1
|
Ernst MPT, Versluis J, Valk PJM, Bierings M, Tamminga RYJ, Hooimeijer LH, Döhner K, Gresele P, Tawana K, Langemeijer SMC, Van der Reijden BA, Podgornik H, Sever M, Tvedt THA, Vulliamy T, Fitzgibbon J, Dokal I, Baliakas P, Bastida JM, Pohlkamp C, Haferlach T, Larcher L, Soulier J, Schutgens REG, Freson K, Duployez N, Löwenberg B, Ericson K, Cammenga J, Ripperger T, Raaijmakers MHGP. Disease characteristics and outcomes of acute myeloid leukemia in germline RUNX1 deficiency (Familial Platelet Disorder with associated Myeloid Malignancy). Hemasphere 2025; 9:e70057. [PMID: 39822584 PMCID: PMC11735945 DOI: 10.1002/hem3.70057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 08/14/2024] [Accepted: 09/02/2024] [Indexed: 01/19/2025] Open
Abstract
Familial Platelet Disorder with associated Myeloid Malignancy (FPDMM, FPD/AML, RUNX1-FPD), caused by monoallelic deleterious germline RUNX1 variants, is characterized by bleeding diathesis and predisposition for hematologic malignancies, particularly myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML). Clinical data on FPDMM-associated AML (FPDMM-AML) are limited, complicating evidence-based clinical decision-making. Here, we present retrospective genetic and clinical data of the largest cohort of FPDMM patients reported to date. We describe 159 European patients (from 94 families) of whom 134 were evaluable for the development of malignant disease. Sixty developed a hematologic malignancy (44.8%), most frequently AML (36/134, 26.9%) or MDS (18/134, 13.4%). Somatic alterations of RUNX1 by gene mutation (48%) and chromosome 21 aberrations (14.3%) were the most common somatic genetic aberrations in FPDMM-AML, followed by FLT3-ITD mutations (24.1%). Somatic RUNX1 and FLT3-ITD mutations were not detected in FPDMM-associated MDS, suggesting important contributions to leukemic transformation. Remission-induction chemotherapy resulted in complete remission in 80% of FPDMM-AML patients with a 5-year overall survival (OS) of 50.4%. Survival outcome was non-inferior compared to a large cohort of newly diagnosed adult RUNX1-mutated AML (5-year OS 36.6%, p = 0.5), with relatively infrequent concurrent adverse risk somatic aberrations (ASXL1 mutation, monosomal karyotype, monosomy 5/del 5q) in FPDMM-AML. Collectively, data support the notion that step-wise leukemic evolution in FPDMM is associated with distinct genetic events and indicate that a substantial subset of FPDMM-AML patients achieves prolonged survival with conventional AML treatment, including allogeneic stem cell transplant. These findings are anticipated to inform personalized clinical decision-making in this rare disorder.
Collapse
Affiliation(s)
- Martijn P T Ernst
- Department of Hematology Erasmus University Medical Center and Erasmus MC Cancer Institute Rotterdam The Netherlands
| | - Jurjen Versluis
- Department of Hematology Erasmus University Medical Center and Erasmus MC Cancer Institute Rotterdam The Netherlands
| | - Peter J M Valk
- Department of Hematology Erasmus University Medical Center and Erasmus MC Cancer Institute Rotterdam The Netherlands
| | - Marc Bierings
- Princess Máxima Center for Pediatric Oncology Utrecht The Netherlands
| | - Rienk Y J Tamminga
- Beatrix Children's Hospital University Medical Center Groningen The Netherlands
| | - Louise H Hooimeijer
- Beatrix Children's Hospital University Medical Center Groningen The Netherlands
| | | | - Paolo Gresele
- Department of Medicine and Surgery, Section of Internal and Cardiovascular Medicine University of Perugia Perugia Italy
| | - Kiran Tawana
- Department of Haematology Addenbrooke's Hospital Cambridge UK
| | | | | | - Helena Podgornik
- Department of Hematology University Medical Centre Ljubljana Ljubljana Slovenia
- Faculty of Pharmacy University of Ljubljana Ljubljana Slovenia
| | - Matjaz Sever
- Department of Hematology University Medical Centre Ljubljana Ljubljana Slovenia
- Faculty of Medicine University of Ljubljana Ljubljana Slovenia
| | - Tor H A Tvedt
- Department of Haematology Oslo University Hospital Oslo Norway
| | - Tom Vulliamy
- Blizard Institute, Faculty of Medicine and Dentistry Queen Mary University of London London UK
| | - Jude Fitzgibbon
- Haemato-Oncology, Barts Cancer Institute Queen Mary University of London London UK
| | - Inderjeet Dokal
- Haemato-Oncology, Barts Cancer Institute Queen Mary University of London London UK
| | - Panagiotis Baliakas
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory Uppsala University Uppsala Sweden
| | - José M Bastida
- Department of Hematology Complejo Asistencial Universitario de Salamanca (CAUSA), Instituto de Investigación Biomedica de Salamanca (IBSAL), Universidad de Salamanca (USAL) Salamanca Spain
| | | | | | - Lise Larcher
- Université Paris Cité, Inserm and Hôpital Saint-Louis, APHP Paris France
| | - Jean Soulier
- Université Paris Cité, Inserm and Hôpital Saint-Louis, APHP Paris France
| | - Roger E G Schutgens
- Center for Benign Haematology, Thrombosis and Haemostasis, Van Creveldkliniek, University Medical Center Utrecht and University Utrecht The Netherlands
| | - Kathleen Freson
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology University of Leuven Leuven Belgium
| | - Nicolas Duployez
- Laboratory of Hematology Biology and Pathology Center, Centre Hospitalier Regional Universitaire de Lille Lille France
| | - Bob Löwenberg
- Department of Hematology Erasmus University Medical Center and Erasmus MC Cancer Institute Rotterdam The Netherlands
| | | | - Jörg Cammenga
- Department of Hematology, Skåne University Hospital and Molecular Medicine and Gene Therapy Lund University Lund Sweden
| | - Tim Ripperger
- Department of Human Genetics Hannover Medical School Hannover Germany
| | - Marc H G P Raaijmakers
- Department of Hematology Erasmus University Medical Center and Erasmus MC Cancer Institute Rotterdam The Netherlands
| |
Collapse
|
2
|
Yang M, Bai L, Ma Y, Cao X, Cui Q, Wu D, Tang X. Familial Acute Promyelocytic Leukemia: A Case Report and Review of the Literature. Onco Targets Ther 2024; 17:733-738. [PMID: 39247121 PMCID: PMC11380871 DOI: 10.2147/ott.s482781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/29/2024] [Indexed: 09/10/2024] Open
Abstract
Acute promyelocytic leukemia (APL) is characterized by a reciprocal translocation t (15;17) (q24;q21), which leads to the fusion of PML and RARα genes known as PML-RARα fusion. A few cases of potentially hereditary leukemia-related genes in APL have been reported, but no instances of familial aggregation of APL have been documented. Here, we describe a family in whom two members successively affected by APL。The potential familial association observed in these two cases of APL highlights the need for further investigation and more definitive genetic lineage tracing in order to understand the genetic basis of this disease.
Collapse
Affiliation(s)
- Mingqi Yang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
| | - Lian Bai
- Canglang Hospital of Suzhou, Suzhou, People's Republic of China
| | - Yunju Ma
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
| | - Xuanqi Cao
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
| | - Qingya Cui
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
| | - Depei Wu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
| | - Xiaowen Tang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
| |
Collapse
|
3
|
Arai H, Matsui H, Chi S, Utsu Y, Masuda S, Aotsuka N, Minami Y. Germline Variants and Characteristic Features of Hereditary Hematological Malignancy Syndrome. Int J Mol Sci 2024; 25:652. [PMID: 38203823 PMCID: PMC10779750 DOI: 10.3390/ijms25010652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/25/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
Due to the proliferation of genetic testing, pathogenic germline variants predisposing to hereditary hematological malignancy syndrome (HHMS) have been identified in an increasing number of genes. Consequently, the field of HHMS is gaining recognition among clinicians and scientists worldwide. Patients with germline genetic abnormalities often have poor outcomes and are candidates for allogeneic hematopoietic stem cell transplantation (HSCT). However, HSCT using blood from a related donor should be carefully considered because of the risk that the patient may inherit a pathogenic variant. At present, we now face the challenge of incorporating these advances into clinical practice for patients with myelodysplastic syndrome (MDS) or acute myeloid leukemia (AML) and optimizing the management and surveillance of patients and asymptomatic carriers, with the limitation that evidence-based guidelines are often inadequate. The 2016 revision of the WHO classification added a new section on myeloid malignant neoplasms, including MDS and AML with germline predisposition. The main syndromes can be classified into three groups. Those without pre-existing disease or organ dysfunction; DDX41, TP53, CEBPA, those with pre-existing platelet disorders; ANKRD26, ETV6, RUNX1, and those with other organ dysfunctions; SAMD9/SAMD9L, GATA2, and inherited bone marrow failure syndromes. In this review, we will outline the role of the genes involved in HHMS in order to clarify our understanding of HHMS.
Collapse
Affiliation(s)
- Hironori Arai
- Department of Hematology, National Cancer Center Hospital East, Kashiwa 277-8577, Japan; (H.A.); (S.C.)
- Department of Hematology and Oncology, Japanese Red Cross Narita Hospital, Iidacho, Narita 286-0041, Japan; (Y.U.); (S.M.); (N.A.)
| | - Hirotaka Matsui
- Department of Laboratory Medicine, National Cancer Center Hospital, Tsukiji, Chuoku 104-0045, Japan;
- Department of Medical Oncology and Translational Research, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8665, Japan
| | - SungGi Chi
- Department of Hematology, National Cancer Center Hospital East, Kashiwa 277-8577, Japan; (H.A.); (S.C.)
| | - Yoshikazu Utsu
- Department of Hematology and Oncology, Japanese Red Cross Narita Hospital, Iidacho, Narita 286-0041, Japan; (Y.U.); (S.M.); (N.A.)
| | - Shinichi Masuda
- Department of Hematology and Oncology, Japanese Red Cross Narita Hospital, Iidacho, Narita 286-0041, Japan; (Y.U.); (S.M.); (N.A.)
| | - Nobuyuki Aotsuka
- Department of Hematology and Oncology, Japanese Red Cross Narita Hospital, Iidacho, Narita 286-0041, Japan; (Y.U.); (S.M.); (N.A.)
| | - Yosuke Minami
- Department of Hematology, National Cancer Center Hospital East, Kashiwa 277-8577, Japan; (H.A.); (S.C.)
| |
Collapse
|
4
|
Chen D, Pruthi RK. Platelet genetic testing by next-generation sequencing: A practical update. Int J Lab Hematol 2023; 45:630-642. [PMID: 37463678 DOI: 10.1111/ijlh.14136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 06/27/2023] [Indexed: 07/20/2023]
Abstract
Inherited platelet disorders (IPDs) are a heterogeneous group of disorders characterized by normal or reduced platelet counts, bleeding diatheses of varying severities, and the presence (syndromic) or absence (non-syndromic) of involvement of other organs. Due to the lack of highly specific platelet function tests and overlapping clinical and laboratory features, diagnosing the underlying cause of IPDs remains challenging. In recent years, genetic testing via next-generation sequencing (NGS) technologies to rapidly analyze multiple genes has gradually emerged as an important part of the laboratory investigation of patients with IPDs. A systemic clinical and laboratory testing approach and thorough phenotype and genotype correlation studies of both patients and their family members are crucial for accurate diagnoses of IPDs.
Collapse
Affiliation(s)
- Dong Chen
- Special Coagulation Laboratory, Division of Hematopathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Rajiv K Pruthi
- Special Coagulation Laboratory, Division of Hematopathology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
5
|
Zerella JR, Homan CC, Arts P, Brown AL, Scott HS, Hahn CN. Transcription factor genetics and biology in predisposition to bone marrow failure and hematological malignancy. Front Oncol 2023; 13:1183318. [PMID: 37377909 PMCID: PMC10291195 DOI: 10.3389/fonc.2023.1183318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Transcription factors (TFs) play a critical role as key mediators of a multitude of developmental pathways, with highly regulated and tightly organized networks crucial for determining both the timing and pattern of tissue development. TFs can act as master regulators of both primitive and definitive hematopoiesis, tightly controlling the behavior of hematopoietic stem and progenitor cells (HSPCs). These networks control the functional regulation of HSPCs including self-renewal, proliferation, and differentiation dynamics, which are essential to normal hematopoiesis. Defining the key players and dynamics of these hematopoietic transcriptional networks is essential to understanding both normal hematopoiesis and how genetic aberrations in TFs and their networks can predispose to hematopoietic disease including bone marrow failure (BMF) and hematological malignancy (HM). Despite their multifaceted and complex involvement in hematological development, advances in genetic screening along with elegant multi-omics and model system studies are shedding light on how hematopoietic TFs interact and network to achieve normal cell fates and their role in disease etiology. This review focuses on TFs which predispose to BMF and HM, identifies potential novel candidate predisposing TF genes, and examines putative biological mechanisms leading to these phenotypes. A better understanding of the genetics and molecular biology of hematopoietic TFs, as well as identifying novel genes and genetic variants predisposing to BMF and HM, will accelerate the development of preventative strategies, improve clinical management and counseling, and help define targeted treatments for these diseases.
Collapse
Affiliation(s)
- Jiarna R. Zerella
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
| | - Claire C. Homan
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| | - Peer Arts
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| | - Anna L. Brown
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| | - Hamish S. Scott
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| | - Christopher N. Hahn
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| |
Collapse
|
6
|
Ernst MPT, Pronk E, van Dijk C, van Strien PMH, van Tienhoven TVD, Wevers MJW, Sanders MA, Bindels EMJ, Speck NA, Raaijmakers MHGP. Hematopoietic Cell Autonomous Disruption of Hematopoiesis in a Germline Loss-of-function Mouse Model of RUNX1-FPD. Hemasphere 2023; 7:e824. [PMID: 36741355 PMCID: PMC9891454 DOI: 10.1097/hs9.0000000000000824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 11/29/2022] [Indexed: 02/01/2023] Open
Abstract
RUNX1 familial platelet disorder (RUNX1-FPD) is a hematopoietic disorder caused by germline loss-of-function mutations in the RUNX1 gene and characterized by thrombocytopathy, thrombocytopenia, and an increased risk of developing hematologic malignancies, mostly of myeloid origin. Disease pathophysiology has remained incompletely understood, in part because of a shortage of in vivo models recapitulating the germline RUNX1 loss of function found in humans, precluding the study of potential contributions of non-hematopoietic cells to disease pathogenesis. Here, we studied mice harboring a germline hypomorphic mutation of one Runx1 allele with a loss-of-function mutation in the other Runx1 allele (Runx1 L148A/- mice), which display many hematologic characteristics found in human RUNX1-FPD patients. Runx1 L148A/- mice displayed robust and pronounced thrombocytopenia and myeloid-biased hematopoiesis, associated with an HSC intrinsic reconstitution defect in lymphopoiesis and expansion of myeloid progenitor cell pools. We demonstrate that specific deletion of Runx1 from bone marrow stromal cells in Prrx1-cre;Runx1 fl/fl mice did not recapitulate these abnormalities, indicating that the hematopoietic abnormalities are intrinsic to the hematopoietic lineage, and arguing against a driving role of the bone marrow microenvironment. In conclusion, we report a RUNX1-FPD mouse model faithfully recapitulating key characteristics of human disease. Findings do not support a driving role of ancillary, non-hematopoietic cells in the disruption of hematopoiesis under homeostatic conditions.
Collapse
Affiliation(s)
- Martijn P. T. Ernst
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Eline Pronk
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Claire van Dijk
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | | | | | - Michiel J. W. Wevers
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Mathijs A. Sanders
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Eric M. J. Bindels
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Nancy A. Speck
- Abramson Family Cancer Research Institute and Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA
| | | |
Collapse
|
7
|
Toya T, Harada H, Harada Y, Doki N. Adult-onset hereditary myeloid malignancy and allogeneic stem cell transplantation. Front Oncol 2022; 12:997530. [PMID: 36185231 PMCID: PMC9524153 DOI: 10.3389/fonc.2022.997530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
Hereditary myeloid malignancies, especially in adults or elderly persons, had been considered quite rare before the next-generation sequencing era; however, increased usage of clinical sequencing has revealed much higher prevalence of inherited myeloid malignancies. DDX41 and various pathogenic germline mutations have newly been recognized as the cause of adult-onset familial leukemia and myeloid malignancies. Although germline predisposition to myeloid neoplasms had been categorized as a provisional entity in the World Health Organization classification of hematopoietic neoplasms in 2016, methodology for the identification of hereditary myeloid malignancies has not been fully established yet. In addition, many unresolved problems, such as epidemiology, the exact pathogenic mechanisms, and ideal treatment strategy, including indications of allogeneic hematopoietic stem cell transplantation, still remain. Related donor selection for stem cell transplant is a particularly sensitive issue due to the possibility of germline mutation of the candidate relatives and the risk of donor cell leukemia after transplantation. Here, we reviewed the current evidence regarding epidemiology, diagnosis, mechanisms of progression, and transplantation strategy for hereditary myeloid malignancies.
Collapse
Affiliation(s)
- Takashi Toya
- Hematology Division, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
| | - Hironori Harada
- Hematology Division, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
- Laboratory of Oncology, School of Life Sciences, Tokyo University of Pharmacy & Life Sciences, Tokyo, Japan
| | - Yuka Harada
- Clinical Research Support Center, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
| | - Noriko Doki
- Hematology Division, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
| |
Collapse
|