1
|
Safarian A, Mirshahvalad SA, Farbod A, Nasrollahi H, Pirich C, Beheshti M. Artificial intelligence for tumor [ 18F]FDG-PET imaging: Advancement and future trends-part I. Semin Nucl Med 2025; 55:328-344. [PMID: 40158896 DOI: 10.1053/j.semnuclmed.2025.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/19/2025] [Accepted: 03/19/2025] [Indexed: 04/02/2025]
Abstract
The advent of sophisticated image analysis techniques has facilitated the extraction of increasingly complex data, such as radiomic features, from various imaging modalities, including [18F]FDG PET/CT, a well-established cornerstone of oncological imaging. Furthermore, the use of artificial intelligence (AI) algorithms has shown considerable promise in enhancing the interpretation of these quantitative parameters. Additionally, AI-driven models enable the integration of parameters from multiple imaging modalities along with clinical data, facilitating the development of comprehensive models with significant clinical impact. However, challenges remain regarding standardization and validation of the AI-powered models, as well as their implementation in real-world clinical practice. The variability in imaging acquisition protocols, segmentation methods, and feature extraction approaches across different institutions necessitates robust harmonization efforts to ensure reproducibility and clinical utility. Moreover, the successful translation of AI models into clinical practice requires prospective validation in large cohorts, as well as seamless integration into existing workflows to assess their ability to enhance clinicians' performance. This review aims to provide an overview of the literature and highlight three key applications: diagnostic impact, prediction of treatment response, and long-term patient prognostication. In the first part, we will focus on head and neck, lung, breast, gastroesophageal, colorectal, and gynecological malignancies.
Collapse
Affiliation(s)
- Alireza Safarian
- Division of Molecular Imaging & Theranostics, Department of Nuclear Medicine, University Hospital, Paracelsus Medical University, Salzburg, Austria; Rajaie Cardiovascular Medical and Research Center, Rajaie Cardiovascular Institute, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Ali Mirshahvalad
- Division of Molecular Imaging & Theranostics, Department of Nuclear Medicine, University Hospital, Paracelsus Medical University, Salzburg, Austria; Joint Department of Medical Imaging, University Medical Imaging Toronto, University of Toronto, Toronto, Ontario, Canada
| | - Abolfazl Farbod
- Division of Molecular Imaging & Theranostics, Department of Nuclear Medicine, University Hospital, Paracelsus Medical University, Salzburg, Austria; Research Center for Nuclear Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hadi Nasrollahi
- Division of Molecular Imaging & Theranostics, Department of Nuclear Medicine, University Hospital, Paracelsus Medical University, Salzburg, Austria
| | - Christian Pirich
- Division of Molecular Imaging & Theranostics, Department of Nuclear Medicine, University Hospital, Paracelsus Medical University, Salzburg, Austria
| | - Mohsen Beheshti
- Division of Molecular Imaging & Theranostics, Department of Nuclear Medicine, University Hospital, Paracelsus Medical University, Salzburg, Austria.
| |
Collapse
|
2
|
Liu X, Ji Z, Zhang L, Li L, Xu W, Su Q. Prediction of pathological complete response to neoadjuvant chemoimmunotherapy in non-small cell lung cancer using 18F-FDG PET radiomics features of primary tumour and lymph nodes. BMC Cancer 2025; 25:520. [PMID: 40119358 PMCID: PMC11929329 DOI: 10.1186/s12885-025-13905-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 03/10/2025] [Indexed: 03/24/2025] Open
Abstract
BACKGROUND Predicting the response to neoadjuvant chemoimmunotherapy in patients with resectable non-small cell lung cancer (NSCLC) facilitates clinical treatment decisions. Our study aimed to establish a machine learning model that accurately predicts the pathological complete response (pCR) using 18F-FDG PET radiomics features. METHODS We retrospectively included 210 patients with NSCLC who completed neoadjuvant chemoimmunotherapy and subsequently underwent surgery with pathological results, categorising them into a training set of 147 patients and a test set of 63 patients. Radiomic features were extracted from the primary tumour and lymph nodes. Using 10-fold cross-validation with the least absolute shrinkage and selection operator method, we identified the most impactful radiomic features. The clinical features were screened using univariate and multivariate analyses. Machine learning models were developed using the random forest method, leading to the establishment of one clinical feature model, one primary tumour radiomics model, and two fusion radiomics models. The performance of these models was evaluated based on the area under the curve (AUC). RESULTS In the training set, the three radiomic models showed comparable AUC values, ranging from 0.901 to 0.925. The clinical model underperformed, with an AUC of 0.677. In the test set, the Fusion_LN1LN2 model achieved the highest AUC (0.823), closely followed by the Fusion_Lnall model with an AUC of 0.729. The primary tumour model achieved a moderate AUC of 0.666, whereas the clinical model had the lowest AUC at 0.631. Additionally, the Fusion_LN1LN2 model demonstrated positive net reclassification improvement and integrated discrimination improvement values compared with the other models, and we employed the SHapley Additive exPlanations methodology to interpret the results of our optimal model. CONCLUSIONS Our fusion radiomics model, based on 18F-FDG-PET, will assist clinicians in predicting pCR before neoadjuvant chemoimmunotherapy for patients with resectable NSCLC.
Collapse
Affiliation(s)
- Xingbiao Liu
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Huanhuxi Road, Hexi Distinct, Tianjin, 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Zhilin Ji
- Department of Radiology, Tianjin Hospital, Jiefangnan Road, Hexi District, Tianjin, 300211, China
| | - Libo Zhang
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Huanhuxi Road, Hexi Distinct, Tianjin, 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Linlin Li
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Huanhuxi Road, Hexi Distinct, Tianjin, 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Wengui Xu
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Huanhuxi Road, Hexi Distinct, Tianjin, 300060, China.
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.
| | - Qian Su
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Huanhuxi Road, Hexi Distinct, Tianjin, 300060, China.
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.
| |
Collapse
|
3
|
Safarian A, Mirshahvalad SA, Nasrollahi H, Jung T, Pirich C, Arabi H, Beheshti M. Impact of [ 18F]FDG PET/CT Radiomics and Artificial Intelligence in Clinical Decision Making in Lung Cancer: Its Current Role. Semin Nucl Med 2025; 55:156-166. [PMID: 40050131 DOI: 10.1053/j.semnuclmed.2025.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 02/16/2025] [Indexed: 03/17/2025]
Abstract
Lung cancer remains one of the most prevalent cancers globally and the leading cause of cancer-related deaths, accounting for nearly one-fifth of all cancer fatalities. Fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography ([18F]FDG PET/CT) plays a vital role in assessing lung cancer and managing disease progression. While traditional PET/CT imaging relies on qualitative analysis and basic quantitative parameters, radiomics offers a more advanced approach to analyzing tumor phenotypes. Recently, radiomics has gained attention for its potential to enhance the prognostic and diagnostic capabilities of [18F]FDG PET/CT in various cancers. This review explores the expanding role of [18F]FDG PET/CT-based radiomics, particularly when integrated with artificial intelligence (AI), in managing lung cancer, especially non-small cell lung cancer (NSCLC). We review how radiomics and AI improve diagnostics, staging, tumor subtype identification, and molecular marker detection, which influence treatment decisions. Additionally, we address challenges in clinical integration, such as imaging protocol standardization, feature reproducibility, and the need for extensive prospective studies. Ultimately, radiomics and AI hold great promise for enabling more personalized and effective lung cancer treatments, potentially transforming disease management.
Collapse
Affiliation(s)
- Alireza Safarian
- Division of Molecular Imaging & Theranostics, Department of Nuclear Medicine, University Hospital, Paracelsus Medical University, Salzburg, Austria; Rajaie Cardiovascular Medical and Research Center, Rajaie Cardiovascular Institute, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Ali Mirshahvalad
- Division of Molecular Imaging & Theranostics, Department of Nuclear Medicine, University Hospital, Paracelsus Medical University, Salzburg, Austria; Joint Department of Medical Imaging, University Medical Imaging Toronto, University of Toronto, Toronto, Ontario, Canada
| | - Hadi Nasrollahi
- Division of Molecular Imaging & Theranostics, Department of Nuclear Medicine, University Hospital, Paracelsus Medical University, Salzburg, Austria
| | - Theresa Jung
- Division of Molecular Imaging & Theranostics, Department of Nuclear Medicine, University Hospital, Paracelsus Medical University, Salzburg, Austria
| | - Christian Pirich
- Division of Molecular Imaging & Theranostics, Department of Nuclear Medicine, University Hospital, Paracelsus Medical University, Salzburg, Austria
| | - Hossein Arabi
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva, Switzerland
| | - Mohsen Beheshti
- Division of Molecular Imaging & Theranostics, Department of Nuclear Medicine, University Hospital, Paracelsus Medical University, Salzburg, Austria.
| |
Collapse
|
4
|
Yoo J, Hyun SH, Lee J, Cheon M, Lee KH, Heo JS, Choi JY. Prognostic Significance of 18 F-FDG PET/CT Radiomics in Patients With Resectable Pancreatic Ductal Adenocarcinoma Undergoing Curative Surgery. Clin Nucl Med 2024; 49:909-916. [PMID: 38968550 DOI: 10.1097/rlu.0000000000005363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2024]
Abstract
PURPOSE This study aimed to investigate the prognostic significance of PET/CT radiomics to predict overall survival (OS) in patients with resectable pancreatic ductal adenocarcinoma (PDAC). METHODS We enrolled 627 patients with resectable PDAC who underwent preoperative 18 F-FDG PET/CT and subsequent curative surgery. Radiomics analysis of the PET/CT images for the primary tumor was performed using the Chang-Gung Image Texture Analysis toolbox. Radiomics features were subjected to least absolute shrinkage and selection operator (LASSO) regression to select the most valuable imaging features of OS. The prognostic significance was evaluated by Cox proportional hazards regression analysis. Conventional PET parameters and LASSO score were assessed as predictive factors for OS by time-dependent receiver operating characteristic curve analysis. RESULTS During a mean follow-up of 28.8 months, 378 patients (60.3%) died. In the multivariable Cox regression analysis, tumor differentiation, resection margin status, tumor stage, and LASSO score were independent prognostic factors for OS (HR, 1.753, 1.669, 2.655, and 2.946; all P < 0.001, respectively). The time-dependent receiver operating characteristic curve analysis showed that the LASSO score had better predictive performance for OS than conventional PET parameters. CONCLUSIONS The LASSO score using the 18 F-FDG PET/CT radiomics of the primary tumor was the independent prognostic factor for predicting OS in patients with resectable PDAC and may be helpful in determining therapeutic and follow-up plans for these patients.
Collapse
Affiliation(s)
- Jang Yoo
- From the Department of Nuclear Medicine, Wonju Severance Christian Hospital, Yonsei University Wonju College of Medicine, Wonju
| | - Seung Hyup Hyun
- Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine
| | - Jaeho Lee
- Department of Preventive Medicine, Seoul National University College of Medicine
| | - Miju Cheon
- Department of Nuclear Medicine, Veterans Health Service Medical Center
| | | | - Jin Seok Heo
- Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Joon Young Choi
- Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine
| |
Collapse
|
5
|
Horne A, Harada K, Brown KD, Chua KLM, McDonald F, Price G, Putora PM, Rothwell DG, Faivre-Finn C. Treatment Response Biomarkers: Working Toward Personalized Radiotherapy for Lung Cancer. J Thorac Oncol 2024; 19:1164-1185. [PMID: 38615939 DOI: 10.1016/j.jtho.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 04/16/2024]
Abstract
Owing to major advances in the field of radiation oncology, patients with lung cancer can now receive technically individualized radiotherapy treatments. Nevertheless, in the era of precision oncology, radiotherapy-based treatment selection needs to be improved as many patients do not benefit or are not offered optimum therapies. Cost-effective robust biomarkers can address this knowledge gap and lead to individuals being offered more bespoke treatments leading to improved outcome. This narrative review discusses some of the current achievements and challenges in the realization of personalized radiotherapy delivery in patients with lung cancer.
Collapse
Affiliation(s)
- Ashley Horne
- Division of Cancer Sciences, University of Manchester, Manchester, United Kingdom; Department of Radiation Oncology, The Christie NHS Foundation Trust, Manchester, United Kingdom.
| | - Ken Harada
- Department of Radiation Oncology, Showa University Northern Yokohama Hospital, Tsuzuki-ku, Yokohama, Kanagawa, Japan
| | - Katherine D Brown
- Division of Cancer Sciences, University of Manchester, Manchester, United Kingdom; Department of Research and Innovation, The Christie Hospital NHS Foundation Trust, Manchester, United Kingdom
| | - Kevin Lee Min Chua
- Division of Radiation Oncology, National Cancer Centre Singapore, Singapore
| | | | - Gareth Price
- Division of Cancer Sciences, University of Manchester, Manchester, United Kingdom
| | - Paul Martin Putora
- Department of Radiation Oncology, Kantonsspital St. Gallen, St. Gallen, Switzerland; Department of Radiation Oncology, Inselspital, University of Bern, Bern, Switzerland
| | - Dominic G Rothwell
- CR-UK National Biomarker Centre, University of Manchester, Manchester, United Kingdom
| | - Corinne Faivre-Finn
- Division of Cancer Sciences, University of Manchester, Manchester, United Kingdom; Department of Radiation Oncology, The Christie NHS Foundation Trust, Manchester, United Kingdom
| |
Collapse
|
6
|
Yuan L, An L, Zhu Y, Duan C, Kong W, Jiang P, Yu QQ. Machine Learning in Diagnosis and Prognosis of Lung Cancer by PET-CT. Cancer Manag Res 2024; 16:361-375. [PMID: 38699652 PMCID: PMC11063459 DOI: 10.2147/cmar.s451871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 04/16/2024] [Indexed: 05/05/2024] Open
Abstract
As a disease with high morbidity and high mortality, lung cancer has seriously harmed people's health. Therefore, early diagnosis and treatment are more important. PET/CT is usually used to obtain the early diagnosis, staging, and curative effect evaluation of tumors, especially lung cancer, due to the heterogeneity of tumors and the differences in artificial image interpretation and other reasons, it also fails to entirely reflect the real situation of tumors. Artificial intelligence (AI) has been applied to all aspects of life. Machine learning (ML) is one of the important ways to realize AI. With the help of the ML method used by PET/CT imaging technology, there are many studies in the diagnosis and treatment of lung cancer. This article summarizes the application progress of ML based on PET/CT in lung cancer, in order to better serve the clinical. In this study, we searched PubMed using machine learning, lung cancer, and PET/CT as keywords to find relevant articles in the past 5 years or more. We found that PET/CT-based ML approaches have achieved significant results in the detection, delineation, classification of pathology, molecular subtyping, staging, and response assessment with survival and prognosis of lung cancer, which can provide clinicians a powerful tool to support and assist in critical daily clinical decisions. However, ML has some shortcomings such as slightly poor repeatability and reliability.
Collapse
Affiliation(s)
- Lili Yuan
- Jining NO.1 People’s Hospital, Shandong First Medical University, Jining, People’s Republic of China
| | - Lin An
- Jining NO.1 People’s Hospital, Shandong First Medical University, Jining, People’s Republic of China
| | - Yandong Zhu
- Jining NO.1 People’s Hospital, Shandong First Medical University, Jining, People’s Republic of China
| | - Chongling Duan
- Jining NO.1 People’s Hospital, Shandong First Medical University, Jining, People’s Republic of China
| | - Weixiang Kong
- Jining NO.1 People’s Hospital, Shandong First Medical University, Jining, People’s Republic of China
| | - Pei Jiang
- Translational Pharmaceutical Laboratory, Jining NO.1 People’s Hospital, Shandong First Medical University, Jining, People’s Republic of China
| | - Qing-Qing Yu
- Jining NO.1 People’s Hospital, Shandong First Medical University, Jining, People’s Republic of China
| |
Collapse
|
7
|
Choi JH, Choi JY, Woo SK, Moon JE, Lim CH, Park SB, Seo S, Ahn YC, Ahn MJ, Moon SH, Park JM. Prognostic Value of Radiomic Analysis Using Pre- and Post-Treatment 18F-FDG-PET/CT in Patients with Laryngeal Cancer and Hypopharyngeal Cancer. J Pers Med 2024; 14:71. [PMID: 38248772 PMCID: PMC10817325 DOI: 10.3390/jpm14010071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/20/2023] [Accepted: 01/04/2024] [Indexed: 01/23/2024] Open
Abstract
BACKGROUND The prognostic value of conducting 18F-FDG PET/CT imaging has yielded different results in patients with laryngeal cancer and hypopharyngeal cancer, but these results are controversial, and there is a lack of dedicated studies on each type of cancer. This study aimed to evaluate whether combining radiomic analysis of pre- and post-treatment 18F-FDG PET/CT imaging features and clinical parameters has additional prognostic value in patients with laryngeal cancer and hypopharyngeal cancer. METHODS From 2008 to 2016, data on patients diagnosed with cancer of the larynx and hypopharynx were retrospectively collected. The patients underwent pre- and post-treatment 18F-FDG PET/CT imaging. The values of ΔPre-Post PET were measured from the texture features. Least absolute shrinkage and selection operator (LASSO) Cox regression was used to select the most predictive features to formulate a Rad-score for both progression-free survival (PFS) and overall survival (OS). Kaplan-Meier curve analysis and Cox regression were employed to assess PFS and OS. Then, the concordance index (C-index) and calibration plot were used to evaluate the performance of the radiomics nomogram. RESULTS Study data were collected for a total of 91 patients. The mean follow-up period was 71.5 mo. (8.4-147.3). The Rad-score was formulated based on the texture parameters and was significantly associated with both PFS (p = 0.024) and OS (p = 0.009). When predicting PFS, only the Rad-score demonstrated a significant association (HR 2.1509, 95% CI [1.100-4.207], p = 0.025). On the other hand, age (HR 1.116, 95% CI [1.041-1.197], p = 0.002) and Rad-score (HR 33.885, 95% CI [2.891-397.175], p = 0.005) exhibited associations with OS. The Rad-score value showed good discrimination when it was combined with clinical parameters in both PFS (C-index 0.802-0.889) and OS (C-index 0.860-0.958). The calibration plots also showed a good agreement between the observed and predicted survival probabilities. CONCLUSIONS Combining clinical parameters with radiomics analysis of pre- and post-treatment 18F-FDG PET/CT parameters in patients with laryngeal cancer and hypopharyngeal cancer might have additional prognostic value.
Collapse
Affiliation(s)
- Joon Ho Choi
- Department of Nuclear Medicine, Soonchunhyang University Bucheon Hospital, Bucheon 14584, Republic of Korea
| | - Joon Young Choi
- Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Sang-Keun Woo
- Division of Applied RI, Korea Institutes of Radiological and Medical Sciences, Seoul 01812, Republic of Korea
| | - Ji Eun Moon
- Department of Biostatistics, Soonchunhyang University Bucheon Hospital, Bucheon 14584, Republic of Korea
| | - Chae Hong Lim
- Department of Nuclear Medicine, Soonchunhyang University Seoul Hospital, Seoul 04401, Republic of Korea
| | - Soo Bin Park
- Department of Nuclear Medicine, Soonchunhyang University Seoul Hospital, Seoul 04401, Republic of Korea
| | - Seongho Seo
- Department of Electronic Engineering, Pai Chai University, Daejeon 35345, Republic of Korea
| | - Yong Chan Ahn
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Myung-Ju Ahn
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Seung Hwan Moon
- Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Jung Mi Park
- Department of Nuclear Medicine, Soonchunhyang University Bucheon Hospital, Bucheon 14584, Republic of Korea
| |
Collapse
|
8
|
Çalışkan M, Tazaki K. AI/ML advances in non-small cell lung cancer biomarker discovery. Front Oncol 2023; 13:1260374. [PMID: 38148837 PMCID: PMC10750392 DOI: 10.3389/fonc.2023.1260374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 11/16/2023] [Indexed: 12/28/2023] Open
Abstract
Lung cancer is the leading cause of cancer deaths among both men and women, representing approximately 25% of cancer fatalities each year. The treatment landscape for non-small cell lung cancer (NSCLC) is rapidly evolving due to the progress made in biomarker-driven targeted therapies. While advancements in targeted treatments have improved survival rates for NSCLC patients with actionable biomarkers, long-term survival remains low, with an overall 5-year relative survival rate below 20%. Artificial intelligence/machine learning (AI/ML) algorithms have shown promise in biomarker discovery, yet NSCLC-specific studies capturing the clinical challenges targeted and emerging patterns identified using AI/ML approaches are lacking. Here, we employed a text-mining approach and identified 215 studies that reported potential biomarkers of NSCLC using AI/ML algorithms. We catalogued these studies with respect to BEST (Biomarkers, EndpointS, and other Tools) biomarker sub-types and summarized emerging patterns and trends in AI/ML-driven NSCLC biomarker discovery. We anticipate that our comprehensive review will contribute to the current understanding of AI/ML advances in NSCLC biomarker research and provide an important catalogue that may facilitate clinical adoption of AI/ML-derived biomarkers.
Collapse
Affiliation(s)
- Minal Çalışkan
- Translational Science Department, Precision Medicine Function, Daiichi Sankyo, Inc., Basking Ridge, NJ, United States
| | - Koichi Tazaki
- Translational Science Department I, Precision Medicine Function, Daiichi Sankyo, Tokyo, Japan
| |
Collapse
|
9
|
Lim CH, Choi JY, Choi JH, Lee JH, Lee J, Lim CW, Kim Z, Woo SK, Park SB, Park JM. Development and External Validation of 18F-FDG PET-Based Radiomic Model for Predicting Pathologic Complete Response after Neoadjuvant Chemotherapy in Breast Cancer. Cancers (Basel) 2023; 15:3842. [PMID: 37568658 PMCID: PMC10417050 DOI: 10.3390/cancers15153842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
The aim of our retrospective study is to develop and externally validate an 18F-FDG PET-derived radiomics model for predicting pathologic complete response (pCR) after neoadjuvant chemotherapy (NAC) in breast cancer patients. A total of 87 breast cancer patients underwent curative surgery after NAC at Soonchunhyang University Seoul Hospital and were randomly assigned to a training cohort and an internal validation cohort. Radiomic features were extracted from pretreatment PET images. A radiomic-score model was generated using the LASSO method. A combination model incorporating significant clinical variables was constructed. These models were externally validated in a separate cohort of 28 patients from Soonchunhyang University Buscheon Hospital. The model performances were assessed using area under the receiver operating characteristic (AUC). Seven radiomic features were selected to calculate the radiomic-score. Among clinical variables, human epidermal growth factor receptor 2 status was an independent predictor of pCR. The radiomic-score model achieved good discriminability, with AUCs of 0.963, 0.731, and 0.729 for the training, internal validation, and external validation cohorts, respectively. The combination model showed improved predictive performance compared to the radiomic-score model alone, with AUCs of 0.993, 0.772, and 0.906 in three cohorts, respectively. The 18F-FDG PET-derived radiomic-based model is useful for predicting pCR after NAC in breast cancer.
Collapse
Affiliation(s)
- Chae Hong Lim
- Department of Nuclear Medicine, Soonchunhyang University Seoul Hospital, Seoul 04401, Republic of Korea;
| | - Joon Young Choi
- Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea;
| | - Joon Ho Choi
- Department of Nuclear Medicine, Soonchunhyang University Bucheon Hospital, Bucheon 14584, Republic of Korea
| | - Jun-Hee Lee
- Department of Surgery, Soonchunhyang University Seoul Hospital, Seoul 04401, Republic of Korea
| | - Jihyoun Lee
- Department of Surgery, Soonchunhyang University Seoul Hospital, Seoul 04401, Republic of Korea
| | - Cheol Wan Lim
- Department of Surgery, Soonchunhyang University Bucheon Hospital, Bucheon 14584, Republic of Korea
| | - Zisun Kim
- Department of Surgery, Soonchunhyang University Bucheon Hospital, Bucheon 14584, Republic of Korea
| | - Sang-Keun Woo
- Division of Applied RI, Korea Institutes of Radiological and Medical Sciences, Seoul 01812, Republic of Korea
| | - Soo Bin Park
- Department of Nuclear Medicine, Soonchunhyang University Seoul Hospital, Seoul 04401, Republic of Korea;
| | - Jung Mi Park
- Department of Nuclear Medicine, Soonchunhyang University Bucheon Hospital, Bucheon 14584, Republic of Korea
| |
Collapse
|
10
|
Wang Y, Huang S, Feng X, Xu W, Luo R, Zhu Z, Zeng Q, He Z. Advances in efficacy prediction and monitoring of neoadjuvant immunotherapy for non-small cell lung cancer. Front Oncol 2023; 13:1145128. [PMID: 37265800 PMCID: PMC10229830 DOI: 10.3389/fonc.2023.1145128] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 05/03/2023] [Indexed: 06/03/2023] Open
Abstract
The use of immune checkpoint inhibitors (ICIs) has become mainstream in the treatment of non-small cell lung cancer (NSCLC). The idea of harnessing the immune system to fight cancer is fast developing. Neoadjuvant treatment in NSCLC is undergoing unprecedented change. Chemo-immunotherapy combinations not only seem to achieve population-wide treating coverage irrespective of PD-L1 expression but also enable achieving a pathological complete response (pCR). Despite these recent advancements in neoadjuvant chemo-immunotherapy, not all patients respond favorably to treatment with ICIs plus chemo and may even suffer from severe immune-related adverse effects (irAEs). Similar to selection for target therapy, identifying patients most likely to benefit from chemo-immunotherapy may be valuable. Recently, several prognostic and predictive factors associated with the efficacy of neoadjuvant immunotherapy in NSCLC, such as tumor-intrinsic biomarkers, tumor microenvironment biomarkers, liquid biopsies, microbiota, metabolic profiles, and clinical characteristics, have been described. However, a specific and sensitive biomarker remains to be identified. Recently, the construction of prediction models for ICI therapy using novel tools, such as multi-omics factors, proteomic tests, host immune classifiers, and machine learning algorithms, has gained attention. In this review, we provide a comprehensive overview of the different positive prognostic and predictive factors in treating preoperative patients with ICIs, highlight the recent advances made in the efficacy prediction of neoadjuvant immunotherapy, and provide an outlook for joint predictors.
Collapse
Affiliation(s)
- Yunzhen Wang
- Department of Thoracic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Sha Huang
- Department of Thoracic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiangwei Feng
- Department of Thoracic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wangjue Xu
- Department of Thoracic Surgery, Longyou County People’s Hospital, Longyou, China
| | - Raojun Luo
- Department of Thoracic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ziyi Zhu
- Department of Thoracic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qingxin Zeng
- Department of Thoracic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhengfu He
- Department of Thoracic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
11
|
Yoo J, Lee J, Cheon M, Kim H, Choi YS, Pyo H, Ahn MJ, Choi JY. Radiomics Analysis of 18F-FDG PET/CT for Prognosis Prediction in Patients with Stage III Non-Small Cell Lung Cancer Undergoing Neoadjuvant Chemoradiation Therapy Followed by Surgery. Cancers (Basel) 2023; 15:cancers15072012. [PMID: 37046673 PMCID: PMC10093358 DOI: 10.3390/cancers15072012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/27/2023] [Accepted: 03/27/2023] [Indexed: 03/30/2023] Open
Abstract
We investigated the prognostic significance of radiomic features from 18F-FDG PET/CT to predict overall survival (OS) in patients with stage III NSCLC undergoing neoadjuvant chemoradiation therapy followed by surgery. We enrolled 300 patients with stage III NSCLC who underwent PET/CT at the initial work-up (PET1) and after neoadjuvant concurrent chemoradiotherapy (PET2). Radiomic primary tumor features were subjected to LASSO regression to select the most useful prognostic features of OS. The prognostic significance of the LASSO score and conventional PET parameters was assessed by Cox proportional hazards regression analysis. In conventional PET parameters, metabolic tumor volume (MTV) and total lesion glycolysis (TLG) of each PET1 and PET2 were significantly associated with OS. In addition, both the PET1-LASSO score and the PET2-LASSO score were significantly associated with OS. In multivariate Cox regression analysis, only the PET2-LASSO score was an independently significant factor for OS. The LASSO score showed better predictive performance for OS regarding the time-dependent receiver operating characteristic curve and decision curve analysis than conventional PET parameters. Radiomic features from PET/CT were an independent prognostic factor for the estimation of OS in stage III NSCLC. The newly developed LASSO score using radiomic features showed better prognostic results for individualized OS estimation than conventional PET parameters.
Collapse
Affiliation(s)
- Jang Yoo
- Department of Nuclear Medicine, Veterans Health Service Medical Center, Seoul 05368, Republic of Korea
| | - Jaeho Lee
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Miju Cheon
- Department of Nuclear Medicine, Veterans Health Service Medical Center, Seoul 05368, Republic of Korea
| | - Hojoong Kim
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Yong Soo Choi
- Department of Thoracic and Cardiovascular Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Hongryull Pyo
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Myung-Ju Ahn
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Joon Young Choi
- Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
- Correspondence: ; Tel.: +82-2-3410-2648; Fax: +82-2-3410-2639
| |
Collapse
|
12
|
Petrella F, Rizzo S, Attili I, Passaro A, Zilli T, Martucci F, Bonomo L, Del Grande F, Casiraghi M, De Marinis F, Spaggiari L. Stage III Non-Small-Cell Lung Cancer: An Overview of Treatment Options. Curr Oncol 2023; 30:3160-3175. [PMID: 36975452 PMCID: PMC10047909 DOI: 10.3390/curroncol30030239] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/27/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
Lung cancer is the second-most commonly diagnosed cancer and the leading cause of cancer death worldwide. The most common histological type is non-small-cell lung cancer, accounting for 85% of all lung cancer cases. About one out of three new cases of non-small-cell lung cancer are diagnosed at a locally advanced stage—mainly stage III—consisting of a widely heterogeneous group of patients presenting significant differences in terms of tumor volume, local diffusion, and lymph nodal involvement. Stage III NSCLC therapy is based on the pivotal role of multimodal treatment, including surgery, radiotherapy, and a wide-ranging option of systemic treatments. Radical surgery is indicated in the case of hilar lymphnodal involvement or single station mediastinal ipsilateral involvement, possibly after neoadjuvant chemotherapy; the best appropriate treatment for multistation mediastinal lymph node involvement still represents a matter of debate. Although the main scope of treatments in this setting is potentially curative, the overall survival rates are still poor, ranging from 36% to 26% and 13% in stages IIIA, IIIB, and IIIC, respectively. The aim of this article is to provide an up-to-date, comprehensive overview of the state-of-the-art treatments for stage III non-small-cell lung cancer.
Collapse
Affiliation(s)
- Francesco Petrella
- Department of Thoracic Surgery, European Institute of Oncology IRCCS, 20141 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, 20141 Milan, Italy
- Correspondence: ; Tel.: +0039-0257489362
| | - Stefania Rizzo
- Service of Radiology, Imaging Institute of Southern Switzerland (IIMSI), EOC, Via Tesserete 46, 6900 Lugano, Switzerland
- Faculty of Biomedical Sciences, University of Italian Switzerland, Via Buffi 13, 6900 Lugano, Switzerland
| | - Ilaria Attili
- Division of Thoracic Oncology, European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Antonio Passaro
- Division of Thoracic Oncology, European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Thomas Zilli
- Faculty of Biomedical Sciences, University of Italian Switzerland, Via Buffi 13, 6900 Lugano, Switzerland
- Radiation Oncology, Oncological Institute of Southern Switzerland, EOC, 6500 Bellinzona, Switzerland
- Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Francesco Martucci
- Radiation Oncology, Oncological Institute of Southern Switzerland, EOC, 6500 Bellinzona, Switzerland
| | - Luca Bonomo
- Service of Radiology, Imaging Institute of Southern Switzerland (IIMSI), EOC, Via Tesserete 46, 6900 Lugano, Switzerland
| | - Filippo Del Grande
- Service of Radiology, Imaging Institute of Southern Switzerland (IIMSI), EOC, Via Tesserete 46, 6900 Lugano, Switzerland
- Faculty of Biomedical Sciences, University of Italian Switzerland, Via Buffi 13, 6900 Lugano, Switzerland
| | - Monica Casiraghi
- Department of Thoracic Surgery, European Institute of Oncology IRCCS, 20141 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, 20141 Milan, Italy
| | - Filippo De Marinis
- Division of Thoracic Oncology, European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Lorenzo Spaggiari
- Department of Thoracic Surgery, European Institute of Oncology IRCCS, 20141 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, 20141 Milan, Italy
| |
Collapse
|
13
|
Hu Q, Li K, Yang C, Wang Y, Huang R, Gu M, Xiao Y, Huang Y, Chen L. The role of artificial intelligence based on PET/CT radiomics in NSCLC: Disease management, opportunities, and challenges. Front Oncol 2023; 13:1133164. [PMID: 36959810 PMCID: PMC10028142 DOI: 10.3389/fonc.2023.1133164] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 02/20/2023] [Indexed: 03/09/2023] Open
Abstract
Objectives Lung cancer has been widely characterized through radiomics and artificial intelligence (AI). This review aims to summarize the published studies of AI based on positron emission tomography/computed tomography (PET/CT) radiomics in non-small-cell lung cancer (NSCLC). Materials and methods A comprehensive search of literature published between 2012 and 2022 was conducted on the PubMed database. There were no language or publication status restrictions on the search. About 127 articles in the search results were screened and gradually excluded according to the exclusion criteria. Finally, this review included 39 articles for analysis. Results Classification is conducted according to purposes and several studies were identified at each stage of disease:1) Cancer detection (n=8), 2) histology and stage of cancer (n=11), 3) metastases (n=6), 4) genotype (n=6), 5) treatment outcome and survival (n=8). There is a wide range of heterogeneity among studies due to differences in patient sources, evaluation criteria and workflow of radiomics. On the whole, most models show diagnostic performance comparable to or even better than experts, and the common problems are repeatability and clinical transformability. Conclusion AI-based PET/CT Radiomics play potential roles in NSCLC clinical management. However, there is still a long way to go before being translated into clinical application. Large-scale, multi-center, prospective research is the direction of future efforts, while we need to face the risk of repeatability of radiomics features and the limitation of access to large databases.
Collapse
Affiliation(s)
- Qiuyuan Hu
- Department of positron emission tomography/computed tomography (PET/CT) Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Cancer Center of Yunnan Province, Kunming, Yunnan, China
| | - Ke Li
- Department of Cancer Biotherapy Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Cancer Center of Yunnan Province, Kunming, Yunnan, China
| | - Conghui Yang
- Department of positron emission tomography/computed tomography (PET/CT) Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Cancer Center of Yunnan Province, Kunming, Yunnan, China
| | - Yue Wang
- Department of positron emission tomography/computed tomography (PET/CT) Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Cancer Center of Yunnan Province, Kunming, Yunnan, China
| | - Rong Huang
- Department of positron emission tomography/computed tomography (PET/CT) Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Cancer Center of Yunnan Province, Kunming, Yunnan, China
| | - Mingqiu Gu
- Department of positron emission tomography/computed tomography (PET/CT) Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Cancer Center of Yunnan Province, Kunming, Yunnan, China
| | - Yuqiang Xiao
- Department of positron emission tomography/computed tomography (PET/CT) Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Cancer Center of Yunnan Province, Kunming, Yunnan, China
| | - Yunchao Huang
- Department of Thoracic Surgery I, Key Laboratory of Lung Cancer of Yunnan Province, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Cancer Center of Yunnan Province, Kunming, Yunnan, China
- *Correspondence: Long Chen, ; Yunchao Huang,
| | - Long Chen
- Department of positron emission tomography/computed tomography (PET/CT) Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Cancer Center of Yunnan Province, Kunming, Yunnan, China
- *Correspondence: Long Chen, ; Yunchao Huang,
| |
Collapse
|
14
|
Prognostic Value of Axillary Lymph Node Texture Parameters Measured by Pretreatment 18F-Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography in Locally Advanced Breast Cancer with Neoadjuvant Chemotherapy. Diagnostics (Basel) 2022; 12:diagnostics12102285. [PMID: 36291974 PMCID: PMC9600297 DOI: 10.3390/diagnostics12102285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/14/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Background: This study investigated the prognostic value of axillary lymph node (ALN) heterogeneity texture features through 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) in patients with locally advanced breast cancer (LABC). Methods: We retrospectively analyzed 158 LABC patients with FDG-avid, pathology-proven, metastatic ALN who underwent neoadjuvant chemotherapy (NAC) and curative surgery. Tumor and ALN texture parameters were extracted from pretreatment 18F-FDG PET/CT using Chang-Gung Image Texture Analysis software. The least absolute shrinkage and selection operator regression was performed to select the most significant predictive texture parameters. The predictive impact of texture parameters was evaluated for both progression-free survival and pathologic NAC response. Results: The median follow-up period of 36.8 months and progression of disease (PD) was observed in 36 patients. In the univariate analysis, ALN textures (minimum standardized uptake value (SUV) (p = 0.026), SUV skewness (p = 0.038), SUV bias-corrected Kurtosis (p = 0.034), total lesion glycolysis (p = 0.011)), tumor textures (low-intensity size zone emphasis (p = 0.045), minimum SUV (p = 0.047), and homogeneity (p = 0.041)) were significant texture predictors. On the Cox regression analysis, ALN SUV skewness was an independent texture predictor of PD (p = 0.016, hazard ratio 2.3, 95% confidence interval 1.16–4.58). Conclusions: ALN texture feature from pretreatment 18F-FDG PET/CT is useful for the prediction of LABC progression.
Collapse
|