1
|
Jannesar K, Soraya H. MPO and its role in cancer, cardiovascular and neurological disorders: An update. Biochem Biophys Res Commun 2025; 755:151578. [PMID: 40043618 DOI: 10.1016/j.bbrc.2025.151578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/31/2025] [Accepted: 03/01/2025] [Indexed: 03/17/2025]
Abstract
Myeloperoxidase (MPO) is an enzyme that contains a heme group, found mostly in neutrophils and in small amounts in monocytes and plays a major role in their anti-microbial activity. However, excessive levels of MPO have been linked to various disorders and identified as a major cause of tissue destruction. Inhibiting its activity can reduce the severity and extent of tissue damage. Over activity of MPO during chronic inflammation has been shown to be involved in tumorigenesis by inducing a hyper-mutagenic environment through oxidant interaction with DNA, causing DNA modification. Vascular endothelium is one of the most important targets of MPO and high levels have been associated with increased rates of cardiomyopathy, ischemic stroke, heart failure, myocardial infarction, and atrial fibrillation. Therefore, it may be considered a therapeutic target in the treatment of cardiovascular disorders. MPO also participates in the pathogenesis of neurodegenerative diseases. For example, an increase in MPO levels has been observed in the brain tissue of patients with Alzheimer's, Multiple sclerosis (MS), and Parkinson's diseases. In Alzheimer's disease, active MPO is mostly found in the location of beta amyloids and microglia. Therefore, targeting MPO may be a potential treatment and prevention strategy for neurological disorders. This review will discuss MPO's physiological and pathological role in cancer, cardiovascular, and neurological disorders.
Collapse
Affiliation(s)
- Kosar Jannesar
- Department of Pharmacology and Toxicology, School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | - Hamid Soraya
- Department of Pharmacology and Toxicology, School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
2
|
Guo M, Sheng W, Yuan X, Wang X. Neutrophils as promising therapeutic targets in pancreatic cancer liver metastasis. Int Immunopharmacol 2024; 140:112888. [PMID: 39133956 DOI: 10.1016/j.intimp.2024.112888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/01/2024] [Accepted: 08/04/2024] [Indexed: 09/01/2024]
Abstract
Pancreatic cancer is characterized by an extremely poor prognosis and presents significant treatment challenges. Liver metastasis is the leading cause of death in patients with pancreatic cancer. Recent studies have highlighted the significant impact of neutrophils on tumor occurrence and progression, as well as their crucial role in the pancreatic cancer tumor microenvironment. Neutrophil infiltration plays a critical role in the progression and prognosis of pancreatic cancer. Neutrophils contribute to pancreatic cancer liver metastasis through various mechanisms, including angiogenesis, immune suppression, immune evasion, and epithelial-mesenchymal transition (EMT). Therefore, targeting neutrophils holds promise as an important therapeutic strategy for inhibiting pancreatic cancer liver metastasis. This article provides a summary of research findings on the involvement of neutrophils in pancreatic cancer liver metastasis and analyzes their potential as therapeutic targets. This research may provide new insights for the treatment of pancreatic cancer and improve the prognosis of patients with this disease.
Collapse
Affiliation(s)
- Minjie Guo
- Department of Thoracic Oncology, Cancer Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Wanying Sheng
- Department of Thoracic Oncology, Cancer Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xiao Yuan
- Cancer Institute of Jiangsu University, Zhenjiang, China.
| | - Xu Wang
- Department of Thoracic Oncology, Cancer Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, China.
| |
Collapse
|
3
|
Liang Y, Wu G, Tan J, Xiao X, Yang L, Saw PE. Targeting NETosis: nature's alarm system in cancer progression. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2024; 7:28. [PMID: 39143953 PMCID: PMC11322967 DOI: 10.20517/cdr.2024.24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/30/2024] [Accepted: 07/15/2024] [Indexed: 08/16/2024]
Abstract
Neutrophils are recognized active participants in inflammatory responses and are intricately linked to cancer progression. In response to inflammatory stimuli, neutrophils become activated, releasing neutrophils extracellular traps (NETs) for the capture and eradication of pathogens, a phenomenon termed NETosis. With a deeper understanding of NETs, there is growing evidence supporting their role in cancer progression and their involvement in conferring resistance to various cancer therapies, especially concerning tumor reactions to chemotherapy, radiation therapy (RT), and immunotherapy. This review summarizes the roles of NETs in the tumor microenvironment (TME) and their mechanisms of neutrophil involvement in the host defense. Additionally, it elucidates the mechanisms through which NETs promote tumor progression and their role in cancer treatment resistance, highlighting their potential as promising therapeutic targets in cancer treatment and their clinical applicability.
Collapse
Affiliation(s)
- Yixia Liang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, Guangdong, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan 528200, Guangdong, China
- Authors contributed equally
| | - Guo Wu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, Guangdong, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan 528200, Guangdong, China
- Authors contributed equally
| | - Jiabao Tan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, Guangdong, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan 528200, Guangdong, China
| | - Xiaoyun Xiao
- Department of Ultrasound, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong, China
| | - Linbin Yang
- Breast Tumor Center, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong, China
| | - Phei Er Saw
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, Guangdong, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan 528200, Guangdong, China
| |
Collapse
|
4
|
Fu Y, Tao J, Gu Y, Liu Y, Qiu J, Su D, Wang R, Luo W, Liu T, Zhang F, Zhang T, Zhao Y. Multiomics integration reveals NETosis heterogeneity and TLR2 as a prognostic biomarker in pancreatic cancer. NPJ Precis Oncol 2024; 8:109. [PMID: 38769374 PMCID: PMC11106236 DOI: 10.1038/s41698-024-00586-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 03/28/2024] [Indexed: 05/22/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly malignant neoplasm characterized by a poor prognosis and limited therapeutic strategy. The PDAC tumor microenvironment presents a complex heterogeneity, where neutrophils emerge as the predominant constituents of the innate immune cell population. Leveraging the power of single-cell RNA-seq, spatial RNA-seq, and multi-omics approaches, we included both published datasets and our in-house patient cohorts, elucidating the inherent heterogeneity in the formation of neutrophil extracellular traps (NETs) and revealed the correlation between NETs and immune suppression. Meanwhile, we constructed a multi-omics prognostic model that suggested the patients exhibiting downregulated expression of NETs may have an unfavorable outcome. We also confirmed TLR2 as a potent prognosis factor and patients with low TLR2 expression had more effective T cells and an overall survival extension for 6 months. Targeting TLR2 might be a promising strategy to reverse immunosuppression and control tumor progression for an improved prognosis.
Collapse
Affiliation(s)
- Yifan Fu
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- 4 + 4 Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Jinxin Tao
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Yani Gu
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking, Union Medical College, Beijing, 100005, China
| | - Yueze Liu
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Jiangdong Qiu
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Dan Su
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Ruobing Wang
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Wenhao Luo
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Tao Liu
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Feifan Zhang
- Department of Computer Science, University College London, London, UK
| | - Taiping Zhang
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
- Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Yupei Zhao
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
5
|
Henderson EA, Ivey A, Choi SJ, Santiago S, McNitt D, Liu TW, Lukomski S, Boone BA. Group A streptococcal collagen-like protein 1 restricts tumor growth in murine pancreatic adenocarcinoma and inhibits cancer-promoting neutrophil extracellular traps. Front Immunol 2024; 15:1363962. [PMID: 38515758 PMCID: PMC10955053 DOI: 10.3389/fimmu.2024.1363962] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 02/14/2024] [Indexed: 03/23/2024] Open
Abstract
Introduction Pancreatic ductal adenocarcinoma (PDAC) is a lethal cancer associated with an immunosuppressive environment. Neutrophil extracellular traps (NETs) were initially described in the context of infection but have more recently been implicated in contributing to the tolerogenic immune response in PDAC. Thus, NETs are an attractive target for new therapeutic strategies. Group A Streptococcus (GAS) has developed defensive strategies to inhibit NETs. Methods In the present work, we propose utilizing intra-tumoral GAS injection to stimulate anti-tumor activity by inhibiting cancer-promoting NETs. Mice harboring Panc02 or KPC subcutaneous tumors injected with three different M-type GAS strains. Tumors and spleens were harvested at the endpoint of the experiments to assess bacterial colonization and systemic spread, while sera were analyzed for humoral responses toward the streptococcal antigens, especially the M1 and Scl1 proteins. Role of the streptococcal collagen-like protein 1 (Scl1) in anti-PDAC activity was assessed in vivo after intratumoral injection with M1 GAS wild-type, an isogenic mutant strain devoid of Scl1, or a complemented mutant strain with restored scl1 expression. In addition, recombinant Scl1 proteins were tested for NET inhibition using in vitro and ex vivo assays assessing NET production and myeloperoxidase activity. Results Injection of three different M-type GAS strains reduced subcutaneous pancreatic tumor volume compared to control in two different murine PDAC models. Limitation of tumor growth was dependent on Scl1, as isogenic mutant strain devoid of Scl1 did not reduce tumor size. We further show that Scl1 plays a role in localizing GAS to the tumor site, thereby limiting the systemic spread of bacteria and off-target effects. While mice did elicit a humoral immune response to GAS antigens, tested sera were weakly immunogenic toward Scl1 antigen following intra-tumoral treatment with Scl1-expressing GAS. M1 GAS inhibited NET formation when co-cultured with neutrophils while Scl1-devoid mutant strain did not. Recombinant Scl1 protein inhibited NETs ex vivo in a dose-dependent manner by suppressing myeloperoxidase activity. Discussion Altogether, we demonstrate that intra-tumoral GAS injections reduce PDAC growth, which is facilitated by Scl1, in part through inhibition of cancer promoting NETs. This work offers a novel strategy by which NETs can be targeted through Scl1 protein and potentiates its use as a cancer therapeutic.
Collapse
Affiliation(s)
- Emily A. Henderson
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV, United States
| | - Abby Ivey
- West Virginia University Cancer Institute, School of Medicine, West Virginia University, Morgantown, WV, United States
| | - Soo Jeon Choi
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV, United States
| | - Stell Santiago
- Department of Pathology, School of Medicine, West Virginia University, Morgantown, WV, United States
| | - Dudley McNitt
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV, United States
| | - Tracy W. Liu
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV, United States
- West Virginia University Cancer Institute, School of Medicine, West Virginia University, Morgantown, WV, United States
| | - Slawomir Lukomski
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV, United States
- West Virginia University Cancer Institute, School of Medicine, West Virginia University, Morgantown, WV, United States
| | - Brian A. Boone
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV, United States
- West Virginia University Cancer Institute, School of Medicine, West Virginia University, Morgantown, WV, United States
- Department of Surgery, West Virginia University, Morgantown, WV, United States
| |
Collapse
|
6
|
Henderson EA, Ivey A, Choi S, Santiago S, McNitt D, Liu TW, Lukomski S, Boone BA. Group A Streptococcal Collagen-like Protein 1 Restricts Tumor Growth in Murine Pancreatic Adenocarcinoma and Inhibits Cancer-Promoting Neutrophil Extracellular Traps. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.17.576060. [PMID: 38293049 PMCID: PMC10827155 DOI: 10.1101/2024.01.17.576060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a lethal cancer associated with an immunosuppressive environment. Neutrophil extracellular traps (NETs) were initially described in the context of infection but have more recently been implicated in contributing to the tolerogenic immune response in PDAC. Thus, NETs are an attractive target for new therapeutic strategies. Group A Streptococcus (GAS) has developed defensive strategies to inhibit NETs. In the present work, we propose utilizing intra-tumoral GAS injection to stimulate anti-tumor activity by inhibiting cancer-promoting NETs. Injection of three different M-type GAS strains reduced subcutaneous pancreatic tumor volume compared to control in two different murine PDAC models. Limitation of tumor growth was dependent on streptococcal collagen-like protein 1 (Scl1), as isogenic mutant strain devoid of Scl1 did not reduce tumor size. We further show that Scl1 plays a role in localizing GAS to the tumor site, thereby limiting the systemic spread of bacteria and off-target effects. While mice did elicit a humoral immune response to GAS antigens, tested sera were negative toward Scl1 antigen following intra-tumoral treatment with Scl1-expressing GAS. M1 GAS inhibited NET formation when co-cultured with neutrophils while Scl1-devoid mutant strain did not. Recombinant Scl1 protein inhibited NETs ex vivo in a dose-dependent manner by suppressing myeloperoxidase activity. Altogether, we demonstrate that intra-tumoral GAS injections reduce PDAC growth, which is facilitated by Scl1, in part through inhibition of cancer promoting NETs. This work offers a novel strategy by which NETs can be targeted through Scl1 protein and potentiates its use as a cancer therapeutic.
Collapse
Affiliation(s)
- Emily A Henderson
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, WV
| | - Abby Ivey
- West Virginia University Cancer Institute, West Virginia University, Morgantown, WV
| | - Soo Choi
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, WV
| | - Stell Santiago
- Department of Pathology, West Virginia University, Morgantown, WV
| | - Dudley McNitt
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, WV
| | - Tracy W Liu
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, WV
- West Virginia University Cancer Institute, West Virginia University, Morgantown, WV
| | - Slawomir Lukomski
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, WV
- West Virginia University Cancer Institute, West Virginia University, Morgantown, WV
| | - Brian A Boone
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, WV
- West Virginia University Cancer Institute, West Virginia University, Morgantown, WV
- Department of Surgery, West Virginia University, Morgantown, WV
| |
Collapse
|
7
|
Larsen TL, Svalastoga M, Brekke J, Enden T, Frøen H, Garresori H, Jacobsen EM, Paulsen PQ, Porojnicu AC, Ree AH, Torfoss D, Velle EO, Wik HS, Ghanima W, Sandset PM, Dahm AEA. Arterial events in cancer patients treated with apixaban for venous thrombosis. Thromb Res 2023; 228:128-133. [PMID: 37327527 DOI: 10.1016/j.thromres.2023.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/20/2023] [Accepted: 05/17/2023] [Indexed: 06/18/2023]
Abstract
INTRODUCTION In a recent interventional study of cancer patients with newly diagnosed venous thrombosis (VT), we found a high risk of arterial thrombotic events (AT) during treatment with therapeutic doses of apixaban. METHODS Total 298 cancer patients with VT received apixaban as treatment and secondary prophylaxis for up to 36 months. AT was registered as a serious adverse event, and this is a post hoc analysis of risk factors for AT. Clinical risk factors and concomitant medication were assessed through odds ratios (OR) with 95 % confidence interval using multivariate logistic regression. Biomarkers were assessed by non-parametric testing. RESULTS AT occurred in 16/298 patients (5.4 %, 95 % confidence interval (CI) 3.1-8.6 %). Median leucocyte count at baseline was higher in patients with AT compared with patients without AT (11 vs. 6.8·109/L, p < 0.01). Clinical factors associated with AT were pancreatic cancer (OR 13.7, 95 % CI 4.3-43.1), ovarian cancer (OR 19.3, 95 % CI 2.3-164.4), BMI <25 percentile (OR 3.1, 95 % CI 1.1-8.8) and previous VT (OR 4.4, 95 % CI 1.4-13.7). Pancreatic cancer had a cumulative incidence of AT of 36 % compared with 0.8 % for all other cancers at 6 months (p < 0.01). Non-steroidal anti-inflammatory drugs (OR 4.9, 95 % CI 1.0-26) and antiplatelet treatment (OR 3.8, 95 % CI 1.2-12.2) were associated with AT. CONCLUSION In cancer patients with apixaban treated VT, pancreatic cancer was strongly associated with AT. In addition, ovarian cancer, BMI < 25 percentile, previous VT, antiplatelet treatment, non-steroidal anti-inflammatory drug use and high leucocyte count at baseline were associated with AT. The CAP study is registered with the unique identifier NCT02581176 in ClinicalTrials.gov.
Collapse
Affiliation(s)
- Trine-Lise Larsen
- Faculty of Medicine, University of Oslo, Postboks 1078, Blindern, 0316 Oslo, Norway; Department of Hematology, Akershus University Hospital, P.O. BOX 1000, N-1478 Lørenskog, Norway.
| | - Marte Svalastoga
- Faculty of Medicine, University of Oslo, Postboks 1078, Blindern, 0316 Oslo, Norway.
| | - Jorunn Brekke
- Department of Oncology, Haukeland University Hospital, P.O. BOX 1400, N-5021 Bergen, Norway.
| | - Tone Enden
- Tidsskriftet, den norske legeforening, Postboks 1152, Sentrum, 0107 Oslo, Norway.
| | - Hege Frøen
- Department of Haematology, Oslo University Hospital, P.O. BOX 4950, Nydalen, N-0424 Oslo, Norway
| | - Herish Garresori
- Department of Oncology, Stavanger University Hospital, P.O. BOX 8100, N-4068 Stavanger, Norway.
| | - Eva Marie Jacobsen
- Department of Haematology, Oslo University Hospital, P.O. BOX 4950, Nydalen, N-0424 Oslo, Norway.
| | - Petter Quist Paulsen
- Department of Hematology, St. Olav's University Hospital, P.O. BOX 3250, Torgarden, N-7006 Trondheim, Norway.
| | - Alina Carmen Porojnicu
- Department of Oncology, Drammen Hospital, Vestre Viken Hospital Trust, P.O. BOX 800, N-3004 Drammen, Norway.
| | - Anne Hansen Ree
- Faculty of Medicine, University of Oslo, Postboks 1078, Blindern, 0316 Oslo, Norway; Department of Oncology, Akershus University Hospital, P.O. BOX 1000, N-1478 Lørenskog, Norway.
| | - Dag Torfoss
- Department of Oncology, Oslo University Hospital, P.O. BOX 4950 Nydalen, N-0424 Oslo, Norway
| | - Elin Osvik Velle
- Department of Medicine, Volda Hospital, Møre and Romsdal Hospital, P.O. BOX b 113, 6101 Volda, Norway.
| | - Hilde Skuterud Wik
- Department of Haematology, Oslo University Hospital, P.O. BOX 4950, Nydalen, N-0424 Oslo, Norway.
| | - Waleed Ghanima
- Faculty of Medicine, University of Oslo, Postboks 1078, Blindern, 0316 Oslo, Norway; Clinic of Internal Medicine, Østfold Hospital, P.O. BOX 300, N-1714 Grålum, Norway.
| | - Per Morten Sandset
- Faculty of Medicine, University of Oslo, Postboks 1078, Blindern, 0316 Oslo, Norway; Department of Haematology, Oslo University Hospital, P.O. BOX 4950, Nydalen, N-0424 Oslo, Norway.
| | - Anders Erik Astrup Dahm
- Faculty of Medicine, University of Oslo, Postboks 1078, Blindern, 0316 Oslo, Norway; Department of Hematology, Akershus University Hospital, P.O. BOX 1000, N-1478 Lørenskog, Norway
| |
Collapse
|
8
|
Henderson EA, Lukomski S, Boone BA. Emerging applications of cancer bacteriotherapy towards treatment of pancreatic cancer. Front Oncol 2023; 13:1217095. [PMID: 37588093 PMCID: PMC10425600 DOI: 10.3389/fonc.2023.1217095] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 06/26/2023] [Indexed: 08/18/2023] Open
Abstract
Pancreatic cancer is a highly aggressive form of cancer with a five-year survival rate of only ten percent. Pancreatic ductal adenocarcinoma (PDAC) accounts for ninety percent of those cases. PDAC is associated with a dense stroma that confers resistance to current treatment modalities. Increasing resistance to cancer treatments poses a challenge and a need for alternative therapies. Bacterial mediated cancer therapies were proposed in the late 1800s by Dr. William Coley when he injected osteosarcoma patients with live streptococci or a fabrication of heat-killed Streptococcus pyogenes and Serratia marcescens known as Coley's toxin. Since then, several bacteria have gained recognition for possible roles in potentiating treatment response, enhancing anti-tumor immunity, and alleviating adverse effects to standard treatment options. This review highlights key bacterial mechanisms and structures that promote anti-tumor immunity, challenges and risks associated with bacterial mediated cancer therapies, and applications and opportunities for use in PDAC management.
Collapse
Affiliation(s)
- Emily A. Henderson
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, WV, United States
| | - Slawomir Lukomski
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, WV, United States
- West Virginia Cancer Institute, West Virginia University, Morgantown, WV, United States
| | - Brian A. Boone
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, WV, United States
- West Virginia Cancer Institute, West Virginia University, Morgantown, WV, United States
- Department of Surgery, West Virginia University, Morgantown, WV, United States
| |
Collapse
|
9
|
Wang D, Cui SP, Chen Q, Ren ZY, Lyu SC, Zhao X, Lang R. The coagulation-related genes for prognosis and tumor microenvironment in pancreatic ductal adenocarcinoma. BMC Cancer 2023; 23:601. [PMID: 37386391 DOI: 10.1186/s12885-023-11032-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 05/31/2023] [Indexed: 07/01/2023] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is a malignancy characterized by challenging early diagnosis and poor prognosis. It is believed that coagulation has an impact on the tumor microenvironment of PDAC. The aim of this study is to further distinguish coagulation-related genes and investigate immune infiltration in PDAC. METHODS We gathered two subtypes of coagulation-related genes from the KEGG database, and acquired transcriptome sequencing data and clinical information on PDAC from The Cancer Genome Atlas (TCGA) database. Using an unsupervised clustering method, we categorized patients into distinct clusters. We investigated the mutation frequency to explore genomic features and performed enrichment analysis, utilizing Gene Ontology (GO) and Kyoto Encyclopedia of Genes (KEGG) to explore pathways. CIBERSORT was used to analyze the relationship between tumor immune infiltration and the two clusters. A prognostic model was created for risk stratification, and a nomogram was established to assist in determining the risk score. The response to immunotherapy was assessed using the IMvigor210 cohort. Finally, PDAC patients were recruited, and experimental samples were collected to validate the infiltration of neutrophils using immunohistochemistry. In addition, and identify the ITGA2 expression and function were identified by analyzing single cell sequencing data. RESULTS Two coagulation-related clusters were established based on the coagulation pathways present in PDAC patients. Functional enrichment analysis revealed different pathways in the two clusters. Approximately 49.4% of PDAC patients experienced DNA mutation in coagulation-related genes. Patients in the two clusters displayed significant differences in terms of immune cell infiltration, immune checkpoint, tumor microenvironment and TMB. We developed a 4-gene prognostic stratified model through LASSO analysis. Based on the risk score, the nomogram can accurately predict the prognosis in PDAC patients. We identified ITGA2 as a hub gene, which linked to poor overall survival (OS) and short disease-free survival (DFS). Single-cell sequencing analysis demonstrated that ITGA2 was expressed by ductal cells in PDAC. CONCLUSIONS Our study demonstrated the correlation between coagulation-related genes and the tumor immune microenvironment. The stratified model can predict the prognosis and calculate the benefits of drug therapy, thus providing the recommendations for clinical personalized treatment.
Collapse
Affiliation(s)
- Di Wang
- Department of Hepatobiliary and Pancreaticosplenic Surgery, Beijing Chaoyang Hospital, Capital Medical University, No. 8 Gongtinan Road, Chaoyang District, Beijing, 100020, People's Republic of China
| | - Song-Ping Cui
- Department of Hepatobiliary and Pancreaticosplenic Surgery, Beijing Chaoyang Hospital, Capital Medical University, No. 8 Gongtinan Road, Chaoyang District, Beijing, 100020, People's Republic of China
| | - Qing Chen
- Department of Hepatobiliary and Pancreaticosplenic Surgery, Beijing Chaoyang Hospital, Capital Medical University, No. 8 Gongtinan Road, Chaoyang District, Beijing, 100020, People's Republic of China
| | - Zhang-Yong Ren
- Department of Hepatobiliary and Pancreaticosplenic Surgery, Beijing Chaoyang Hospital, Capital Medical University, No. 8 Gongtinan Road, Chaoyang District, Beijing, 100020, People's Republic of China
| | - Shao-Cheng Lyu
- Department of Hepatobiliary and Pancreaticosplenic Surgery, Beijing Chaoyang Hospital, Capital Medical University, No. 8 Gongtinan Road, Chaoyang District, Beijing, 100020, People's Republic of China
| | - Xin Zhao
- Department of Hepatobiliary and Pancreaticosplenic Surgery, Beijing Chaoyang Hospital, Capital Medical University, No. 8 Gongtinan Road, Chaoyang District, Beijing, 100020, People's Republic of China
| | - Ren Lang
- Department of Hepatobiliary and Pancreaticosplenic Surgery, Beijing Chaoyang Hospital, Capital Medical University, No. 8 Gongtinan Road, Chaoyang District, Beijing, 100020, People's Republic of China.
| |
Collapse
|
10
|
Bhoopathi P, Mannangatti P, Das SK, Fisher PB, Emdad L. Chemoresistance in pancreatic ductal adenocarcinoma: Overcoming resistance to therapy. Adv Cancer Res 2023; 159:285-341. [PMID: 37268399 DOI: 10.1016/bs.acr.2023.02.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC), a prominent cause of cancer deaths worldwide, is a highly aggressive cancer most frequently detected at an advanced stage that limits treatment options to systemic chemotherapy, which has provided only marginal positive clinical outcomes. More than 90% of patients with PDAC die within a year of being diagnosed. PDAC is increasing at a rate of 0.5-1.0% per year, and it is expected to be the second leading cause of cancer-related mortality by 2030. The resistance of tumor cells to chemotherapeutic drugs, which can be innate or acquired, is the primary factor contributing to the ineffectiveness of cancer treatments. Although many PDAC patients initially responds to standard of care (SOC) drugs they soon develop resistance caused partly by the substantial cellular heterogeneity seen in PDAC tissue and the tumor microenvironment (TME), which are considered key factors contributing to resistance to therapy. A deeper understanding of molecular mechanisms involved in PDAC progression and metastasis development, and the interplay of the TME in all these processes is essential to better comprehend the etiology and pathobiology of chemoresistance observed in PDAC. Recent research has recognized new therapeutic targets ushering in the development of innovative combinatorial therapies as well as enhancing our comprehension of several different cell death pathways. These approaches facilitate the lowering of the therapeutic threshold; however, the possibility of subsequent resistance development still remains a key issue and concern. Discoveries, that can target PDAC resistance, either alone or in combination, have the potential to serve as the foundation for future treatments that are effective without posing undue health risks. In this chapter, we discuss potential causes of PDAC chemoresistance and approaches for combating chemoresistance by targeting different pathways and different cellular functions associated with and mediating resistance.
Collapse
Affiliation(s)
- Praveen Bhoopathi
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Richmond, VA, United States
| | - Padmanabhan Mannangatti
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Richmond, VA, United States
| | - Swadesh K Das
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States.
| | - Luni Emdad
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States.
| |
Collapse
|