and other plant compounds, has antitumor properties. GA can prevent cancer progression, cell invasion, and metastasis by targeting molecular pathways and is an effective complement to chemotherapy drugs and combating multidrug resistance (MDR). In this review, we discuss various mechanisms related to cancer, the therapeutic potential of GA, the antitumor properties of GA in various cancers, and the targeted delivery of GA with nanocarriers.
Collapse
Affiliation(s)
- Samira Hassani
- Department of Plant and Animal Biology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Fahimeh Ghanbari
- Applied Physiology Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Marzieh Lotfi
- Abortion Research Center, Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Medical Genetics, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Waqas Alam
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Jelena Popović-Djordjević
- Faculty of Agriculture, Department for Chemistry and Biochemistry, University of Belgrade, Nemanjina 6, 11080, Belgrade, Serbia
| | - Seyed Hossein Shahcheraghi
- Department of Medical Genetics, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
- Infectious Diseases Research Center, Shahid Sadoughi Hospital, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
- Reproductive Immunology Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan.
| |
Collapse
|
16
|
Fakhri S, Moradi SZ, Faraji F, Farhadi T, Hesami O, Iranpanah A, Webber K, Bishayee A. Current advances in nanoformulations of therapeutic agents targeting tumor microenvironment to overcome drug resistance. Cancer Metastasis Rev 2023; 42:959-1020. [PMID: 37505336 DOI: 10.1007/s10555-023-10119-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/13/2023] [Indexed: 07/29/2023]
Abstract
The tumor microenvironment (TME) plays a pivotal role in cancer development and progression. In this line, revealing the precise mechanisms of the TME and associated signaling pathways of tumor resistance could pave the road for cancer prevention and efficient treatment. The use of nanomedicine could be a step forward in overcoming the barriers in tumor-targeted therapy. Novel delivery systems benefit from enhanced permeability and retention effect, decreasing tumor resistance, reducing tumor hypoxia, and targeting tumor-associated factors, including immune cells, endothelial cells, and fibroblasts. Emerging evidence also indicates the engagement of multiple dysregulated mediators in the TME, such as matrix metalloproteinase, vascular endothelial growth factor, cytokines/chemokines, Wnt/β-catenin, Notch, Hedgehog, and related inflammatory and apoptotic pathways. Hence, investigating novel multitargeted agents using a novel delivery system could be a promising strategy for regulating TME and drug resistance. In recent years, small molecules from natural sources have shown favorable anticancer responses by targeting TME components. Nanoformulations of natural compounds are promising therapeutic agents in simultaneously targeting multiple dysregulated factors and mediators of TME, reducing tumor resistance mechanisms, overcoming interstitial fluid pressure and pericyte coverage, and involvement of basement membrane. The novel nanoformulations employ a vascular normalization strategy, stromal/matrix normalization, and stress alleviation mechanisms to exert higher efficacy and lower side effects. Accordingly, the nanoformulations of anticancer monoclonal antibodies and conventional chemotherapeutic agents also improved their efficacy and lessened the pharmacokinetic limitations. Additionally, the coadministration of nanoformulations of natural compounds along with conventional chemotherapeutic agents, monoclonal antibodies, and nanomedicine-based radiotherapy exhibits encouraging results. This critical review evaluates the current body of knowledge in targeting TME components by nanoformulation-based delivery systems of natural small molecules, monoclonal antibodies, conventional chemotherapeutic agents, and combination therapies in both preclinical and clinical settings. Current challenges, pitfalls, limitations, and future perspectives are also discussed.
Collapse
Affiliation(s)
- Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
| | - Seyed Zachariah Moradi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
| | - Farahnaz Faraji
- Department of Pharmaceutics, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, 6517838678, Iran
| | - Tara Farhadi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, 6714415153, Iran
| | - Osman Hesami
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
| | - Amin Iranpanah
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
| | - Kassidy Webber
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, 34211, USA
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, 34211, USA.
| |
Collapse
|
17
|
Yu F, He H, Zhou Y. Roles, biological functions, and clinical significances of RHPN1-AS1 in cancer. Pathol Res Pract 2023; 248:154589. [PMID: 37285733 DOI: 10.1016/j.prp.2023.154589] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/20/2023] [Accepted: 05/30/2023] [Indexed: 06/09/2023]
Abstract
For the complex and multifaceted challenge of cancer eradication, a comprehensive approach is required. Molecular strategies are critical in the fight against cancer as they allow us to understand the underlying fundamental mechanisms and develop specialized treatments. The role of long non-coding RNAs (lncRNAs), a class of ncRNA molecules longer than 200 nucleotides, in cancer biology has attracted growing attention in recent years. These roles include but are not limited to regulating gene expression, protein localization, and chromatin remodeling. LncRNAs can influence a range of cellular functions and pathways, including those involved in cancer development. The first study on RHPN1 antisense RNA 1 (RHPN1-AS1), a 2030-bp transcript originating from human chromosome 8q24, in uveal melanoma (UM) demonstrated that this lncRNA was significantly upregulated in several UM cell lines. Further studies in various cancer cell lines showed that this lncRNA is significantly overexpressed and exerts oncogenic functions. This review will provide an overview of current knowledge regarding the roles played by RHPN1-AS1 in the emergence of various cancers, focusing on its biological and clinical functions.
Collapse
Affiliation(s)
- Fan Yu
- Clinical Laboratory Medical Center, Shenzhen Hospital, Southern Medical University, Shenzhen 518000, China
| | - Haihong He
- Clinical Laboratory Medical Center, Shenzhen Hospital, Southern Medical University, Shenzhen 518000, China
| | - Yiwen Zhou
- Clinical Laboratory Medical Center, Shenzhen Hospital, Southern Medical University, Shenzhen 518000, China.
| |
Collapse
|
18
|
Duan C, Yu M, Xu J, Li BY, Zhao Y, Kankala RK. Overcoming Cancer Multi-drug Resistance (MDR): Reasons, mechanisms, nanotherapeutic solutions, and challenges. Biomed Pharmacother 2023; 162:114643. [PMID: 37031496 DOI: 10.1016/j.biopha.2023.114643] [Citation(s) in RCA: 89] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/30/2023] [Accepted: 03/30/2023] [Indexed: 04/11/2023] Open
Abstract
Multi-drug resistance (MDR) in cancer cells, either intrinsic or acquired through various mechanisms, significantly hinders the therapeutic efficacy of drugs. Typically, the reduced therapeutic performance of various drugs is predominantly due to the inherent over expression of ATP-binding cassette (ABC) transporter proteins on the cell membrane, resulting in the deprived uptake of drugs, augmenting drug detoxification, and DNA repair. In addition to various physiological abnormalities and extensive blood flow, MDR cancer phenotypes exhibit improved apoptotic threshold and drug efflux efficiency. These severe consequences have substantially directed researchers in the fabrication of various advanced therapeutic strategies, such as co-delivery of drugs along with various generations of MDR inhibitors, augmented dosage regimens and frequency of administration, as well as combinatorial treatment options, among others. In this review, we emphasize different reasons and mechanisms responsible for MDR in cancer, including but not limited to the known drug efflux mechanisms mediated by permeability glycoprotein (P-gp) and other pumps, reduced drug uptake, altered DNA repair, and drug targets, among others. Further, an emphasis on specific cancers that share pathogenesis in executing MDR and effluxed drugs in common is provided. Then, the aspects related to various nanomaterials-based supramolecular programmable designs (organic- and inorganic-based materials), as well as physical approaches (light- and ultrasound-based therapies), are discussed, highlighting the unsolved issues and future advancements. Finally, we summarize the review with interesting perspectives and future trends, exploring further opportunities to overcome MDR.
Collapse
Affiliation(s)
- Chunyan Duan
- School of New Energy and Environmental Protection Engineering, Foshan Polytechnic, Foshan 528137, PR China.
| | - Mingjia Yu
- School of New Energy and Environmental Protection Engineering, Foshan Polytechnic, Foshan 528137, PR China
| | - Jiyuan Xu
- School of New Energy and Environmental Protection Engineering, Foshan Polytechnic, Foshan 528137, PR China
| | - Bo-Yi Li
- Institute of Biomaterials and Tissue Engineering, College of Chemical Engineering, Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen 361021, PR China
| | - Ying Zhao
- Institute of Biomaterials and Tissue Engineering, College of Chemical Engineering, Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen 361021, PR China
| | - Ranjith Kumar Kankala
- Institute of Biomaterials and Tissue Engineering, College of Chemical Engineering, Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen 361021, PR China.
| |
Collapse
|
19
|
Amin NH, El-Saadi MT, Abdel-Fattah MM, Mohammed AA, Said EG. Development of certain aminoquinazoline scaffolds as potential multitarget anticancer agents with apoptotic and anti-proliferative effects: Design, synthesis and biological evaluation. Bioorg Chem 2023; 135:106496. [PMID: 36989735 DOI: 10.1016/j.bioorg.2023.106496] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/06/2023] [Accepted: 03/22/2023] [Indexed: 03/28/2023]
Abstract
Newly designed 4 - aminoquinazoline derivatives (5a-f, 6a, b, 7, 8, 9, 10a-c, 11a, b, 12a, b and 13a, b) have been synthesized and evaluated for their potential multitarget anticancer activities, apoptotic and anti-proliferative effects. Thereupon, in vitro cytotoxic activities of all the synthesized compounds were screened against NCI 60 human cancer cell lines (nine subpanels) at NCI, USA. Successfully, 2-morpholino-N-(quinazolin-4-yl) acetohydrazide 5e was granted an NSC code, owing to its significant potency and broad spectrum of activity against various cancer cell lines; leukemia K-562, non-small cell lung cancer NCI-H522 cells, colon cancer SW-620, melanoma LOX IMVI, MALME-3M, renal cancer RXF 393, ACHN and breast cancer MDA-MB231/ATCC (GI% = 99.6, 161, 126.03, 90.22, 174.47, 139.7, 191 and 97, respectively). Compound 5e showed the best inhibitory activity (GI50 = 1.3 µM) against melanoma LOX IMVI, when tested at five doses against NCI 60 cell lines. Furthermore, compound 5e showed comparable EGFR and CDK2 inhibitory activity results (IC50 = 0.093 ± 0.006 μM and 0.143 ± 0.008 μM, respectively) to those of lapatinib and ribociclib (IC50 = 0.03 ± 0.002 μM and 0.067 ± 0.004 μM, respectively). Western blotting analysis of compound 5e against melanoma LOX IMVI marked out significant reduced EGFR and CDK2 protein expression percentages, up to 32.97% and 34.09%, respectively, if compared to lapatinib (31.18%) and ribociclib (29.66%). Moreover, compound 5e caused clear cell cycle arrests at S phase of renal UO-31 cells and at G1 phase of both breast cancer MCF7 and ovarian cancer IGROV1, associated with remarkable increase of DNA content of the controls. In accordance, it demonstrated promising anti- proliferative and apoptotic activities, showing a significant increase in total apoptotic percentages of renal cancer UO-31, breast cancer MCF7 and ovarian IGROV1 cancer cell lines, if compared to the control untreated cells (from 1.79% to 46.72%, 2.19% to 39.02% and 1.66 to 42.51%, respectively). Molecular modelling and dynamic simulation study results supported the main objectives of the present work.
Collapse
|
20
|
Cytotoxic and chemomodulatory effects of Phyllanthus niruri in MCF-7 and MCF-7 ADR breast cancer cells. Sci Rep 2023; 13:2683. [PMID: 36792619 PMCID: PMC9932073 DOI: 10.1038/s41598-023-29566-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 02/07/2023] [Indexed: 02/17/2023] Open
Abstract
The members of the genus Phyllanthus have long been used in the treatment of a broad spectrum of diseases. They exhibited antiproliferative activity against various human cancer cell lines. Breast cancer is the most diagnosed cancer and a leading cause of cancer death among women. Doxorubicin (DOX) is an anticancer agent used to treat breast cancer despite its significant cardiotoxicity along with resistance development. Therefore, this study was designed to assess the potential cytotoxicity of P. niruri extracts (and fractions) alone and in combination with DOX against naïve (MCF-7) and doxorubicin-resistant breast cancer cell lines (MCF-7ADR). The methylene chloride fraction (CH2Cl2) showed the most cytotoxic activity among all tested fractions. Interestingly, the CH2Cl2-fraction was more cytotoxic against MCF-7ADR than MCF-7 at 100 µg/mL. At sub-cytotoxic concentrations, this fraction enhanced the cytotoxic effect of DOX against the both cell lines under investigation (IC50 values of 0.054 µg/mL and 0.14 µg/mL vs. 0.2 µg/mL for DOX alone against MCF-7) and (1.2 µg/mL and 0.23 µg/mL vs. 9.9 µg/mL for DOX alone against MCF-7ADR), respectively. Further, TLC fractionation showed that B2 subfraction in equitoxic combination with DOX exerted a powerful synergism (IC50 values of 0.03 µg/mL vs. 9.9 µg/mL for DOX alone) within MCF-7ADR. Untargeted metabolite profiling of the crude methanolic extract (MeOH) and CH2Cl2 fraction exhibiting potential cytotoxicity was conducted using liquid chromatography diode array detector-quadrupole time-of-flight mass spectrometry (LC-DAD-QTOF). Further studies are needed to separate the active compounds from the CH2Cl2 fraction and elucidate their mechanism(s) of action.
Collapse
|
21
|
Rezaee M, Mohammadi F, Keshavarzmotamed A, Yahyazadeh S, Vakili O, Milasi YE, Veisi V, Dehmordi RM, Asadi S, Ghorbanhosseini SS, Rostami M, Alimohammadi M, Azadi A, Moussavi N, Asemi Z, Aminianfar A, Mirzaei H, Mafi A. The landscape of exosomal non-coding RNAs in breast cancer drug resistance, focusing on underlying molecular mechanisms. Front Pharmacol 2023; 14:1152672. [PMID: 37153758 PMCID: PMC10154547 DOI: 10.3389/fphar.2023.1152672] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 03/29/2023] [Indexed: 05/10/2023] Open
Abstract
Breast cancer (BC) is the most common malignancy among women worldwide. Like many other cancers, BC therapy is challenging and sometimes frustrating. In spite of the various therapeutic modalities applied to treat the cancer, drug resistance, also known as, chemoresistance, is very common in almost all BCs. Undesirably, a breast tumor might be resistant to different curative approaches (e.g., chemo- and immunotherapy) at the same period of time. Exosomes, as double membrane-bound extracellular vesicles 1) secreted from different cell species, can considerably transfer cell products and components through the bloodstream. In this context, non-coding RNAs (ncRNAs), including miRNAs, long ncRNAs (lncRNAs), and circular RNAs (circRNAs), are a chief group of exosomal constituents with amazing abilities to regulate the underlying pathogenic mechanisms of BC, such as cell proliferation, angiogenesis, invasion, metastasis, migration, and particularly drug resistance. Thereby, exosomal ncRNAs can be considered potential mediators of BC progression and drug resistance. Moreover, as the corresponding exosomal ncRNAs circulate in the bloodstream and are found in different body fluids, they can serve as foremost prognostic/diagnostic biomarkers. The current study aims to comprehensively review the most recent findings on BC-related molecular mechanisms and signaling pathways affected by exosomal miRNAs, lncRNAs, and circRNAs, with a focus on drug resistance. Also, the potential of the same exosomal ncRNAs in the diagnosis and prognosis of BC will be discussed in detail.
Collapse
Affiliation(s)
- Malihe Rezaee
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Mohammadi
- Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Sheida Yahyazadeh
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Omid Vakili
- Autophagy Research Center, Department of Clinical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Yaser Eshaghi Milasi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Vida Veisi
- School of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Rohollah Mousavi Dehmordi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sepideh Asadi
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Seyedeh Sara Ghorbanhosseini
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehdi Rostami
- Department of Clinical Biochemistry, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mina Alimohammadi
- Student Research Committee, Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- *Correspondence: Mina Alimohammadi, ; Abbas Azadi, ; Hamed Mirzaei, ; Alireza Mafi,
| | - Abbas Azadi
- Department of Internal Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
- *Correspondence: Mina Alimohammadi, ; Abbas Azadi, ; Hamed Mirzaei, ; Alireza Mafi,
| | - Nushin Moussavi
- Department of Surgery, Kashan University of Medical Sciences, Kashan, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Azadeh Aminianfar
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
- *Correspondence: Mina Alimohammadi, ; Abbas Azadi, ; Hamed Mirzaei, ; Alireza Mafi,
| | - Alireza Mafi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- *Correspondence: Mina Alimohammadi, ; Abbas Azadi, ; Hamed Mirzaei, ; Alireza Mafi,
| |
Collapse
|
22
|
Condello M, Vona R, Meschini S. Prunus spinosa Extract Sensitized HCT116 Spheroids to 5-Fluorouracil Toxicity, Inhibiting Autophagy. Int J Mol Sci 2022; 23:ijms232416098. [PMID: 36555736 PMCID: PMC9785163 DOI: 10.3390/ijms232416098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/15/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Autophagy is a lysosomal degradation and recycling process involved in tumor progression and drug resistance. The aim of this work was to inhibit autophagy and increase apoptosis in a 3D model of human colorectal cancer by combined treatment with our patented natural product Prunus spinosa + nutraceutical activator complex (PsT + NAC®) and 5-fluorouracil (5-FU). By means of cytotoxic evaluation (MTT assay), cytofluorimetric analysis, light and fluorescence microscopy investigation and Western blotting evaluation of the molecular pathway PI3/AKT/mTOR, Caspase-9, Caspase-3, Beclin1, p62 and LC3, we demonstrated that the combination PsT + NAC® and 5-FU significantly reduces autophagy by increasing the apoptotic phenomenon. These results demonstrate the importance of using non-toxic natural compounds to improve the therapeutic efficacy and reduce the side effects induced by conventional drugs in human colon cancer.
Collapse
Affiliation(s)
- Maria Condello
- National Center for Drug Research and Evaluation, National Institute of Health, 00161 Rome, Italy
- Correspondence: (M.C.); (S.M.)
| | - Rosa Vona
- Center for Gender-Specific Medicine, National Institute of Health, 00161 Rome, Italy
| | - Stefania Meschini
- National Center for Drug Research and Evaluation, National Institute of Health, 00161 Rome, Italy
- Correspondence: (M.C.); (S.M.)
| |
Collapse
|