1
|
Jin J, Barnett JD, Mironchik Y, Gross J, Kobayashi H, Levin A, Bhujwalla ZM. Photoimmunotheranostics of epithelioid sarcoma by targeting CD44 or EGFR. Transl Oncol 2024; 45:101966. [PMID: 38663219 PMCID: PMC11063645 DOI: 10.1016/j.tranon.2024.101966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 04/05/2024] [Accepted: 04/16/2024] [Indexed: 05/05/2024] Open
Abstract
Epithelioid sarcoma (ES) is a rare soft tissue neoplasm with high recurrence rates. Wide surgical resection remains the only potential curative treatment. ES presents most commonly on the fingers, hands and forearm, making light-based cancer cell-targeted therapies such as near-infrared photoimmunotherapy (NIR-PIT) that is target-specific, but with limited penetration depth, suitable for ES treatment. We established that CD44 and EGFR were overexpressed in ES patient samples and in the VA-ES-BJ human ES cell line. NIR-PIT of VA-ES-BJ cells using antibody photosensitizer conjugates, prepared by conjugating a CD44 or EGFR monoclonal antibody to the photosensitizer IR700, confirmed that NIR-PIT with both conjugates resulted in cell death. Neither treatment with NIR light alone nor treatment with the conjugates but without NIR light were effective. CD44-IR700-PIT resulted in greater cell death than EGFR-IR700-PIT, consistent with the increased expression of CD44 by VA-ES-BJ cells. In tumors, EGFR-IR700 exhibited a higher tumor-to-normal ratio, as determined by in vivo fluorescence imaging, and a higher anti-tumor growth effect, compared to CD44-IR700. No antitumor effect of the EGFR antibody or the photosensitizer conjugate alone was observed in vivo. Our data support evaluating the use of EGFR-IR700-PIT in the management of ES for detecting and eliminating ES cells in surgical margins, and in the treatment of superficial recurrent tumors.
Collapse
Affiliation(s)
- Jiefu Jin
- Division of Cancer Imaging Research, The Russell H Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - James D Barnett
- Division of Cancer Imaging Research, The Russell H Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yelena Mironchik
- Division of Cancer Imaging Research, The Russell H Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - John Gross
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hisataka Kobayashi
- Laboratory of Molecular Theranostics, Molecular Imaging Branch, NCI/NIH, Bethesda, MD, USA
| | - Adam Levin
- Orthopaedic Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zaver M Bhujwalla
- Division of Cancer Imaging Research, The Russell H Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
2
|
Nie SC, Jing YH, Lu L, Ren SS, Ji G, Xu HC. Mechanisms of myeloid-derived suppressor cell-mediated immunosuppression in colorectal cancer and related therapies. World J Gastrointest Oncol 2024; 16:1690-1704. [PMID: 38764816 PMCID: PMC11099432 DOI: 10.4251/wjgo.v16.i5.1690] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/30/2024] [Accepted: 03/11/2024] [Indexed: 05/09/2024] Open
Abstract
Severe immunosuppression is a hallmark of colorectal cancer (CRC). Myeloid-derived suppressor cells (MDSCs), one of the most abundant components of the tumor stroma, play an important role in the invasion, metastasis, and immune escape of CRC. MDSCs create an immunosuppressive microenvironment by inhibiting the proliferation and activation of immunoreactive cells, including T and natural killer cells, as well as by inducing the proliferation of immunosuppressive cells, such as regulatory T cells and tumor-associated macrophages, which, in turn, promote the growth of cancer cells. Thus, MDSCs are key contributors to the emergence of an immunosuppressive microenvironment in CRC and play an important role in the breakdown of antitumor immunity. In this narrative review, we explore the mechanisms through which MDSCs contribute to the immunosuppressive microenvironment, the current therapeutic approaches and technologies targeting MDSCs, and the therapeutic potential of modulating MDSCs in CRC treatment. This study provides ideas and methods to enhance survival rates in patients with CRC.
Collapse
Affiliation(s)
- Shu-Chang Nie
- Institute of Digestive Diseases, Longhua Hospital, China-Canada Center of Research for Digestive Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Yan-Hua Jing
- Institute of Digestive Diseases, Longhua Hospital, China-Canada Center of Research for Digestive Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Lu Lu
- Institute of Digestive Diseases, Longhua Hospital, China-Canada Center of Research for Digestive Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
- Shanghai Frontiers Science Center of Disease and Syndrome Biology of Inflammatory Cancer Transformation, Shanghai 200032, China
| | - Si-Si Ren
- Institute of Digestive Diseases, Longhua Hospital, China-Canada Center of Research for Digestive Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Guang Ji
- Institute of Digestive Diseases, Longhua Hospital, China-Canada Center of Research for Digestive Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
- Shanghai Frontiers Science Center of Disease and Syndrome Biology of Inflammatory Cancer Transformation, Shanghai 200032, China
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine), Shanghai 200032, China
| | - Han-Chen Xu
- Institute of Digestive Diseases, Longhua Hospital, China-Canada Center of Research for Digestive Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
- Shanghai Frontiers Science Center of Disease and Syndrome Biology of Inflammatory Cancer Transformation, Shanghai 200032, China
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine), Shanghai 200032, China
| |
Collapse
|
3
|
Mehdizadeh R, Shariatpanahi SP, Goliaei B, Rüegg C. Targeting myeloid-derived suppressor cells in combination with tumor cell vaccination predicts anti-tumor immunity and breast cancer dormancy: an in silico experiment. Sci Rep 2023; 13:5875. [PMID: 37041172 PMCID: PMC10090155 DOI: 10.1038/s41598-023-32554-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 03/29/2023] [Indexed: 04/13/2023] Open
Abstract
Among the different breast cancer subsets, triple-negative breast cancer (TNBC) has the worst prognosis and limited options for targeted therapies. Immunotherapies are emerging as novel treatment opportunities for TNBC. However, the surging immune response elicited by immunotherapies to eradicate cancer cells can select resistant cancer cells, which may result in immune escape and tumor evolution and progression. Alternatively, maintaining the equilibrium phase of the immune response may be advantageous for keeping a long-term immune response in the presence of a small-size residual tumor. Myeloid-derived suppressor cells (MDSCs) are activated, expanded, and recruited to the tumor microenvironment by tumor-derived signals and can shape a pro-tumorigenic micro-environment by suppressing the innate and adaptive anti-tumor immune responses. We recently proposed a model describing immune-mediated breast cancer dormancy instigated by a vaccine consisting of dormant, immunogenic breast cancer cells derived from the murine 4T1 TNBC-like cell line. Strikingly, these 4T1-derived dormant cells recruited fewer MDSCs compared to aggressive 4T1 cells. Recent experimental studies demonstrated that inactivating MDSCs has a profound impact on reconstituting immune surveillance against the tumor. Here, we developed a deterministic mathematical model for simulating MDSCs depletion from mice bearing aggressive 4T1 tumors resulting in immunomodulation. Our computational simulations indicate that a vaccination strategy with a small number of tumor cells in combination with MDSC depletion can elicit an effective immune response suppressing the growth of a subsequent challenge with aggressive tumor cells, resulting in sustained tumor dormancy. The results predict a novel therapeutic opportunity based on the induction of effective anti-tumor immunity and tumor dormancy.
Collapse
Affiliation(s)
- Reza Mehdizadeh
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| | | | - Bahram Goliaei
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Curzio Rüegg
- Laboratory of Experimental and Translational Oncology, Pathology, Department of Oncology, Microbiology and Immunology, Faculty of Sciences and Medicine, University of Fribourg, Fribourg, Switzerland.
| |
Collapse
|
4
|
Yamada M, Matsuoka K, Sato M, Sato K. Recent Advances in Localized Immunomodulation Technology: Application of NIR-PIT toward Clinical Control of the Local Immune System. Pharmaceutics 2023; 15:pharmaceutics15020561. [PMID: 36839882 PMCID: PMC9967863 DOI: 10.3390/pharmaceutics15020561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/27/2023] [Accepted: 02/04/2023] [Indexed: 02/11/2023] Open
Abstract
Current immunotherapies aim to modulate the balance among different immune cell populations, thereby controlling immune reactions. However, they often cause immune overactivation or over-suppression, which makes them difficult to control. Thus, it would be ideal to manipulate immune cells at a local site without disturbing homeostasis elsewhere in the body. Recent technological developments have enabled the selective targeting of cells and tissues in the body. Photo-targeted specific cell therapy has recently emerged among these. Near-infrared photoimmunotherapy (NIR-PIT) has surfaced as a new modality for cancer treatment, which combines antibodies and a photoabsorber, IR700DX. NIR-PIT is in testing as an international phase III clinical trial for locoregional recurrent head and neck squamous cell carcinoma (HNSCC) patients (LUZERA-301, NCT03769506), with a fast-track designation by the United States Food and Drug Administration (US-FDA). In Japan, NIR-PIT for patients with recurrent head and neck cancer was conditionally approved in 2020. Although NIR-PIT is commonly used for cancer therapy, it could also be exploited to locally eliminate certain immune cells with antibodies for a specific immune cell marker. This strategy can be utilized for anti-allergic therapy. Herein, we discuss the recent technological advances in local immunomodulation technology. We introduce immunomodulation technology with NIR-PIT and demonstrate an example of the knockdown of regulatory T cells (Tregs) to enhance local anti-tumor immune reactions.
Collapse
Affiliation(s)
- Mizuki Yamada
- Division of Host Defense Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya 461-8673, Japan
| | - Kohei Matsuoka
- Division of Host Defense Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya 461-8673, Japan
| | - Mitsuo Sato
- Division of Host Defense Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya 461-8673, Japan
| | - Kazuhide Sato
- B3 Unit Frontier, Advanced Analytical and Diagnostic Imaging Center (AADIC)/Medical Engineering Unit (MEU), Nagoya University Institute for Advanced Research, Nagoya 466-8550, Japan
- FOREST-Souhatsu, CREST, JST, Tokyo 102-0076, Japan
- Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan
- Correspondence: ; Tel.: +81-052-744-2167; Fax: +81-052-744-2176
| |
Collapse
|
5
|
Mohiuddin TM, Zhang C, Sheng W, Al-Rawe M, Zeppernick F, Meinhold-Heerlein I, Hussain AF. Near Infrared Photoimmunotherapy: A Review of Recent Progress and Their Target Molecules for Cancer Therapy. Int J Mol Sci 2023; 24:2655. [PMID: 36768976 PMCID: PMC9916513 DOI: 10.3390/ijms24032655] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 02/01/2023] Open
Abstract
Near infrared photoimmunotherapy (NIR-PIT) is a newly developed molecular targeted cancer treatment, which selectively kills cancer cells or immune-regulatory cells and induces therapeutic host immune responses by administrating a cancer targeting moiety conjugated with IRdye700. The local exposure to near-infrared (NIR) light causes a photo-induced ligand release reaction, which causes damage to the target cell, resulting in immunogenic cell death (ICD) with little or no side effect to the surrounding normal cells. Moreover, NIR-PIT can generate an immune response in distant metastases and inhibit further cancer attack by combing cancer cells targeting NIR-PIT and immune regulatory cells targeting NIR-PIT or other cancer treatment modalities. Several recent improvements in NIR-PIT have been explored such as catheter-driven NIR light delivery, real-time monitoring of cancer, and the development of new target molecule, leading to NIR-PIT being considered as a promising cancer therapy. In this review, we discuss the progress of NIR-PIT, their mechanism and design strategies for cancer treatment. Furthermore, the overall possible targeting molecules for NIR-PIT with their application for cancer treatment are briefly summarised.
Collapse
|
6
|
Near-Infrared Photoimmunotherapy for Oropharyngeal Cancer. Cancers (Basel) 2022; 14:cancers14225662. [PMID: 36428754 PMCID: PMC9688155 DOI: 10.3390/cancers14225662] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
Human papillomavirus (HPV)-associated oropharyngeal cancer has a better prognosis than other head and neck cancers. However, rates of recurrence and metastasis are similar and the prognosis of recurrent or metastatic HPV-associated oropharyngeal cancer is poor. Near-infrared photoimmunotherapy (NIR-PIT) is a treatment involving administration of a photosensitizer (IRDye®700DX) conjugated to a monoclonal antibody followed by activation with near-infrared light illumination. It is a highly tumor-specific therapy with minimal toxicity in normal tissues. Moreover, NIR-PIT is expected to have not only direct effects on a treated lesion but also immune responses on untreated distant lesions. NIR-PIT with cetuximab-IR700 (AlluminoxTM) has been in routine clinical use since January 2021 for unresectable locally advanced or locally recurrent head and neck cancer in patients that have previously undergone radiotherapy in Japan. NIR-PIT for head and neck cancer (HN-PIT) is expected to provide a curative treatment option for the locoregional recurrent or metastatic disease after radiotherapy and surgery. This article reviews the mechanism underlying the effect of NIR-PIT and recent clinical trials of NIR-PIT for head and neck cancers, treatment-specific adverse events, combination treatment with immune checkpoint inhibitors, illumination approach and posttreatment quality of life, and provides a case of series of two patients who receive NIR-PIT for oropharyngeal cancer at our institution.
Collapse
|