1
|
Liu Q, Sun Y, Zhang T, Lin W, Zhang J, Zhang H, Zheng W, Xu H, Zhou F. GNA15 predicts poor outcomes as a novel biomarker related to M2 macrophage infiltration in ovarian cancer. Front Immunol 2025; 16:1512086. [PMID: 39991148 PMCID: PMC11842242 DOI: 10.3389/fimmu.2025.1512086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 01/21/2025] [Indexed: 02/25/2025] Open
Abstract
Background The exploration of genetic signatures within the ovarian cancer (OC) tumor microenvironment (TME) remains limited. M2-like tumor-associated macrophages (M2-like TAMs) are pivotal in OC progression and therapy. This study aims to establish a novel prognostic signature and identify M2-like TAM-related biomarkers in OC using RNAseq-based transcriptome analysis. Methods Prognostic M2-like TAM-related genes were identified through univariate Cox regression, consensus clustering, and LASSO regression. Immune landscape analysis was conducted to assess immune cell composition and immune checkpoint genes in high- and low-risk groups. Subsequently, in vitro cell experiments and OC cohorts were performed. Results Gene set enrichment analysis revealed that GNA15 is involved in immune responses like leukocyte transendothelial migration and FcγR-mediated phagocytosis. GNA15 was up-regulated in cisplatin-resistant OC cells, and its in vitro down-regulation decreased cell proliferation. An eight-gene prognostic model, including M2-like TAM-related genes, independently predicted poor outcomes in OC. GNA15 emerged as a hub gene positively correlated with M2-like TAMs infiltration, predicting unfavorable outcomes across OC cohorts. Moreover, GNA15 expression correlated positively with CD163 expression, suggesting its role in macrophage polarization. Conclusion GNA15 plays an immunosuppressive role in OC progression linked to M2-like TAMs polarization and stands as a potential prognostic marker in OC.
Collapse
Affiliation(s)
- Qin Liu
- Department of Pathology, The International Peace Maternal and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Department of Pathology, Zhejiang University School of Medicine Women’s Hospital, Hangzhou, Zhejiang, China
| | - Yabing Sun
- Department of Gynecology, The International Peace Maternal and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Tao Zhang
- Department of Gynecology, Zhejiang University School of Medicine Women’s Hospital, Hangzhou, Zhejiang, China
| | - Wanrun Lin
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Jing Zhang
- Department of Biological Sciences, College of Arts and Sciences, University at Albany, State University of New York (SUNY), Albany, NY, United States
| | - Huijuan Zhang
- Department of Pathology, The International Peace Maternal and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Wenxin Zheng
- Department of Pathology, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Hong Xu
- Department of Gynecology, The International Peace Maternal and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Feng Zhou
- Department of Pathology, The International Peace Maternal and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| |
Collapse
|
2
|
Jiang J, Xu J, Ji S, Yu X, Chen J. Unraveling the mysteries of MGMT: Implications for neuroendocrine tumors. Biochim Biophys Acta Rev Cancer 2024; 1879:189184. [PMID: 39303858 DOI: 10.1016/j.bbcan.2024.189184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 07/15/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Neuroendocrine tumors (NETs) are a diverse group of tumors that arise from neuroendocrine cells and are commonly found in various organs. A considerable proportion of NET patients were diagnosed at an advanced or metastatic stage. Alkylating agents are the primary treatment for NET, and O6-methylguanine methyltransferase (MGMT) remains the first-line of defense against DNA damage caused by these agents. Clinical trials have indicated that MGMT promoter methylation or its low/lacked expression can predict a favorable outcome with Temozolomide in NETs. Its status could help select NET patients who can benefit from alkylating agents. Therefore, MGMT status serves as a biomarker to guide decisions on the efficacy of Temozolomide as a personalized treatment option. Additionally, delving into the regulatory mechanisms of MGMT status can lead to the development of MGMT-targeted therapies, benefiting individuals with high levels of MGMT expression. This review aims to explore the polymorphism of MGMT regulation and summarize its clinical implications in NETs, which would help establish the role of MGMT as a biomarker and its potential as a therapeutic target in NETs. Additionally, we explore the benefits of combining Temozolomide and immunotherapy in MGMT hypermethylated subgroups. Future studies can focus on optimizing Temozolomide administration to induce specific immunomodulatory changes.
Collapse
Affiliation(s)
- Jianyun Jiang
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| | - Junfeng Xu
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China.
| | - Shunrong Ji
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China.
| | - Xianjun Yu
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China.
| | - Jie Chen
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| |
Collapse
|
3
|
Ishikawa Y, Yamazaki Y, Tezuka Y, Omata K, Ono Y, Tokodai K, Fujishima F, Kawanabe S, Katabami T, Ikeya A, Yamashita M, Oki Y, Nanjo H, Satoh F, Ito A, Unno M, Kamei T, Sasano H, Suzuki T. Histopathological analysis of tumor microenvironment in adrenocortical carcinoma: Possible effects of in situ disorganized glucocorticoid production on tumor immunity. J Steroid Biochem Mol Biol 2024; 238:106462. [PMID: 38232786 DOI: 10.1016/j.jsbmb.2024.106462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/07/2024] [Accepted: 01/11/2024] [Indexed: 01/19/2024]
Abstract
Adrenocortical carcinoma (ACC) patients with glucocorticoid excess have been reported to be associated with decreased tumor-infiltrating immune cells, but the effects of in situ glucocorticoid production on tumor immunity have remained unknown. In addition, ACC was also known to harbor marked intra-tumoral heterogeneity of steroidogenesis or disorganized steroidogenesis. Therefore, in this study, we immune-profiled tumor-infiltrating lymphocytes (TILs) and tumor-associated macrophages (TAMs) and pivotal steroidogenic enzymes of glucocorticoid biosynthesis (CYP17A and CYP11B1) to explore the potential effects of in situ glucocorticoid production and intra-tumoral heterogeneity/disorganized steroidogenesis on tumor immunity of ACC. We also studied the correlations of the status of tumor immunity with that of angiogenesis and tumor grade to further explore the tumor tissue microenvironment of ACC. TILs (CD3, CD4, CD8, and FOXP3), TAMs (CD68 and CD163), key steroidogenic enzymes of glucocorticoid (CYP17A and CYP11B1), angiogenesis (CD31 and vasohibin-1 (VASH-1)), tumor grade (Ki-67 and Weiss score) were immunohistochemically evaluated in 34 ACCs. Increased CYP17A immunoreactivity in the whole tumor area was significantly positively correlated with FOXP3-positive TILs (p = 0.021) and negatively with CD4/CD3 ratio (p = 0.001). Increased CYP11B1 immunoreactivity in the whole tumor area was significantly positively correlated with CD8/CD3 (p = 0.039) and CD163/CD68 ratios (p = 0.006) and negatively with CD4-positive TILs (p = 0.036) and CD4/CD3 ratio (p = 0.001). There were also significant positive correlations between CYP17A and CD8 (r = 0.334, p < 0.001) and FOXP3-positive TILs (r = 0.414, p < 0.001), CD8/CD3 ratio (r = 0.421, p < 0.001), and CD68-positive TAMs (r = 0.298, p < 0.001) in randomly selected areas. Significant positive correlations were also detected between CYP11B1 and CD8/CD3 ratio (r = 0.276, p = 0.001) and negative ones detected between CYP11B1 and CD3- (r = -0.259, p = 0.002) and CD4-positive TILs (r = -0.312, p < 0.001) in those areas above. Increased micro-vessel density (MVD) -VASH-1 was significantly positively correlated with CD68- (p = 0.015) and CD163-positive TAMs (p = 0.009) and CD163/CD68 ratio and the high VASH-1 with CD163-positive TAMs (p = 0.042). Ki-67 labeling index was significantly positively correlated with MAD-VASH-1 (p = 0.006) and VASH-1 (p = 0.006) status. Results of our present study indicated that in situ glucocorticoid production did influence the status of tumor immunity in ACC. In particular, increased levels of CYP17A and CYP11B1, both involved in glucocorticoid producing immunoreactivity played different effects on tumor immunity, i.e., reflecting the involvement of intra-tumoral heterogeneity and disorganized steroidogenesis of ACC, which also did indicate the importance of in situ approaches when analyzing tumor immunity of ACC.
Collapse
Affiliation(s)
- Yuki Ishikawa
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yuto Yamazaki
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | - Yuta Tezuka
- Department of Diabetes, Metabolism and Endocrinology, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8574, Japan; Division of Nephrology, Rheumatology and Endocrinology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Kei Omata
- Department of Diabetes, Metabolism and Endocrinology, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8574, Japan; Division of Nephrology, Rheumatology and Endocrinology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Yoshikiyo Ono
- Department of Diabetes, Metabolism and Endocrinology, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8574, Japan; Division of Nephrology, Rheumatology and Endocrinology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Kazuaki Tokodai
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Fumiyoshi Fujishima
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shin Kawanabe
- Department of Metabolism and Endocrinology, St. Marianna University Yokohama Seibu Hospital, Yokohama, Japan; Department of Metabolism and Endocrinology, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Takuyuki Katabami
- Department of Metabolism and Endocrinology, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Akira Ikeya
- Division of Endocrinology & Metabolism, Second Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Miho Yamashita
- Division of Endocrinology & Metabolism, Second Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Yutaka Oki
- Diabetes & Endocrinology Center, Hamamatsu-Kita Hospital, Hamamatsu, Shizuoka, Japan
| | - Hiroshi Nanjo
- Department of Pathology, Akita University Hospital, Akita, Japan
| | - Fumitoshi Satoh
- Division of Clinical Hypertension, Endocrinology and Metabolism, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Akihiro Ito
- Department of Urology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Michiaki Unno
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takashi Kamei
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hironobu Sasano
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takashi Suzuki
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
4
|
Chmiel P, Rychcik-Pazyrska P, Stec R. Defining Tumor Microenvironment as a Possible Target for Effective GEP-NENs Immunotherapy-A Systematic Review. Cancers (Basel) 2023; 15:5232. [PMID: 37958406 PMCID: PMC10648089 DOI: 10.3390/cancers15215232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
Neuroendocrine neoplasms (NENs) are a heterogenous and recurrent group of malignancies originating from neuroendocrine secretory cells diffused on all parts of the human body. Gastro-entero-pancreatic neuroendocrine tumors (GEP-NETs) account for most NENs. Considering the abundance of possible origins, locations, and tumor specifications, there is still no consensus about optimal treatment options for these neoplasms. In light of the escalating immunotherapeutic approaches, it is crucial to define indications for such therapy in GEP-NETs. Bearing in mind the significance of pathophysiological mechanisms and tumor microenvironment (TME) impact on carcinogenesis, defining TME structure and correlation with the immune system in GEP-NETs appears essential. This paper aimed to assess the characterization of the tumor immune microenvironment for a better understanding of the possible therapeutic options in GEP-NETS. The authors performed a systematic review, extracting papers from the PubMed, Web of Science, and Scopus databases according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Among 3800 articles identified through database searching, 292 were assessed for eligibility. Ultimately, 28 articles were included in the qualitative synthesis. This paper sums up the research on the immune cell infiltrates, immune checkpoint expression, cytokine profile, neoangiogenesis, and microbiome in the TME of GEP-NETs.
Collapse
|
5
|
Alexander ES, Ziv E. Neuroendocrine Tumors: Genomics and Molecular Biomarkers with a Focus on Metastatic Disease. Cancers (Basel) 2023; 15:cancers15082249. [PMID: 37190177 DOI: 10.3390/cancers15082249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/08/2023] [Accepted: 04/08/2023] [Indexed: 05/17/2023] Open
Abstract
Neuroendocrine tumors (NETs) are considered rare tumors that originate from specialized endocrine cells. Patients often present with metastatic disease at the time of diagnosis, which negatively impacts their quality of life and overall survival. An understanding of the genetic mutations that drive these tumors and the biomarkers used to detect new NET cases is important to identify patients at an earlier disease stage. Elevations in CgA, synaptophysin, and 5-HIAA are most commonly used to identify NETs and assess prognosis; however, new advances in whole genome sequencing and multigenomic blood assays have allowed for a greater understanding of the drivers of NETs and more sensitive and specific tests to diagnose tumors and assess disease response. Treating NET liver metastases is important in managing hormonal or carcinoid symptoms and is imperative to improve patient survival. Treatment for liver-dominant disease is varied; delineating biomarkers that may predict response will allow for better patient stratification.
Collapse
Affiliation(s)
- Erica S Alexander
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Etay Ziv
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
6
|
Neuroendocrine neoplasms of the lung and gastrointestinal system: convergent biology and a path to better therapies. Nat Rev Clin Oncol 2023; 20:16-32. [PMID: 36307533 DOI: 10.1038/s41571-022-00696-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2022] [Indexed: 11/08/2022]
Abstract
Neuroendocrine neoplasms (NENs) can develop in almost any organ and span a spectrum from well-differentiated and indolent neuroendocrine tumours (NETs) to poorly differentiated and highly aggressive neuroendocrine carcinomas (NECs), including small-cell lung cancer (SCLC). These neoplasms are thought to primarily derive from neuroendocrine precursor cells located throughout the body and can also arise through neuroendocrine transdifferentiation of organ-specific epithelial cell types. Hence, NENs constitute a group of tumour types that share key genomic and phenotypic characteristics irrespective of their site of origin, albeit with some organ-specific differences. The establishment of representative preclinical models for several of these disease entities together with analyses of human tumour specimens has provided important insights into crucial aspects of their biology with therapeutic implications. In this Review, we provide a comprehensive overview of the current understanding of NENs of the gastrointestinal system and lung from clinical and biological perspectives. Research on NENs has typically been siloed by the tumour site of origin, and a cross-cutting view might enable advances in one area to accelerate research in others. Therefore, we aim to emphasize that a better understanding of the commonalities and differences of NENs arising in different organs might more effectively inform clinical research to define therapeutic targets and ultimately optimize patient care.
Collapse
|
7
|
Zhang Y, Zeng L, Lin D, Chang G, Zeng Y, Xia Y. Identification and characterization of nucleotide metabolism and neuroendocrine regulation-associated modification patterns in stomach adenocarcinoma with auxiliary prognostic assessment and immunotherapy response prediction. Front Endocrinol (Lausanne) 2022; 13:1076521. [PMID: 36726460 PMCID: PMC9885129 DOI: 10.3389/fendo.2022.1076521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/13/2022] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND The significance of nucleotide metabolism and neuroendocrine in cellular immune response and cancer is becoming more well-established. However, the mechanisms underlying nucleotide metabolism and neuroendocrine involvement in stomach adenocarcinoma (STAD) remain unclear. METHODS First, a pan-cancer overview of nucleotide metabolism and neuroendocrine-related genes (NMNGs) was explored through the integration of expression profiles, prognostic values, mutation information, methylation levels, and pathway-regulation relationships. We next extensively assessed variations in prognosis and tumor microenvironment (TME) features across the various modification patterns, based on an extensive analysis of the NMNG modification patterns of 808 STAD samples based on 46 NMNGs. Utilizing principal component analysis methodologies, the NMNGscore was developed to measure NMNG alteration patterns of individual tumors. RESULTS Pan-cancer analysis shows that NMNGs mostly act as risk genes in multiple cancer types, especially in STAD. Based on the NMNGs we detected two different NMNG modification patterns in STAD. Both patterns showed distinct immune cell infiltration features and biological behavior, with NMNGcluster A exhibiting a worse prognosis and a larger amount of immune infiltration. Differentially expressed genes with prognostic relevance were used to classify the STAD samples into three genomic subgroups. Analysis of survival rates revealed that cluster B genes were associated with longer life expectancy than clusters A and C. Individual STAD patients' NMNG alteration patterns were analyzed by analyzing their NMNGscore signatures. NMNGscore and immune cells showed a statistically significant adverse correlation with each other. Increased longevity, a higher incidence of mutations, and a better response to immunotherapy were associated with patients' NMNG scores. CONCLUSIONS Our findings provide a personalized prediction tool for prognosis and immunotherapy sensitivity in patients, as well as a promising knowledge of nucleotide metabolism and neuroendocrine in STAD.
Collapse
Affiliation(s)
- Yong Zhang
- Department of General Surgery, Ningde Municipal Hospital of Ningde Normal University, Ningde, China
| | - Lingfeng Zeng
- Carol & Richard Yu Peritoneal Dialysis Research Centre, Department of Medicine & Therapeutics, Prince of Wales Hospital, Shatin, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences (LiHS), Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Dexin Lin
- Department of General Surgery, Ningde Municipal Hospital of Ningde Normal University, Ningde, China
| | - Guijian Chang
- Department of General Surgery, Ningde Municipal Hospital of Ningde Normal University, Ningde, China
| | - Yueyue Zeng
- Department of General Surgery, Ningde Municipal Hospital of Ningde Normal University, Ningde, China
| | - Yueming Xia
- Department of General Surgery, Ningde Municipal Hospital of Ningde Normal University, Ningde, China
- *Correspondence: Yueming Xia,
| |
Collapse
|