1
|
Roukas D, Tsiambas E, Spyropoulou D, Adamopoulou M, Tsouvelas G, Mastronikoli S, Monastirioti AE, Kouzoupis A, Lazaris A, Kavantzas N. Caspase 3 Expression Profiles in Meningioma Subtypes Based on Tissue Microarray Analysis. CANCER DIAGNOSIS & PROGNOSIS 2024; 4:586-591. [PMID: 39238614 PMCID: PMC11372700 DOI: 10.21873/cdp.10367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 09/07/2024]
Abstract
Background/Aim Concerning primary central nervous system neoplasms, meningiomas demonstrate the most common type in adults worldwide. Deregulation of apoptotic pathways in malignancies, including meningiomas, is correlated with chemoresistance and poor prognosis. Caspases represent crucial proteins that induce cell apoptosis. This study aimed to correlate caspase 3 protein expression levels to meningioma clinic-pathological features. Materials and Methods A set of fifty (n=50) meningioma lesions was included in the current analysis including a broad spectrum of histopathological subtypes (meningotheliomatous, psammomatus, transitional, fibrous, angiomatous, microcystic, atypical and anaplastic). Immunohistochemistry was implemented on tissue microarray cores of selected paraffin blocks by applying an anti-caspase 3 antibody. Additionally, an image analysis protocol was also performed in the corresponding immunostained slides. Results Caspase 3 protein over-expression was detected in 17/50 (34%) cases, whereas the remaining 33 cases (66%) were characterized by medium to low levels of the molecule. Caspase 3 expression was statistically significantly associated with the grade of the analyzed tumors and the mitotic index (p=0.002, p=0.001, respectively). Caspase 3 expression status was also correlated with the histotype of the selected meningiomas (p=0.016). Conclusion Caspase 3 demonstrated low expression levels in a significant subset of the examined meningiomas correlated with differentiation grade, mitotic activity, and partially with specific histotypes. Agents that could enhance caspase 3 expression - inducing its apoptotic activity - represent a very promising area in oncology for developing novel treatment regimens.
Collapse
Affiliation(s)
- Dimitrios Roukas
- Department of Psychiatry, 417 Veterans Army (NIMTS) Hospital, Athens, Greece
| | - Evangelos Tsiambas
- Department of Cytology, 417 Veterans Army (NIMTS) Hospital, Athens, Greece
- Department of Pathology, Medical School, University of Athens, Athens, Greece
| | - Despoina Spyropoulou
- Department of Radiation Oncology, Medical School, University of Patras, Patras, Greece
| | - Maria Adamopoulou
- Department of Biomedical Sciences, University of West Attica, Athens, Greece
| | - George Tsouvelas
- Department of Nursing, University of West Attica, Athens, Greece
| | | | | | | | - Andreas Lazaris
- Department of Pathology, Medical School, University of Athens, Athens, Greece
| | - Nikolaos Kavantzas
- Department of Pathology, Medical School, University of Athens, Athens, Greece
| |
Collapse
|
2
|
Zheng L, He S, Wang H, Li J, Liu Y, Liu S. Targeting Cellular Senescence in Aging and Age-Related Diseases: Challenges, Considerations, and the Emerging Role of Senolytic and Senomorphic Therapies. Aging Dis 2024; 15:2554-2594. [PMID: 38421832 PMCID: PMC11567261 DOI: 10.14336/ad.2024.0206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/06/2024] [Indexed: 03/02/2024] Open
Abstract
Cellular senescence is characterized by the permanent arrest of cell proliferation and is a response to endogenous and exogenous stress. The continuous accumulation of senescent cells (SnCs) in the body leads to the development of aging and age-related diseases (such as neurodegenerative diseases, cancer, metabolic diseases, cardiovascular diseases, and osteoarthritis). In the face of the growing challenge of aging and age-related diseases, several compounds have received widespread attention for their potential to target SnCs. As a result, senolytics (compounds that selectively eliminate SnCs) and senomorphics (compounds that alter intercellular communication and modulate the behavior of SnCs) have become hot research topics in the field of anti-aging. In addition, strategies such as combination therapies and immune-based approaches have also made significant progress in the field of anti-aging therapy. In this article, we discuss the latest research on anti-aging targeting SnCs and gain a deeper understanding of the mechanism of action and impact of different anti-aging strategies on aging and age-related diseases, with the aim of providing more effective references and therapeutic ideas for clinical anti-aging treatment in the face of the ever-grave challenges of aging and age-related diseases.
Collapse
Affiliation(s)
- Liyao Zheng
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine & Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, Guangxi, China.
- Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research & Guangxi Key Laboratory of Brain Science, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China
| | - Shipei He
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine & Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, Guangxi, China.
- Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research & Guangxi Key Laboratory of Brain Science, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China
| | - Hong Wang
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine & Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, Guangxi, China.
- Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research & Guangxi Key Laboratory of Brain Science, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China
| | - Jinling Li
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine & Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, Guangxi, China.
- Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research & Guangxi Key Laboratory of Brain Science, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China
| | - Yuanyuan Liu
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine & Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, Guangxi, China.
| | - Sijia Liu
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine & Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, Guangxi, China.
- Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research & Guangxi Key Laboratory of Brain Science, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
3
|
Mijajlović V, Miler M, Ilić R, Rašić D, Dunđerović D, Raičević S, Soldatović I, De Luka S, Manojlović-Gačić E. Oncogene-induced senescence in meningiomas-an immunohistochemical study. J Neurooncol 2024; 166:143-153. [PMID: 38117375 DOI: 10.1007/s11060-023-04532-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 12/04/2023] [Indexed: 12/21/2023]
Abstract
PURPOSE Meningiomas are tumours originating from meningothelial cells, the majority belonging to grade 1 according to the World Health Organization classification of the tumours of the Central Nervous System. Factors contributing to the progression to the higher grades (grades 2 and 3) have not been elucidated yet. Senescence has been proposed as a potential mechanism constraining the malignant transformation of tumours. Senescence-associated beta-galactosidase (SA-β-GAL) and inhibitors of cyclin-dependent kinases p16 and p21 have been suggested as senescence markers. METHODS We analysed 318 meningiomas of total 343 (178 grade 1, 133 grade 2 and 7 grade 3). Tissue microarrays were constructed and stained immunohistochemically, using antibodies for SA-β-GAL, p16 and p21. RESULTS The positive correlation of the tumour grade with the expression of p16 (p = 0.016) and SA-β-GAL (p = 0.002) was observed. The expression of p16 and SA-β-GAL was significantly higher in meningiomas grade 2 compared to meningiomas grade 1 (p = 0.006 and p = 0.004, respectively). SA-β-GAL positivity positively correlated with p16 and p21 in the whole cohort. In grade 2 meningiomas, a positive correlation was only between SA-β-GAL and p16. Correlations of senescence markers in meningiomas grade 2 were not present. CONCLUSION Our findings suggest the senescence activation in meningiomas grade 2 as a potential mechanism for the restraining of tumour growth and give hope for applying of promising senolytic therapy.
Collapse
Affiliation(s)
- Vladimir Mijajlović
- Department for Pathology, Pathohistology and Medical Cytology, University Clinical Centre of Serbia, Belgrade, Serbia
| | - Marko Miler
- Department of Cytology, Institute for Biological Research "Siniša Stanković"- National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Rosanda Ilić
- Clinic for Neurosurgery, University Clinical Centre of Serbia, Belgrade, Serbia
| | - Dejan Rašić
- Clinic for Ophthalmology, University Clinical Centre of Serbia, Belgrade, Serbia
| | - Duško Dunđerović
- Institute of Pathology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Savo Raičević
- Department for Pathology, Pathohistology and Medical Cytology, University Clinical Centre of Serbia, Belgrade, Serbia
| | - Ivan Soldatović
- Institute for Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Silvio De Luka
- Institute for Pathophysiology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | | |
Collapse
|
4
|
Softah A, Alotaibi MR, Alhoshani AR, Saleh T, Alhazzani K, Almutairi MM, AlRowis R, Alshehri S, Albekairy NA, Harada H, Boyd R, Chakraborty E, Gewirtz DA, As Sobeai HM. The Combination of Radiation with PARP Inhibition Enhances Senescence and Sensitivity to the Senolytic, Navitoclax, in Triple Negative Breast Tumor Cells. Biomedicines 2023; 11:3066. [PMID: 38002066 PMCID: PMC10669784 DOI: 10.3390/biomedicines11113066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Despite significant advances in the treatment of triple-negative breast cancer, this disease continues to pose a clinical challenge, with many patients ultimately suffering from relapse. Tumor cells that recover after entering into a state of senescence after chemotherapy or radiation have been shown to develop a more aggressive phenotype, and to contribute to disease recurrence. By combining the PARP inhibitor (PARPi), talazoparib, with radiation, senescence was enhanced in 4T1 and MDA-MB-231 triple-negative breast cancer cell lines (based on SA-β-gal upregulation, increased expression of CDKN1A and the senescence-associated secretory phenotype (SASP) marker, IL6). Subsequent treatment of the radiation- and talazoparib-induced senescent 4T1 and MDA-MB231 cells with navitoclax (ABT-263) resulted in significant apoptotic cell death. In immunocompetent tumor-bearing mice, navitoclax exerted a modest growth inhibitory effect when used alone, but dramatically interfered with the recovery of 4T1-derived tumors induced into senescence with ionizing radiation and talazoparib. These findings support the potential utility of a senolytic strategy in combination with the radiotherapy/PARPi combination to mitigate the risk of disease recurrence in triple-negative breast cancer.
Collapse
Affiliation(s)
- Abrar Softah
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.S.); (M.R.A.); (A.R.A.); (K.A.); (M.M.A.); (S.A.); (N.A.A.)
| | - Moureq R. Alotaibi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.S.); (M.R.A.); (A.R.A.); (K.A.); (M.M.A.); (S.A.); (N.A.A.)
| | - Ali R. Alhoshani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.S.); (M.R.A.); (A.R.A.); (K.A.); (M.M.A.); (S.A.); (N.A.A.)
| | - Tareq Saleh
- Department of Pharmacology and Public Health, Faculty of Medicine, The Hashemite University, Zarqa 13133, Jordan;
| | - Khalid Alhazzani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.S.); (M.R.A.); (A.R.A.); (K.A.); (M.M.A.); (S.A.); (N.A.A.)
| | - Mashal M. Almutairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.S.); (M.R.A.); (A.R.A.); (K.A.); (M.M.A.); (S.A.); (N.A.A.)
| | - Raed AlRowis
- Department of Periodontics and Community Dentistry, College of Dentistry, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Samiyah Alshehri
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.S.); (M.R.A.); (A.R.A.); (K.A.); (M.M.A.); (S.A.); (N.A.A.)
| | - Norah A. Albekairy
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.S.); (M.R.A.); (A.R.A.); (K.A.); (M.M.A.); (S.A.); (N.A.A.)
| | - Hisashi Harada
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, VA 23298, USA;
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA;
| | - Rowan Boyd
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (R.B.); (E.C.)
| | - Eesha Chakraborty
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (R.B.); (E.C.)
| | - David A. Gewirtz
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA;
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (R.B.); (E.C.)
| | - Homood M. As Sobeai
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.S.); (M.R.A.); (A.R.A.); (K.A.); (M.M.A.); (S.A.); (N.A.A.)
| |
Collapse
|
5
|
Xie J, Tang Z, Chen Q, Jia X, Li C, Jin M, Wei G, Zheng H, Li X, Chen Y, Liao W, Liao Y, Bin J, Huang S. Clearance of Stress-Induced Premature Senescent Cells Alleviates the Formation of Abdominal Aortic Aneurysms. Aging Dis 2023; 14:1778-1798. [PMID: 37196124 PMCID: PMC10529745 DOI: 10.14336/ad.2023.0215] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 02/15/2023] [Indexed: 05/19/2023] Open
Abstract
Abdominal aortic aneurysm (AAA) is a multifactorial disease characterized by various pathophysiological processes, including chronic inflammation, oxidative stress, and proteolytic activity in the aortic wall. Stress-induced premature senescence (SIPS) has been implicated in regulating these pathophysiological processes, but whether SIPS contributes to AAA formation remains unknown. Here, we detected SIPS in AAA from patients and young mice. The senolytic agent ABT263 prevented AAA development by inhibiting SIPS. Additionally, SIPS promoted the transformation of vascular smooth muscle cells (VSMCs) from a contractile phenotype to a synthetic phenotype, whereas inhibition of SIPS by the senolytic drug ABT263 suppressed VSMC phenotypic switching. RNA sequencing and single-cell RNA sequencing analysis revealed that fibroblast growth factor 9 (FGF9), secreted by stress-induced premature senescent VSMCs, was a key regulator of VSMC phenotypic switching and that FGF9 knockdown abolished this effect. We further showed that the FGF9 level was critical for the activation of PDGFRβ/ERK1/2 signaling, facilitating VSMC phenotypic change. Taken together, our findings demonstrated that SIPS is critical for VSMC phenotypic switching through the activation of FGF9/PDGFRβ/ERK1/2 signaling, promoting AAA development and progression. Thus, targeting SIPS with the senolytic agent ABT263 may be a valuable therapeutic strategy for the prevention or treatment of AAA.
Collapse
Affiliation(s)
- Jingfang Xie
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou, China.
| | - Zhenquan Tang
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou, China.
| | - Qiqi Chen
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou, China.
| | - Xiaoqian Jia
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou, China.
| | - Chuling Li
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou, China.
| | - Ming Jin
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou, China.
| | - Guoquan Wei
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou, China.
| | - Hao Zheng
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou, China.
| | - Xinzhong Li
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou, China.
| | - Yanmei Chen
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou, China.
| | - Wangjun Liao
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Yulin Liao
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou, China.
| | - Jianping Bin
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou, China.
| | - Senlin Huang
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou, China.
| |
Collapse
|
6
|
Mitobe Y, Suzuki S, Nakagawa-Saito Y, Togashi K, Sugai A, Sonoda Y, Kitanaka C, Okada M. The Novel MDM4 Inhibitor CEP-1347 Activates the p53 Pathway and Blocks Malignant Meningioma Growth In Vitro and In Vivo. Biomedicines 2023; 11:1967. [PMID: 37509605 PMCID: PMC10377688 DOI: 10.3390/biomedicines11071967] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/21/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
A significant proportion of meningiomas are clinically aggressive, but there is currently no effective chemotherapy for meningiomas. An increasing number of studies have been conducted to develop targeted therapies, yet none have focused on the p53 pathway as a potential target. In this study, we aimed to determine the in vitro and in vivo effects of CEP-1347, a small-molecule inhibitor of MDM4 with known safety in humans. The effects of CEP-1347 and MDM4 knockdown on the p53 pathway in human meningioma cell lines with and without p53 mutation were examined by RT-PCR and Western blot analyses. The growth inhibitory effects of CEP-1347 were examined in vitro and in a mouse xenograft model of meningioma. In vitro, CEP-1347 at clinically relevant concentrations inhibited MDM4 expression, activated the p53 pathway in malignant meningioma cells with wild-type p53, and exhibited preferential growth inhibitory effects on cells expressing wild-type p53, which was mostly mimicked by MDM4 knockdown. CEP-1347 effectively inhibited the growth of malignant meningioma xenografts at a dose that was far lower than the maximum dose that could be safely given to humans. Our findings suggest targeting the p53 pathway with CEP-1347 represents a novel and viable approach to treating aggressive meningiomas.
Collapse
Affiliation(s)
- Yuta Mitobe
- Department of Molecular Cancer Science, School of Medicine, Yamagata University, 2-2-2 Iida-nishi, Yamagata 990-9585, Japan
- Department of Neurosurgery, School of Medicine, Yamagata University, 2-2-2 Iida-nishi, Yamagata 990-9585, Japan
| | - Shuhei Suzuki
- Department of Molecular Cancer Science, School of Medicine, Yamagata University, 2-2-2 Iida-nishi, Yamagata 990-9585, Japan
- Department of Clinical Oncology, School of Medicine, Yamagata University, 2-2-2 Iida-nishi, Yamagata 990-9585, Japan
| | - Yurika Nakagawa-Saito
- Department of Molecular Cancer Science, School of Medicine, Yamagata University, 2-2-2 Iida-nishi, Yamagata 990-9585, Japan
| | - Keita Togashi
- Department of Molecular Cancer Science, School of Medicine, Yamagata University, 2-2-2 Iida-nishi, Yamagata 990-9585, Japan
- Department of Ophthalmology and Visual Sciences, School of Medicine, Yamagata University, 2-2-2 Iida-nishi, Yamagata 990-9585, Japan
| | - Asuka Sugai
- Department of Molecular Cancer Science, School of Medicine, Yamagata University, 2-2-2 Iida-nishi, Yamagata 990-9585, Japan
| | - Yukihiko Sonoda
- Department of Neurosurgery, School of Medicine, Yamagata University, 2-2-2 Iida-nishi, Yamagata 990-9585, Japan
| | - Chifumi Kitanaka
- Department of Molecular Cancer Science, School of Medicine, Yamagata University, 2-2-2 Iida-nishi, Yamagata 990-9585, Japan
- Research Institute for Promotion of Medical Sciences, Faculty of Medicine, Yamagata University, 2-2-2 Iida-nishi, Yamagata 990-9585, Japan
| | - Masashi Okada
- Department of Molecular Cancer Science, School of Medicine, Yamagata University, 2-2-2 Iida-nishi, Yamagata 990-9585, Japan
| |
Collapse
|
7
|
Barriuso D, Alvarez-Frutos L, Gonzalez-Gutierrez L, Motiño O, Kroemer G, Palacios-Ramirez R, Senovilla L. Involvement of Bcl-2 Family Proteins in Tetraploidization-Related Senescence. Int J Mol Sci 2023; 24:ijms24076374. [PMID: 37047342 PMCID: PMC10094710 DOI: 10.3390/ijms24076374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
The B-cell lymphoma 2 (Bcl-2) family of proteins is the main regulator of apoptosis. However, multiple emerging evidence has revealed that Bcl-2 family proteins are also involved in cellular senescence. On the one hand, the different expression of these proteins determines the entry into senescence. On the other hand, entry into senescence modulates the expression of these proteins, generally conferring resistance to apoptosis. With some exceptions, senescent cells are characterized by the upregulation of antiapoptotic proteins and downregulation of proapoptotic proteins. Under physiological conditions, freshly formed tetraploid cells die by apoptosis due to the tetraploidy checkpoint. However, suppression of Bcl-2 associated x protein (Bax), as well as overexpression of Bcl-2, favors the appearance and survival of tetraploid cells. Furthermore, it is noteworthy that our laboratory has shown that the joint absence of Bax and Bcl-2 antagonist/killer (Bak) favors the entry into senescence of tetraploid cells. Certain microtubule inhibitory chemotherapies, such as taxanes and vinca alkaloids, induce the generation of tetraploid cells. Moreover, the combined use of inhibitors of antiapoptotic proteins of the Bcl-2 family with microtubule inhibitors increases their efficacy. In this review, we aim to shed light on the involvement of the Bcl-2 family of proteins in the senescence program activated after tetraploidization and the possibility of using this knowledge to create a new therapeutic strategy targeting cancer cells.
Collapse
|