1
|
Lauricella E, Chaoul N, D'Angelo G, Giglio A, Cafiero C, Porta C, Palmirotta R. Neuroendocrine Tumors: Germline Genetics and Hereditary Syndromes. Curr Treat Options Oncol 2025; 26:55-71. [PMID: 39821711 DOI: 10.1007/s11864-024-01288-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2024] [Indexed: 01/19/2025]
Abstract
The vast majority of neuroendocrine 'neoplasms (NENs) are sporadic, although recent evidence has indicated that a subset of these cancers may also originate as a result of genetic germline mutations. To date, 10% of these cancers can be linked to an inherited genetic syndrome. Genetic diagnosis is crucial for patients with a suspected hereditary NEN syndrome, as it recognizes patients carrying germline mutations and allows for personalized clinical follow-up, considering the higher risk of developing other tumours. The potential for early genetic detection has significant implications for the treatment of patients with hereditary NEN syndrome, as it may facilitate the delivery of precision therapy that differs from that typically provided to other patients. Thus, the integration of genotypic and phenotypic diagnostic methods help clinicians to provide more informed treatment and to extend appropriate prevention to family members.
Collapse
Affiliation(s)
- Eleonora Lauricella
- Interdisciplinary Department of Medicine, University of Bari "Aldo Moro", Piazza G. Cesare 11, 70124, Bari, Italy
| | - Nada Chaoul
- Interdisciplinary Department of Medicine, University of Bari "Aldo Moro", Piazza G. Cesare 11, 70124, Bari, Italy
| | - Gabriella D'Angelo
- Interdisciplinary Department of Medicine, University of Bari "Aldo Moro", Piazza G. Cesare 11, 70124, Bari, Italy
| | - Andrea Giglio
- Interdisciplinary Department of Medicine, University of Bari "Aldo Moro", Piazza G. Cesare 11, 70124, Bari, Italy
| | - Concetta Cafiero
- Medical Oncology, SG Moscati Hospital, Via Per Martina Franca, 74010, Taranto, Italy
| | - Camillo Porta
- Interdisciplinary Department of Medicine, University of Bari "Aldo Moro", Piazza G. Cesare 11, 70124, Bari, Italy
- Division of Medical Oncology, A.O.U. Consorziale Policlinico Di Bari, Piazza G. Cesare 11, 70124, Bari, Italy
| | - Raffaele Palmirotta
- Interdisciplinary Department of Medicine, Section of Sciences and Technologies of Laboratory Medicine, University of Bari "Aldo Moro", Piazza G. Cesare 11, 70124, Bari, Italy.
| |
Collapse
|
2
|
Ka M, Hawkins E, Pouponnot C, Duvillié B. Modelling human diabetes ex vivo: a glance at maturity onset diabetes of the young. Front Endocrinol (Lausanne) 2024; 15:1427413. [PMID: 39387055 PMCID: PMC11461259 DOI: 10.3389/fendo.2024.1427413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/03/2024] [Indexed: 10/12/2024] Open
Abstract
Diabetes is a complex metabolic disease which most commonly has a polygenic origin; however, in rare cases, diabetes may be monogenic. This is indeed the case in both Maturity Onset Diabetes of the Young (MODY) and neonatal diabetes. These disease subtypes are believed to be simpler than Type 1 (T1D) and Type 2 Diabetes (T2D), which allows for more precise modelling. During the three last decades, many studies have focused on rodent models. These investigations provided a wealth of knowledge on both pancreas development and beta cell function. In particular, they allowed the establishment of a hierarchy of the transcription factors and highlighted the role of microenvironmental factors in the control of progenitor cell proliferation and differentiation. Transgenic mice also offered the possibility to decipher the mechanisms that define the functional identity of the pancreatic beta cells. Despite such interest in transgenic mice, recent data have also indicated that important differences exist between mice and human. To overcome these limitations, new human models are necessary. In the present review, we describe these ex vivo models, which are created using stem cells and organoids, and represent an important step toward islet cell therapy and drug discovery.
Collapse
Affiliation(s)
- Moustapha Ka
- Department of Signaling, Radiobiology and Cancer, Institut Curie, Orsay, France
- INSERM U1021, Centre Universitaire, Orsay, France
- CNRS UMR 3347, Centre Universitaire, Orsay, France
- Université Paris-Saclay, Orsay, France
- PSL Research University, Paris, France
- Equipe Labellisée par la Ligue contre le cancer, Orsay, France
| | - Eleanor Hawkins
- Department of Signaling, Radiobiology and Cancer, Institut Curie, Orsay, France
- INSERM U1021, Centre Universitaire, Orsay, France
- CNRS UMR 3347, Centre Universitaire, Orsay, France
- Université Paris-Saclay, Orsay, France
- PSL Research University, Paris, France
- Equipe Labellisée par la Ligue contre le cancer, Orsay, France
| | - Celio Pouponnot
- Department of Signaling, Radiobiology and Cancer, Institut Curie, Orsay, France
- INSERM U1021, Centre Universitaire, Orsay, France
- CNRS UMR 3347, Centre Universitaire, Orsay, France
- Université Paris-Saclay, Orsay, France
- PSL Research University, Paris, France
- Equipe Labellisée par la Ligue contre le cancer, Orsay, France
| | - Bertrand Duvillié
- Department of Signaling, Radiobiology and Cancer, Institut Curie, Orsay, France
- INSERM U1021, Centre Universitaire, Orsay, France
- CNRS UMR 3347, Centre Universitaire, Orsay, France
- Université Paris-Saclay, Orsay, France
- PSL Research University, Paris, France
- Equipe Labellisée par la Ligue contre le cancer, Orsay, France
| |
Collapse
|
3
|
Shahin NN, Shaker OG, Mahmoud MO. GOAT rs10096097 and CREB1 rs6740584 single nucleotide polymorphisms are associated with type 2 diabetes mellitus in Egyptians. Arch Pharm (Weinheim) 2024; 357:e2400011. [PMID: 38713912 DOI: 10.1002/ardp.202400011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/14/2024] [Accepted: 04/17/2024] [Indexed: 05/09/2024]
Abstract
Diabetes mellitus (DM) is a chronic disorder that affects nearly half a billion people around the world and causes millions of deaths annually. Treatment of diabetes or related complications represents an economic burden not only for developing countries but also for the developed ones. Hence, new efficient therapeutic and preventive strategies and screening tools are necessary. The current work aimed to assess the potential association of single nucleotide polymorphisms (SNPs) in ghrelin O-acyltransferase (GOAT) rs10096097, cyclic adenosine monophosphate (cAMP) response element binding protein (CREB) rs6740584, and v-maf musculoaponeurotic fibrosarcoma oncogene homolog A (MafA) rs62521874 genes with type 2 DM susceptibility in Egyptians. A total of 96 patients with type 2 DM along with 72 healthy individuals participated in this study. Genotyping was executed via real-time polymerase chain reaction (PCR), and the serum protein levels of GOAT, CREB, and MafA were measured by enzyme-linked immunosorbent assay (ELISA). Genotyping revealed a significant association of GOAT rs10096097 and CREB1 rs6740584 SNPs with type 2 diabetes risk, with significantly higher GOAT rs10096097 G allele and CREB1 rs6740584 T allele frequencies in diabetic patients than in controls. However, insignificant association was identified between the MafA rs62521874 SNP and diabetes in the examined sample of the Egyptian residents. Serum GOAT, CREB1, and MafA protein levels did not vary significantly between diabetic and control individuals. Yet, significant variation in serum GOAT and CREB1 levels was detected between CREB1 rs6740584 genotypes within the diabetic group, with CT and TT genotype carriers showing higher levels than AA genotype patients. GOAT rs10096097 and CREB1 rs6740584, but not MafA rs62521874, SNPs are associated with type 2 diabetes risk in the studied Egyptians.
Collapse
Affiliation(s)
- Nancy N Shahin
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Olfat G Shaker
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mohamed O Mahmoud
- Biochemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
4
|
Sipos B. [Multiple neuroendocrine tumors of the pancreas]. PATHOLOGIE (HEIDELBERG, GERMANY) 2024; 45:28-34. [PMID: 38180510 DOI: 10.1007/s00292-023-01289-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/06/2023] [Indexed: 01/06/2024]
Abstract
Multiple neuroendocrine tumors (NET) of the pancreas often have a hereditary background. Sporadic and hereditary NET do not differ morphologically or with regard to their hormone expression. The most important clues for a hereditary background are provided by examination of the peritumoral pancreatic tissue, especially the morphology and hormone expression of the endocrine islets. Hyperplastic or dysplastic islets and microtumors with aberrant distribution of insulin and glucagon are the main features of hereditary NET. Morphological diagnosis of potentially hereditary NET has a relevant impact on the prognosis and clinical care of patients.
Collapse
Affiliation(s)
- Bence Sipos
- ENETS CoE, Medizinische Klinik, Innere Medizin VIII, Medizinische Onkologie und Pneumologie, Universitätsklinikum Tübingen, Otfried-Müller-Straße 14, 72076, Tübingen, Deutschland.
- Praxis für Pathologie und Molekularpathologie, Stuttgart, Deutschland.
| |
Collapse
|
5
|
Lourenço DM, Corrêa-Giannella ML, Siqueira SAC, Nery M, Ribeiro FG, Quedas EPDS, Rocha MDS, do Nascimento RM, Pereira MAA. Case report: Insulinomatosis: description of four sporadic cases and review of the literature. Front Endocrinol (Lausanne) 2024; 14:1308662. [PMID: 38264280 PMCID: PMC10803616 DOI: 10.3389/fendo.2023.1308662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 11/23/2023] [Indexed: 01/25/2024] Open
Abstract
The best-known etiologies of hyperinsulinemic hypoglycemia are insulinoma, non-insulinoma pancreatogenous hypoglycemic syndrome, autoimmune processes, and factitious hypoglycemia. In 2009, a disease not associated with classic genetic syndromes and characterized by the presence of multiple pancreatic lesions was described and named insulinomatosis. We present the clinical and pathologic features of four patients with the diagnosis of insulinomatosis, aggregated new clinical data, reviewed extensively the literature, and illustrated the nature and evolution of this recently recognized disease. One of our patients had isolated (without fasting hypoglycemia) postprandial hypoglycemia, an occurrence not previously reported in the literature. Furthermore, we reported the second case presenting malignant disease. All of them had persistent/recurrent hypoglycemia after the first surgery even with pathology confirming the presence of a positive insulin neuroendocrine tumor. In the literature review, 27 sporadic insulinomatosis cases were compiled. All of them had episodes of fasting hypoglycemia except one of our patients. Only two patients had malignant disease, and one of them was from our series. The suspicion of insulinomatosis can be raised before surgery in patients without genetic syndromes, with multiple tumors in the topographic investigation and in those who had persistent or recurrent hypoglycemia after surgical removal of one or more tumors. The definitive diagnosis is established by histology and immunohistochemistry and requires examination of the "macroscopically normal pancreas." Our case series reinforces the marked predominance in women, the high frequency of recurrent hypoglycemia, and consequently, a definitive poor response to the usual surgical treatment.
Collapse
Affiliation(s)
- Delmar Muniz Lourenço
- Unidade de Endocrinologia Genética (LIM-25), Hospital das Clínicas (HCFMUSP), Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
- Instituto do Câncer do Estado de São Paulo (ICESP), Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Maria Lucia Corrêa-Giannella
- Laboratório de Carboidratos e Radioimunoensaio (LIM-18), Hospital das Clínicas (HCFMUSP), Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | | | - Marcia Nery
- Divisão de Endocrinologia e Metabologia, Hospital das Clínicas (HCFMUSP), Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Flavio Galvão Ribeiro
- Unidade de Endocrinologia Genética (LIM-25), Hospital das Clínicas (HCFMUSP), Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Elizangela Pereira de Souza Quedas
- Unidade de Endocrinologia Genética (LIM-25), Hospital das Clínicas (HCFMUSP), Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Manoel de Souza Rocha
- Departamento de Radiologia, Hospital das Clínicas (HCFMUSP), Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Ramon Marcelino do Nascimento
- Unidade de Endocrinologia Genética (LIM-25), Hospital das Clínicas (HCFMUSP), Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Maria Adelaide Albergaria Pereira
- Divisão de Endocrinologia e Metabologia, Hospital das Clínicas (HCFMUSP), Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
6
|
Ruggeri RM, Benevento E, De Cicco F, Fazzalari B, Guadagno E, Hasballa I, Tarsitano MG, Isidori AM, Colao A, Faggiano A. Neuroendocrine neoplasms in the context of inherited tumor syndromes: a reappraisal focused on targeted therapies. J Endocrinol Invest 2023; 46:213-234. [PMID: 36038743 DOI: 10.1007/s40618-022-01905-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 08/16/2022] [Indexed: 01/25/2023]
Abstract
PURPOSE Neuroendocrine neoplasms can occur as part of inherited disorders, usually in the form of well-differentiated, slow-growing tumors (NET). The main predisposing syndromes include: multiple endocrine neoplasias type 1 (MEN1), associated with a large spectrum of gastroenteropancreatic and thoracic NETs, and type 4 (MEN4), associated with a wide tumour spectrum similar to that of MEN1; von Hippel-Lindau syndrome (VHL), tuberous sclerosis (TSC), and neurofibromatosis 1 (NF-1), associated with pancreatic NETs. In the present review, we propose a reappraisal of the genetic basis and clinical features of gastroenteropancreatic and thoracic NETs in the setting of inherited syndromes with a special focus on molecularly targeted therapies for these lesions. METHODS Literature search was systematically performed through online databases, including MEDLINE (via PubMed), and Scopus using multiple keywords' combinations up to June 2022. RESULTS Somatostatin analogues (SSAs) remain the mainstay of systemic treatment for NETs, and radiolabelled SSAs can be used for peptide-receptor radionuclide therapy for somatostatin receptor (SSTR)-positive NETs. Apart of these SSTR-targeted therapies, other targeted agents have been approved for NETs: the mTOR inhibitor everolimus for lung, gastroenteropatic and unknown origin NET, and sunitinib, an antiangiogenic tyrosine kinase inhibitor, for pancreatic NET. Novel targeted therapies with other antiangiogenic agents and immunotherapies have been also under evaluation. CONCLUSIONS Major advances in the understanding of genetic and epigenetic mechanisms of NET development in the context of inherited endocrine disorders have led to the recognition of molecular targetable alterations, providing a rationale for the implementation of treatments and development of novel targeted therapies.
Collapse
Affiliation(s)
- R M Ruggeri
- Unit of Endocrinology, Department of Clinical and Experimental Medicine, University of Messina, AOU Policlinico "Gaetano Martino" University Hospital, 98125, Messina, Italy.
| | - E Benevento
- Department of Clinical Medicine and Surgery, Endocrinology Unit, University Federico II, Naples, Italy
| | - F De Cicco
- SSD Endocrine Disease and Diabetology, ASL TO3, Pinerolo, TO, Italy
| | - B Fazzalari
- Endocrinology Unit, Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, ENETS Center of Excellence, Sapienza University of Rome, Rome, Italy
| | - E Guadagno
- Department of Clinical Medicine and Surgery, Endocrinology Unit, University Federico II, Naples, Italy
| | - I Hasballa
- Endocrinology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - M G Tarsitano
- Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - A M Isidori
- Gruppo NETTARE, Policlinico Umberto I, Università Sapienza, Rome, Italy
| | - A Colao
- Department of Clinical Medicine and Surgery, Endocrinology Unit, University Federico II, Naples, Italy
- UNESCO Chair "Education for Health and Sustainable Development", Federico II University, Naples, Italy
| | - A Faggiano
- Endocrinology Unit, Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, ENETS Center of Excellence, Sapienza University of Rome, Rome, Italy
| |
Collapse
|