1
|
Bai X, Peng C, Liu B, Zhou S, Guo H, Hao Y, Liu H, Chen Y, Liu X, Ning X, Ma Y, Zhao J, Li L, Ye H, Ma X, Wang H. Clear Cell Renal Cell Carcinoma: Characterizing the Phenotype of Von Hippel-Lindau Mutation Using MRI. J Magn Reson Imaging 2025; 61:1981-1994. [PMID: 39193825 DOI: 10.1002/jmri.29588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 08/09/2024] [Accepted: 08/11/2024] [Indexed: 08/29/2024] Open
Abstract
BACKGROUND The von Hippel-Lindau (VHL) mutation is an important alteration in clear cell renal cell carcinoma (ccRCC); however, its imaging phenotype remains unclear. PURPOSE To investigate whether MRI features can reflect the VHL mutation status. STUDY TYPE Retrospective. FIELD STRENGTH/SEQUENCE 3 T/fast spin echo T2-weighted, spin-echo echo planar diffusion-weighted, gradient recalled echo T1-weighted, gradient recalled echo chemical-shift T1-weighted, and contrast-enhanced gradient recalled echo T1-weighted sequences. POPULATION One hundred five patients with ccRCC who underwent preoperative contrast-enhanced MRI and subsequent genomic sequencing: 59 consecutive patients from our institution (38 [64.41%] with VHL mutations) formed a training cohort, and 46 from The Cancer Genome Atlas (TCGA) database (24 [52.17%] with VHL mutations) formed an independent test cohort. ASSESSMENT Two radiologists, with 23 and 33 years of experience respectively, jointly evaluated the semantic MRI features of the primary lesion in ccRCCs to propose potential features related to VHL mutations in both cohorts. Three additional readers, with 5, 7, and 10 years of experience respectively, independently reviewed all lesions to assess the interobserver agreement of MRI features. A VHL mutational likelihood score (VHL-MULIS) system was constructed using the training cohort and validated using the independent test cohort. STATISTICAL TESTS Fisher's test or chi-square test, t-test or Mann-Whitney U test, logistic regression, Cohen's kappa (κ), area under the receiver operating characteristic curve (AUC). A two-sided P value <0.05 was considered statistically significant. RESULTS In both the local and public cohorts, T2-weighted signal intensity and presence of microscopic fat from primary lesions were significantly associated with VHL mutation status. The VHL-MULIS incorporated maximum diameter, T2-weighted signal intensity, and presence of microscopic fat in the training cohort and demonstrated promising diagnostic ability (AUC, 0.82; sensitivity, 0.79; specificity, 0.82) and substantial interobserver agreement (κ, 0.787) in the test cohort. DATA CONCLUSION The VHL mutation exhibited a distinct MRI phenotype. Integrating multiple semantic MRI features has potential to reflect the mutation status in patients with ccRCC. EVIDENCE LEVEL 3 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Xu Bai
- Medical School of Chinese PLA, Beijing, China
- Department of Radiology, First Medical Center, Chinese PLA General Hospital, Beijing, China
- Department of Radiology, Fifth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Cheng Peng
- Department of Urology, First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Baichuan Liu
- Medical School of Chinese PLA, Beijing, China
- Department of Radiology, First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Shaopeng Zhou
- Medical School of Chinese PLA, Beijing, China
- Department of Radiology, First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Huiping Guo
- Medical School of Chinese PLA, Beijing, China
- Department of Radiology, First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yuwei Hao
- Medical School of Chinese PLA, Beijing, China
- Department of Radiology, First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Haili Liu
- Department of Radiology, Fourth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yijian Chen
- Department of Radiology, First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Xin Liu
- Department of Radiology, Chinese PLA 920 Hospital, Kunming, China
| | - Xueyi Ning
- Medical School of Chinese PLA, Beijing, China
- Department of Radiology, First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yuanhao Ma
- Medical School of Chinese PLA, Beijing, China
- Department of Radiology, First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Jian Zhao
- Medical School of Chinese PLA, Beijing, China
- Department of Radiology, First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Lin Li
- Department of Medical Statistic, Institute for Hospital Management Research, Chinese PLA General Hospital, Beijing, China
| | - Huiyi Ye
- Department of Radiology, First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Xin Ma
- Department of Urology, First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Haiyi Wang
- Department of Radiology, First Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
2
|
Greco F, Cataldo M, Zobel BB, Mallio CA. Failure to Suppress Progression in Clear Cell Renal Cell Carcinoma Associated with NCOA7 Low Expression Revealed Through Radiogenomic Analysis. Genes (Basel) 2025; 16:386. [PMID: 40282346 PMCID: PMC12027027 DOI: 10.3390/genes16040386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 03/24/2025] [Accepted: 03/26/2025] [Indexed: 04/29/2025] Open
Abstract
Background/Objectives: Radiogenomics investigates the relationship between imaging features and genomic characteristics, offering a non-invasive approach to studying tumor biology. Nuclear receptor coactivator 7 (NCOA7) is a conserved nuclear receptor coactivator with potential prognostic relevance in clear cell renal cell carcinoma (ccRCC). This study aims to evaluate the radiogenomic features associated with NCOA7 low expression in ccRCC patients and its correlation with tumor aggressiveness. Methods: A cohort of 209 ccRCC patients was analyzed using genomic data from The Cancer Genome Atlas and imaging features from The Cancer Imaging Archive. Imaging characteristics were assessed through computed tomography scans, focusing on tumor size, margins, necrosis, growth patterns, and other radiological features. Statistical analyses, including Student's t-test and Pearson's Chi-square test, were used to examine associations between NCOA7 expression and clinicopathological or radiological features, with significance set at p < 0.05. Results: NCOA7 low expression was identified in 66.03% of patients and significantly associated with older age (p = 0.001), higher tumor grade (p = 0.015), advanced American Joint Committee of Cancer stage (p = 0.006), collateral vascular supply (p = 0.014), ill-defined margins (p = 0.016), tumor necrosis (p = 0.002), exophytic growth pattern ≥50% (p = 0.002), and perinephric fat stranding (p = 0.027). Conclusions: These findings indicate a radiologic phenotype suggestive of increased tumor aggressiveness. NCOA7 low expression correlates with aggressive radiologic and clinicopathological features, underscoring its potential as a biomarker for poor prognosis in ccRCC. Radiogenomic integration provides insights into tumor behavior and aids in developing therapeutic strategies.
Collapse
Affiliation(s)
- Federico Greco
- Department of Radiology, Cittadella della Salute, Azienda Sanitaria Locale di Lecce, Piazza Filippo Bottazzi, 2, 73100 Lecce, Italy
- Research Unit of Radiology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy; (B.B.Z.); (C.A.M.)
| | - Marco Cataldo
- Apphia s.r.l., Via per Monteroni, 73100 Lecce, Italy;
| | - Bruno Beomonte Zobel
- Research Unit of Radiology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy; (B.B.Z.); (C.A.M.)
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy
| | - Carlo Augusto Mallio
- Research Unit of Radiology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy; (B.B.Z.); (C.A.M.)
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy
| |
Collapse
|
3
|
Yang F, Feng Y, Sun P, Traverso A, Dekker A, Zhang B, Huang Z, Wang Z, Yan D. Preoperative prediction of high-grade osteosarcoma response to neoadjuvant therapy based on a plain CT radiomics model: A dual-center study. J Bone Oncol 2024; 47:100614. [PMID: 38975332 PMCID: PMC11225658 DOI: 10.1016/j.jbo.2024.100614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/05/2024] [Accepted: 06/01/2024] [Indexed: 07/09/2024] Open
Abstract
Objective To develop a model combining clinical and radiomics features from CT scans for a preoperative noninvasive evaluation of Huvos grading of neoadjuvant chemotherapy in patients with HOS. Methods 183 patients from center A and 42 from center B were categorized into training and validation sets. Features derived from radiomics were obtained from unenhanced CT scans.Following dimensionality reduction, the most optimal features were selected and utilized in creating a radiomics model through logistic regression analysis. Integrating clinical features, a composite clinical radiomics model was developed, and a nomogram was constructed. Predictive performance of the model was evaluated using ROC curves and calibration curves. Additionally, decision curve analysis was conducted to assess practical utility of nomogram in clinical settings. Results LASSO LR analysis was performed, and finally, three selected image omics features were obtained.Radiomics model yielded AUC values with a good diagnostic effect for both patient sets (AUCs: 0.69 and 0.68, respectively). Clinical models (including sex, age, pre-chemotherapy ALP and LDH levels, new lung metastases within 1 year after surgery, and incidence) performed well in terms of Huvos grade prediction, with an AUC of 0.74 for training set. The AUC for independent validation set stood at 0.70. Notably, the amalgamation of radiomics and clinical features exhibited commendable predictive prowess in training set, registering an AUC of 0.78. This robust performance was subsequently validated in the independent validation set, where the AUC remained high at 0.75. Calibration curves of nomogram showed that the predictions were in good agreement with actual observations. Conclusion Combined model can be used for Huvos grading in patients with HOS after preoperative chemotherapy, which is helpful for adjuvant treatment decisions.
Collapse
Affiliation(s)
- Fan Yang
- Department of Radiation, Beijing Jishuitan Hospital,Capital Medical University, Beijing 100035, China
| | - Ying Feng
- Department of Ultrasound, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Pengfei Sun
- Department of Ultrasound, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Alberto Traverso
- Department of Radiation Oncology (Maastro), GROW-School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Andre Dekker
- Department of Radiation Oncology (Maastro), GROW-School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Bin Zhang
- Department of Radiation, Peking University Shougang Hospital, Beijing 100144, China
| | - Zhen Huang
- Department of Bone Oncology, Beijing Jishuitan Hospital,Capital Medical University, Beijing 100035, China
| | - Zhixiang Wang
- Department of Ultrasound, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Dong Yan
- Department of Radiation, Beijing Jishuitan Hospital,Capital Medical University, Beijing 100035, China
| |
Collapse
|
4
|
Yang Y, Wang J, Ren Q, Yu R, Yuan Z, Jiang Q, Guan S, Tang X, Duan T, Meng X. Multimodal data integration using machine learning to predict the risk of clear cell renal cancer metastasis: a retrospective multicentre study. Abdom Radiol (NY) 2024; 49:2311-2324. [PMID: 38879708 DOI: 10.1007/s00261-024-04418-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/24/2024] [Accepted: 05/29/2024] [Indexed: 07/30/2024]
Abstract
PURPOSE To develop and validate a predictive combined model for metastasis in patients with clear cell renal cell carcinoma (ccRCC) by integrating multimodal data. MATERIALS AND METHODS In this retrospective study, the clinical and imaging data (CT and ultrasound) of patients with ccRCC confirmed by pathology from three tertiary hospitals in different regions were collected from January 2013 to January 2023. We developed three models, including a clinical model, a radiomics model, and a combined model. The performance of the model was determined based on its discriminative power and clinical utility. The evaluation indicators included area under the receiver operating characteristic curve (AUC) value, accuracy, sensitivity, specificity, negative predictive value, positive predictive value and decision curve analysis (DCA) curve. RESULTS A total of 251 patients were evaluated. Patients (n = 166) from Shandong University Qilu Hospital (Jinan) were divided into the training cohort, of which 50 patients developed metastases; patients (n = 37) from Shandong University Qilu Hospital (Qingdao) were used as internal testing, of which 15 patients developed metastases; patients (n = 48) from Changzhou Second People's Hospital were used as external testing, of which 13 patients developed metastases. In the training set, the combined model showed the highest performance (AUC, 0.924) in predicting lymph node metastasis (LNM), while the clinical and radiomics models both had AUCs of 0.845 and 0.870, respectively. In the internal testing, the combined model had the highest performance (AUC, 0.877) for predicting LNM, while the AUCs of the clinical and radiomics models were 0.726 and 0.836, respectively. In the external testing, the combined model had the highest performance (AUC, 0.849) for predicting LNM, while the AUCs of the clinical and radiomics models were 0.708 and 0.804, respectively. The DCA curve showed that the combined model had a significant prediction probability in predicting the risk of LNM in ccRCC patients compared with the clinical model or the radiomics model. CONCLUSION The combined model was superior to the clinical and radiomics models in predicting LNM in ccRCC patients.
Collapse
Affiliation(s)
- YouChang Yang
- Department of Radiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, 266035, China
| | - JiaJia Wang
- Department of Radiology, Qilu Hospital of Shandong University, Jinan, China
| | - QingGuo Ren
- Department of Radiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, 266035, China
| | - Rong Yu
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - ZiYi Yuan
- Department of Radiology, Qilu Hospital of Shandong University, Jinan, China
| | - QingJun Jiang
- Department of Radiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, 266035, China
| | - Shuai Guan
- Department of Radiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, 266035, China
| | - XiaoQiang Tang
- Department of Radiology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - TongTong Duan
- Department of Ultrasound, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - XiangShui Meng
- Department of Radiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, 266035, China.
| |
Collapse
|
5
|
Greco F, D’Andrea V, Beomonte Zobel B, Mallio CA. Radiogenomics and Texture Analysis to Detect von Hippel-Lindau (VHL) Mutation in Clear Cell Renal Cell Carcinoma. Curr Issues Mol Biol 2024; 46:3236-3250. [PMID: 38666933 PMCID: PMC11049152 DOI: 10.3390/cimb46040203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/24/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Radiogenomics, a burgeoning field in biomedical research, explores the correlation between imaging features and genomic data, aiming to link macroscopic manifestations with molecular characteristics. In this review, we examine existing radiogenomics literature in clear cell renal cell carcinoma (ccRCC), the predominant renal cancer, and von Hippel-Lindau (VHL) gene mutation, the most frequent genetic mutation in ccRCC. A thorough examination of the literature was conducted through searches on the PubMed, Medline, Cochrane Library, Google Scholar, and Web of Science databases. Inclusion criteria encompassed articles published in English between 2014 and 2022, resulting in 10 articles meeting the criteria out of 39 initially retrieved articles. Most of these studies applied computed tomography (CT) images obtained from open source and institutional databases. This literature review investigates the role of radiogenomics, with and without texture analysis, in predicting VHL gene mutation in ccRCC patients. Radiogenomics leverages imaging modalities such as CT and magnetic resonance imaging (MRI), to analyze macroscopic features and establish connections with molecular elements, providing insights into tumor heterogeneity and biological behavior. The investigations explored diverse mutations, with a specific focus on VHL mutation, and applied CT imaging features for radiogenomic analysis. Moreover, radiomics and machine learning techniques were employed to predict VHL gene mutations based on CT features, demonstrating promising results. Additional studies delved into the relationship between VHL mutation and body composition, revealing significant associations with adipose tissue distribution. The review concludes by highlighting the potential role of radiogenomics in guiding targeted and selective therapies.
Collapse
Affiliation(s)
- Federico Greco
- Department of Radiology, Cittadella Della Salute Azienda Sanitaria Locale di Lecce, Piazza Filippo Bottazzi 2, 73100 Lecce, Italy
- Research Unit of Radiology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Roma, Italy; (V.D.); (B.B.Z.); (C.A.M.)
| | - Valerio D’Andrea
- Research Unit of Radiology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Roma, Italy; (V.D.); (B.B.Z.); (C.A.M.)
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo 200, 00128 Roma, Italy
| | - Bruno Beomonte Zobel
- Research Unit of Radiology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Roma, Italy; (V.D.); (B.B.Z.); (C.A.M.)
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo 200, 00128 Roma, Italy
| | - Carlo Augusto Mallio
- Research Unit of Radiology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Roma, Italy; (V.D.); (B.B.Z.); (C.A.M.)
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo 200, 00128 Roma, Italy
| |
Collapse
|
6
|
Muñoz JP, Calaf GM. Downregulation of Glycine N-Acyltransferase in Kidney Renal Clear Cell Carcinoma: A Bioinformatic-Based Screening. Diagnostics (Basel) 2023; 13:3505. [PMID: 38066746 PMCID: PMC10706668 DOI: 10.3390/diagnostics13233505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/11/2023] [Accepted: 11/13/2023] [Indexed: 10/16/2024] Open
Abstract
Clear cell renal cell carcinoma (KIRC) is the most common subtype of renal cell carcinoma (RCC). This form of cancer is characterized by resistance to traditional therapies and an increased likelihood of metastasis. A major factor contributing to the pathogenesis of KIRC is the alteration of metabolic pathways. As kidney cancer is increasingly considered a metabolic disease, there is a growing need to understand the enzymes involved in the regulation of metabolism in tumorigenic cells. In this context, our research focused on glycine N-acyltransferase (GLYAT), an enzyme known to play a role in various metabolic diseases and cancer. Here, through a bioinformatic analysis of public databases, we performed a characterization of GLYAT expression levels in KIRC cases. Our goal is to evaluate whether GLYAT could serve as a compelling candidate for an in-depth study, given its pivotal role in metabolic regulation and previously established links to other malignancies. The analysis showed a marked decrease in GLYAT expression in all stages and grades of KIRC, regardless of mutation rates, suggesting an alternative mechanism of regulation along the tumor development. Additionally, we observed a hypomethylation in the GLYAT promoter region and a negative correlation between the expression of the GLYAT and the levels of cancer-associated fibroblasts. Finally, the data show a correlation between higher levels of GLYAT expression and better patient prognosis. In conclusion, this article underscores the potential of GLYAT as a diagnostic and prognostic marker in KIRC.
Collapse
Affiliation(s)
- Juan P. Muñoz
- Laboratorio de Bioquímica, Departamento de Química, Facultad de Ciencias, Universidad de Tarapacá, Arica 1000007, Chile
| | - Gloria M. Calaf
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile
| |
Collapse
|
7
|
Mendes Serrão E, Klug M, Moloney BM, Jhaveri A, Lo Gullo R, Pinker K, Luker G, Haider MA, Shinagare AB, Liu X. Current Status of Cancer Genomics and Imaging Phenotypes: What Radiologists Need to Know. Radiol Imaging Cancer 2023; 5:e220153. [PMID: 37921555 DOI: 10.1148/rycan.220153] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Ongoing discoveries in cancer genomics and epigenomics have revolutionized clinical oncology and precision health care. This knowledge provides unprecedented insights into tumor biology and heterogeneity within a single tumor, among primary and metastatic lesions, and among patients with the same histologic type of cancer. Large-scale genomic sequencing studies also sparked the development of new tumor classifications, biomarkers, and targeted therapies. Because of the central role of imaging in cancer diagnosis and therapy, radiologists need to be familiar with the basic concepts of genomics, which are now becoming the new norm in oncologic clinical practice. By incorporating these concepts into clinical practice, radiologists can make their imaging interpretations more meaningful and specific, facilitate multidisciplinary clinical dialogue and interventions, and provide better patient-centric care. This review article highlights basic concepts of genomics and epigenomics, reviews the most common genetic alterations in cancer, and discusses the implications of these concepts on imaging by organ system in a case-based manner. This information will help stimulate new innovations in imaging research, accelerate the development and validation of new imaging biomarkers, and motivate efforts to bring new molecular and functional imaging methods to clinical radiology. Keywords: Oncology, Cancer Genomics, Epignomics, Radiogenomics, Imaging Markers Supplemental material is available for this article. © RSNA, 2023.
Collapse
Affiliation(s)
- Eva Mendes Serrão
- From the Joint Department of Medical Imaging, University Medical Imaging Toronto, University Health Network, University of Toronto, 585 University Ave, Toronto, ON, Canada M5G 2N2 (E.M.S., A.J., M.A.H., X.L.); Division of Diagnostic Imaging, Sheba Medical Center, Tel Aviv University, Tel Aviv, Israel (M.K.); Department of Radiology, The Christie NHS Trust, Manchester, England (B.M.M.); Department of Radiology, Breast Imaging Service, Memorial Sloan-Kettering Cancer Center, Weill Medical College of Cornell University, New York, NY (R.L.G., K.P.); Center for Molecular Imaging, Department of Radiology, University of Michigan, Ann Arbor, Mich (G.L.); Lunenfeld Tanenbaum Research Institute, Sinai Health System, Mount Sinai Hospital, Toronto, Ontario, Canada (M.A.H.); and Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass (A.B.S.)
| | - Maximiliano Klug
- From the Joint Department of Medical Imaging, University Medical Imaging Toronto, University Health Network, University of Toronto, 585 University Ave, Toronto, ON, Canada M5G 2N2 (E.M.S., A.J., M.A.H., X.L.); Division of Diagnostic Imaging, Sheba Medical Center, Tel Aviv University, Tel Aviv, Israel (M.K.); Department of Radiology, The Christie NHS Trust, Manchester, England (B.M.M.); Department of Radiology, Breast Imaging Service, Memorial Sloan-Kettering Cancer Center, Weill Medical College of Cornell University, New York, NY (R.L.G., K.P.); Center for Molecular Imaging, Department of Radiology, University of Michigan, Ann Arbor, Mich (G.L.); Lunenfeld Tanenbaum Research Institute, Sinai Health System, Mount Sinai Hospital, Toronto, Ontario, Canada (M.A.H.); and Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass (A.B.S.)
| | - Brian M Moloney
- From the Joint Department of Medical Imaging, University Medical Imaging Toronto, University Health Network, University of Toronto, 585 University Ave, Toronto, ON, Canada M5G 2N2 (E.M.S., A.J., M.A.H., X.L.); Division of Diagnostic Imaging, Sheba Medical Center, Tel Aviv University, Tel Aviv, Israel (M.K.); Department of Radiology, The Christie NHS Trust, Manchester, England (B.M.M.); Department of Radiology, Breast Imaging Service, Memorial Sloan-Kettering Cancer Center, Weill Medical College of Cornell University, New York, NY (R.L.G., K.P.); Center for Molecular Imaging, Department of Radiology, University of Michigan, Ann Arbor, Mich (G.L.); Lunenfeld Tanenbaum Research Institute, Sinai Health System, Mount Sinai Hospital, Toronto, Ontario, Canada (M.A.H.); and Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass (A.B.S.)
| | - Aaditeya Jhaveri
- From the Joint Department of Medical Imaging, University Medical Imaging Toronto, University Health Network, University of Toronto, 585 University Ave, Toronto, ON, Canada M5G 2N2 (E.M.S., A.J., M.A.H., X.L.); Division of Diagnostic Imaging, Sheba Medical Center, Tel Aviv University, Tel Aviv, Israel (M.K.); Department of Radiology, The Christie NHS Trust, Manchester, England (B.M.M.); Department of Radiology, Breast Imaging Service, Memorial Sloan-Kettering Cancer Center, Weill Medical College of Cornell University, New York, NY (R.L.G., K.P.); Center for Molecular Imaging, Department of Radiology, University of Michigan, Ann Arbor, Mich (G.L.); Lunenfeld Tanenbaum Research Institute, Sinai Health System, Mount Sinai Hospital, Toronto, Ontario, Canada (M.A.H.); and Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass (A.B.S.)
| | - Roberto Lo Gullo
- From the Joint Department of Medical Imaging, University Medical Imaging Toronto, University Health Network, University of Toronto, 585 University Ave, Toronto, ON, Canada M5G 2N2 (E.M.S., A.J., M.A.H., X.L.); Division of Diagnostic Imaging, Sheba Medical Center, Tel Aviv University, Tel Aviv, Israel (M.K.); Department of Radiology, The Christie NHS Trust, Manchester, England (B.M.M.); Department of Radiology, Breast Imaging Service, Memorial Sloan-Kettering Cancer Center, Weill Medical College of Cornell University, New York, NY (R.L.G., K.P.); Center for Molecular Imaging, Department of Radiology, University of Michigan, Ann Arbor, Mich (G.L.); Lunenfeld Tanenbaum Research Institute, Sinai Health System, Mount Sinai Hospital, Toronto, Ontario, Canada (M.A.H.); and Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass (A.B.S.)
| | - Katja Pinker
- From the Joint Department of Medical Imaging, University Medical Imaging Toronto, University Health Network, University of Toronto, 585 University Ave, Toronto, ON, Canada M5G 2N2 (E.M.S., A.J., M.A.H., X.L.); Division of Diagnostic Imaging, Sheba Medical Center, Tel Aviv University, Tel Aviv, Israel (M.K.); Department of Radiology, The Christie NHS Trust, Manchester, England (B.M.M.); Department of Radiology, Breast Imaging Service, Memorial Sloan-Kettering Cancer Center, Weill Medical College of Cornell University, New York, NY (R.L.G., K.P.); Center for Molecular Imaging, Department of Radiology, University of Michigan, Ann Arbor, Mich (G.L.); Lunenfeld Tanenbaum Research Institute, Sinai Health System, Mount Sinai Hospital, Toronto, Ontario, Canada (M.A.H.); and Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass (A.B.S.)
| | - Gary Luker
- From the Joint Department of Medical Imaging, University Medical Imaging Toronto, University Health Network, University of Toronto, 585 University Ave, Toronto, ON, Canada M5G 2N2 (E.M.S., A.J., M.A.H., X.L.); Division of Diagnostic Imaging, Sheba Medical Center, Tel Aviv University, Tel Aviv, Israel (M.K.); Department of Radiology, The Christie NHS Trust, Manchester, England (B.M.M.); Department of Radiology, Breast Imaging Service, Memorial Sloan-Kettering Cancer Center, Weill Medical College of Cornell University, New York, NY (R.L.G., K.P.); Center for Molecular Imaging, Department of Radiology, University of Michigan, Ann Arbor, Mich (G.L.); Lunenfeld Tanenbaum Research Institute, Sinai Health System, Mount Sinai Hospital, Toronto, Ontario, Canada (M.A.H.); and Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass (A.B.S.)
| | - Masoom A Haider
- From the Joint Department of Medical Imaging, University Medical Imaging Toronto, University Health Network, University of Toronto, 585 University Ave, Toronto, ON, Canada M5G 2N2 (E.M.S., A.J., M.A.H., X.L.); Division of Diagnostic Imaging, Sheba Medical Center, Tel Aviv University, Tel Aviv, Israel (M.K.); Department of Radiology, The Christie NHS Trust, Manchester, England (B.M.M.); Department of Radiology, Breast Imaging Service, Memorial Sloan-Kettering Cancer Center, Weill Medical College of Cornell University, New York, NY (R.L.G., K.P.); Center for Molecular Imaging, Department of Radiology, University of Michigan, Ann Arbor, Mich (G.L.); Lunenfeld Tanenbaum Research Institute, Sinai Health System, Mount Sinai Hospital, Toronto, Ontario, Canada (M.A.H.); and Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass (A.B.S.)
| | - Atul B Shinagare
- From the Joint Department of Medical Imaging, University Medical Imaging Toronto, University Health Network, University of Toronto, 585 University Ave, Toronto, ON, Canada M5G 2N2 (E.M.S., A.J., M.A.H., X.L.); Division of Diagnostic Imaging, Sheba Medical Center, Tel Aviv University, Tel Aviv, Israel (M.K.); Department of Radiology, The Christie NHS Trust, Manchester, England (B.M.M.); Department of Radiology, Breast Imaging Service, Memorial Sloan-Kettering Cancer Center, Weill Medical College of Cornell University, New York, NY (R.L.G., K.P.); Center for Molecular Imaging, Department of Radiology, University of Michigan, Ann Arbor, Mich (G.L.); Lunenfeld Tanenbaum Research Institute, Sinai Health System, Mount Sinai Hospital, Toronto, Ontario, Canada (M.A.H.); and Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass (A.B.S.)
| | - Xiaoyang Liu
- From the Joint Department of Medical Imaging, University Medical Imaging Toronto, University Health Network, University of Toronto, 585 University Ave, Toronto, ON, Canada M5G 2N2 (E.M.S., A.J., M.A.H., X.L.); Division of Diagnostic Imaging, Sheba Medical Center, Tel Aviv University, Tel Aviv, Israel (M.K.); Department of Radiology, The Christie NHS Trust, Manchester, England (B.M.M.); Department of Radiology, Breast Imaging Service, Memorial Sloan-Kettering Cancer Center, Weill Medical College of Cornell University, New York, NY (R.L.G., K.P.); Center for Molecular Imaging, Department of Radiology, University of Michigan, Ann Arbor, Mich (G.L.); Lunenfeld Tanenbaum Research Institute, Sinai Health System, Mount Sinai Hospital, Toronto, Ontario, Canada (M.A.H.); and Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass (A.B.S.)
| |
Collapse
|
8
|
Badoiu SC, Greabu M, Miricescu D, Stanescu-Spinu II, Ilinca R, Balan DG, Balcangiu-Stroescu AE, Mihai DA, Vacaroiu IA, Stefani C, Jinga V. PI3K/AKT/mTOR Dysregulation and Reprogramming Metabolic Pathways in Renal Cancer: Crosstalk with the VHL/HIF Axis. Int J Mol Sci 2023; 24:8391. [PMID: 37176098 PMCID: PMC10179314 DOI: 10.3390/ijms24098391] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/26/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Renal cell carcinoma (RCC) represents 85-95% of kidney cancers and is the most frequent type of renal cancer in adult patients. It accounts for 3% of all cancer cases and is in 7th place among the most frequent histological types of cancer. Clear cell renal cell carcinoma (ccRCC), accounts for 75% of RCCs and has the most kidney cancer-related deaths. One-third of the patients with ccRCC develop metastases. Renal cancer presents cellular alterations in sugars, lipids, amino acids, and nucleic acid metabolism. RCC is characterized by several metabolic dysregulations including oxygen sensing (VHL/HIF pathway), glucose transporters (GLUT 1 and GLUT 4) energy sensing, and energy nutrient sensing cascade. Metabolic reprogramming represents an important characteristic of the cancer cells to survive in nutrient and oxygen-deprived environments, to proliferate and metastasize in different body sites. The phosphoinositide 3-kinase-AKT-mammalian target of the rapamycin (PI3K/AKT/mTOR) signaling pathway is usually dysregulated in various cancer types including renal cancer. This molecular pathway is frequently correlated with tumor growth and survival. The main aim of this review is to present renal cancer types, dysregulation of PI3K/AKT/mTOR signaling pathway members, crosstalk with VHL/HIF axis, and carbohydrates, lipids, and amino acid alterations.
Collapse
Affiliation(s)
- Silviu Constantin Badoiu
- Department of Anatomy and Embryology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, 050474 Bucharest, Romania;
| | - Maria Greabu
- Department of Biochemistry, Faculty of Dentistry, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, Sector 5, 050474 Bucharest, Romania;
| | - Daniela Miricescu
- Department of Biochemistry, Faculty of Dentistry, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, Sector 5, 050474 Bucharest, Romania;
| | - Iulia-Ioana Stanescu-Spinu
- Department of Biochemistry, Faculty of Dentistry, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, Sector 5, 050474 Bucharest, Romania;
| | - Radu Ilinca
- Department of Medical Informatics and Biostatistics, Faculty of Dentistry, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, 050474 Bucharest, Romania;
| | - Daniela Gabriela Balan
- Department of Physiology, Faculty of Dentistry, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, 050474 Bucharest, Romania; (D.G.B.); (A.-E.B.-S.)
| | - Andra-Elena Balcangiu-Stroescu
- Department of Physiology, Faculty of Dentistry, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, 050474 Bucharest, Romania; (D.G.B.); (A.-E.B.-S.)
| | - Doina-Andrada Mihai
- Department of Diabetes, Nutrition and Metabolic Diseases, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, 050474 Bucharest, Romania;
| | - Ileana Adela Vacaroiu
- Department of Nephrology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania;
| | - Constantin Stefani
- Department of Family Medicine and Clinical Base, Dr. Carol Davila Central Military Emergency University Hospital, 134 Calea Plevnei, 010825 Bucharest, Romania;
| | - Viorel Jinga
- Department of Urology, “Prof. Dr. Theodor Burghele” Hospital, 050653 Bucharest, Romania
- “Prof. Dr. Theodor Burghele” Clinical Hospital, University of Medicine and Pharmacy Carol Davila, 050474 Bucharest, Romania
- Medical Sciences Section, Academy of Romanian Scientists, 050085 Bucharest, Romania
| |
Collapse
|
9
|
Nolazco JI, Soerensen SJC, Chung BI. Biomarkers for the Detection and Surveillance of Renal Cancer. Urol Clin North Am 2023; 50:191-204. [PMID: 36948666 DOI: 10.1016/j.ucl.2023.01.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Renal cell carcinoma (RCC) is a heterogeneous disease characterized by a broad spectrum of disorders in terms of genetics, molecular and clinical characteristics. There is an urgent need for noninvasive tools to stratify and select patients for treatment accurately. In this review, we analyze serum, urinary, and imaging biomarkers that have the potential to detect malignant tumors in patients with RCC. We discuss the characteristics of these numerous biomarkers and their ability to be used routinely in clinical practice. The development of biomarkers continues to evolve with promising prospects.
Collapse
Affiliation(s)
- José Ignacio Nolazco
- Division of Urological Surgery, Brigham and Women's Hospital, Harvard Medical School, 45 Francis Street, Boston, MA 02115, USA; Servicio de Urología, Hospital Universitario Austral, Universidad Austral, Av Juan Domingo Perón 1500, B1629AHJ Pilar, Argentina.
| | - Simon John Christoph Soerensen
- Department of Urology, Stanford University School of Medicine, Stanford, CA, USA; Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, USA
| | - Benjamin I Chung
- Department of Urology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
10
|
Ferro M, Musi G, Marchioni M, Maggi M, Veccia A, Del Giudice F, Barone B, Crocetto F, Lasorsa F, Antonelli A, Schips L, Autorino R, Busetto GM, Terracciano D, Lucarelli G, Tataru OS. Radiogenomics in Renal Cancer Management-Current Evidence and Future Prospects. Int J Mol Sci 2023; 24:4615. [PMID: 36902045 PMCID: PMC10003020 DOI: 10.3390/ijms24054615] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023] Open
Abstract
Renal cancer management is challenging from diagnosis to treatment and follow-up. In cases of small renal masses and cystic lesions the differential diagnosis of benign or malignant tissues has potential pitfalls when imaging or even renal biopsy is applied. The recent artificial intelligence, imaging techniques, and genomics advancements have the ability to help clinicians set the stratification risk, treatment selection, follow-up strategy, and prognosis of the disease. The combination of radiomics features and genomics data has achieved good results but is currently limited by the retrospective design and the small number of patients included in clinical trials. The road ahead for radiogenomics is open to new, well-designed prospective studies, with large cohorts of patients required to validate previously obtained results and enter clinical practice.
Collapse
Affiliation(s)
- Matteo Ferro
- Department of Urology, European Institute of Oncology (IEO) IRCCS, 20141 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, 20141 Milan, Italy
| | - Gennaro Musi
- Department of Urology, European Institute of Oncology (IEO) IRCCS, 20141 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, 20141 Milan, Italy
| | - Michele Marchioni
- Department of Medical, Oral and Biotechnological Sciences, G. d’Annunzio, University of Chieti, 66100 Chieti, Italy
- Urology Unit, SS. Annunziata Hospital, 66100 Chieti, Italy
- Department of Urology, ASL Abruzzo 2, 66100 Chieti, Italy
| | - Martina Maggi
- Department of Maternal Infant and Urologic Sciences, Policlinico Umberto I Hospital, University of Rome, 00161 Rome, Italy
| | - Alessandro Veccia
- Department of Urology, Azienda Ospedaliera Universitaria Integrata of Verona, University of Verona, 37126 Verona, Italy
| | - Francesco Del Giudice
- Department of Maternal Infant and Urologic Sciences, Policlinico Umberto I Hospital, University of Rome, 00161 Rome, Italy
| | - Biagio Barone
- Department of Neurosciences and Reproductive Sciences and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy
| | - Felice Crocetto
- Department of Neurosciences and Reproductive Sciences and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy
| | - Francesco Lasorsa
- Urology, Andrology and Kidney Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Alessandro Antonelli
- Department of Urology, Azienda Ospedaliera Universitaria Integrata of Verona, University of Verona, 37126 Verona, Italy
| | - Luigi Schips
- Department of Medical, Oral and Biotechnological Sciences, G. d’Annunzio, University of Chieti, 66100 Chieti, Italy
- Urology Unit, SS. Annunziata Hospital, 66100 Chieti, Italy
- Department of Urology, ASL Abruzzo 2, 66100 Chieti, Italy
| | | | - Gian Maria Busetto
- Department of Urology and Renal Transplantation, University of Foggia, 71122 Foggia, Italy
| | - Daniela Terracciano
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy
| | - Giuseppe Lucarelli
- Urology, Andrology and Kidney Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Octavian Sabin Tataru
- Department of Simulation Applied in Medicine, The Institution Organizing University Doctoral Studies (I.O.S.U.D.), George Emil Palade University of Medicine, Pharmacy, Sciences, and Technology of Târgu Mureș, 540142 Târgu Mureș, Romania
| |
Collapse
|
11
|
Varghese B, Cen S, Zahoor H, Siddiqui I, Aron M, Sali A, Rhie S, Lei X, Rivas M, Liu D, Hwang D, Quinn D, Desai M, Vaishampayan U, Gill I, Duddalwar V. Feasibility of using CT radiomic signatures for predicting CD8-T cell infiltration and PD-L1 expression in renal cell carcinoma. Eur J Radiol Open 2022; 9:100440. [PMID: 36090617 PMCID: PMC9460152 DOI: 10.1016/j.ejro.2022.100440] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/25/2022] [Accepted: 08/30/2022] [Indexed: 01/26/2023] Open
Abstract
Objectives To identify computed tomography (CT)-based radiomic signatures of cluster of differentiation 8 (CD8)-T cell infiltration and programmed cell death ligand 1 (PD-L1) expression levels in patients with clear-cell renal cell carcinoma (ccRCC). Methods Seventy-eight patients with pathologically confirmed localized ccRCC, preoperative multiphase CT and tumor resection specimens were enrolled in this retrospective study. Regions of interest (ROI) of the ccRCC volume were manually segmented from the CT images and processed using a radiomics panel comprising of 1708 metrics. The extracted metrics were used as inputs to three machine learning classifiers: Random Forest, AdaBoost, and ElasticNet to create radiomic signatures for CD8-T cell infiltration and PD-L1 expression, respectively. Results Using a cut-off of 80 lymphocytes per high power field, 59 % were classified to CD8 highly infiltrated tumors and 41 % were CD8 non highly infiltrated tumors, respectively. An ElasticNet classifier discriminated between these two groups of CD8-T cells with an AUC of 0.68 (95 % CI, 0.55-0.80). In addition, based on tumor proportion score with a cut-off of > 1 % tumor cells expressing PD-L1, 76 % were PD-L1 positive and 24 % were PD-L1 negative. An Adaboost classifier discriminated between PD-L1 positive and PD-L1 negative tumors with an AUC of 0.8 95 % CI: (0.66, 0.95). 3D radiomics metrics of graylevel co-occurrence matrix (GLCM) and graylevel run-length matrix (GLRLM) metrics drove the performance for CD8-Tcell and PD-L1 classification, respectively. Conclusions CT-radiomic signatures can differentiate tumors with high CD8-T cell infiltration with moderate accuracy and positive PD-L1 expression with good accuracy in ccRCC.
Collapse
Affiliation(s)
- Bino Varghese
- USC Radiomics Laboratory, Keck School of Medicine, Department of Radiology, University of Southern California, Los Angeles, CA, USA,Correspondence to: Keck Medical Center of USC, University of Southern California, Norris Topping Tower 4417, Los Angeles, CA 90033, USA.
| | - Steven Cen
- USC Radiomics Laboratory, Keck School of Medicine, Department of Radiology, University of Southern California, Los Angeles, CA, USA
| | - Haris Zahoor
- Keck School of Medicine, Department of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Imran Siddiqui
- Keck School of Medicine, Department of Pathology, University of Southern California, Los Angeles, CA, USA
| | - Manju Aron
- Keck School of Medicine, Department of Pathology, University of Southern California, Los Angeles, CA, USA
| | - Akash Sali
- Homi Bhabha Cancer Hospital, Department of Pathology, Sangrur, Punjab, India
| | - Suhn Rhie
- Keck School of Medicine, Department of Molecular Medicine, University of Southern California, Los Angeles, CA, USA
| | - Xiaomeng Lei
- USC Radiomics Laboratory, Keck School of Medicine, Department of Radiology, University of Southern California, Los Angeles, CA, USA
| | - Marielena Rivas
- USC Radiomics Laboratory, Keck School of Medicine, Department of Radiology, University of Southern California, Los Angeles, CA, USA
| | - Derek Liu
- USC Radiomics Laboratory, Keck School of Medicine, Department of Radiology, University of Southern California, Los Angeles, CA, USA
| | - Darryl Hwang
- USC Radiomics Laboratory, Keck School of Medicine, Department of Radiology, University of Southern California, Los Angeles, CA, USA
| | - David Quinn
- Keck School of Medicine, Department of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Mihir Desai
- Keck School of Medicine, Department of Urology, University of Southern California, Los Angeles, CA, USA
| | - Ulka Vaishampayan
- Rogel Cancer Center, Urologic Oncology Clinic, University of Michigan, Ann Arbor, MI, USA
| | - Inderbir Gill
- Keck School of Medicine, Department of Urology, University of Southern California, Los Angeles, CA, USA
| | - Vinay Duddalwar
- USC Radiomics Laboratory, Keck School of Medicine, Department of Radiology, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
12
|
Manini C, López JI. Updating Clear Cell Renal Cell Carcinoma (a Tribute to Prof. Ondrej Hes). Cancers (Basel) 2022; 14:3990. [PMID: 36010980 PMCID: PMC9406461 DOI: 10.3390/cancers14163990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 08/17/2022] [Indexed: 11/17/2022] Open
Abstract
This Special Issue provides an insight into critical issues concerning clear cell renal cell carcinomas (CCRCCs), reflecting the recent level of intricacy reached by renal oncology [...].
Collapse
Affiliation(s)
- Claudia Manini
- Department of Pathology, San Giovanni Bosco Hospital, 10154 Turin, Italy
- Department of Sciences of Public Health and Pediatrics, University of Turin, 10124 Turin, Italy
| | - José I. López
- Unit of Biomarkers, Biocruces-Bizkaia Health Research Institute, 48903 Barakaldo, Spain
| |
Collapse
|