1
|
Wasnik K, Singh G, Yadav DD, Patra S, Gupta PS, Oviya A, Kumar S, Pareek D, Paik P. Poly[( N-acryloyl glycine)- co-(acrylamide)]-induced cell growth inhibition in heparanase-driven malignancies. NANOSCALE 2025; 17:8544-8562. [PMID: 40067314 DOI: 10.1039/d5nr00079c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
In the present work, glycine, the monomer N-acryloylglycine (NAG), and polymeric units of poly[(N-acryloylglycine)-co-(acrylamide)] p(NAG-co-Ac) are examined using density functional theory (DFT), and experimental evidence is provided for their use in the therapy of cancer with a poor prognosis. Glycine plays a pivotal role in cell survival, and most anti-cancer agents alter glycine metabolomics and suppress cancer cell proliferation. Herein, we have utilized Frontier Molecular Orbital theory (FMO), and the results revealed that the introduction of acrylamide/divinyl benzene into the glycine-based polymer increased its biological activity by lowering the energy band gap. Heparanase and proteases are important in invasive tumor progression and worsening of prognosis. In this context, we have synthesized co-polymeric p(NAG-co-Ac) and revealed its protease inhibitory activities. It is revealed that the cross-linked homo-polymeric and cross-linked hetero-polymeric tetrameric arrangements inhibit heparanase activity via interacting at heparanase binding domain II (HBDII) with a docking score of ∼-11.08 kcal mol-1 (Ki) and at heparanase binding domain III (HBD III). The bathochromically shifted CD spectrum shows that the hydrogel interacts with heparanase and disturbs the secondary protein structure of the synthesized p(NAG-co-Ac) polymer. It is found that the synthesized p(NAG-co-Ac) hydrogel has anti-proliferative activity, acts as a migratory inhibitor of cancer cells, and favors programmed cell death. Further, the p(NAG-co-Ac) hydrogel exhibited anti-angiogenic behavior. In conclusion, p(NAG-co-Ac), with its anti-angiogenic and anti-tumorigenic capabilities, has a future as a potential anticancer polymer for the treatment of heparanase-driven invasive malignancies without using any additional anticancer drugs, and is promising for cancer treatment.
Collapse
Affiliation(s)
- Kirti Wasnik
- School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University (BHU), Varanasi, Uttar Pradesh, 221 005, India.
| | - Gurmeet Singh
- School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University (BHU), Varanasi, Uttar Pradesh, 221 005, India.
| | - Desh Deepak Yadav
- School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University (BHU), Varanasi, Uttar Pradesh, 221 005, India.
| | - Sukanya Patra
- School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University (BHU), Varanasi, Uttar Pradesh, 221 005, India.
| | - Prem S Gupta
- School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University (BHU), Varanasi, Uttar Pradesh, 221 005, India.
| | - Alagu Oviya
- School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University (BHU), Varanasi, Uttar Pradesh, 221 005, India.
| | - Sandeep Kumar
- Department of Zoology, Banaras Hindu University (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Divya Pareek
- School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University (BHU), Varanasi, Uttar Pradesh, 221 005, India.
| | - Pradip Paik
- School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University (BHU), Varanasi, Uttar Pradesh, 221 005, India.
| |
Collapse
|
2
|
Chaudhary A, Kumar A, Swain N, Chaudhary K, Sonker H, Dewan S, Patil RA, Singh RG. Endocytic Uptake of Self-Assembled Iridium(III) Nanoaggregates for Holistic Treatment of Metastatic 3D Triple-Negative Breast Tumor Spheroids. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2406809. [PMID: 39607393 DOI: 10.1002/smll.202406809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/23/2024] [Indexed: 11/29/2024]
Abstract
Triple-negative breast cancer (TNBC) presents a formidable challenge due to its aggressive behavior and limited array of treatment options available. This study focuses on employing nanoaggregate material of organometallic Ir(III) complexes for treating TNBC cell line MDA-MB-231. In this approach, Ir(III) complexes with enhanced cellular permeability are strategically designed and achieved through the incorporation of COOMe groups into their structure. The lead compound, IrL1, exhibits promiscuous nanoscale aggregation in RPMI cell culture media, characterized by a stable hydrodynamic effective diameter ranging from 190 to 202 nm over 48 h. With excellent photo-responsive contrast-enhanced cell imaging properties IrL1 exhibits an outstanding IC50, 48h value of 36.05± 0.03 nm when irradiated with 390 nm light in MDA-MB-231 (IC50, 48 h of Cisplatin is 5.29 µµ). In cell, investigation confirms that IrL1 nanoaggregates internalization via energy-dependent endocytosis undergo ferroptosis and ROS mediated cell death in MDA-MB-231 cells. Further, these in vivo studies using NOD-SCID mice confirmed that IrL1 exhibits a tendency to ablate tumors inoculated in mice models at therapeutically relevant doses. Thus, this comprehensive approach holds promise for expanding the repertoire of organometallic Ir(III) nanoaggregates with adaptable characteristics, thereby advancing their clinical utility of nanomedicine in the holistic treatment of metastatic 3D triple-negative breast tumor spheroids.
Collapse
Affiliation(s)
| | - Ashwini Kumar
- Department of Chemistry, IIT Kanpur, Kanpur, UP, 208016, India
| | - Nikhil Swain
- Department of Chemistry, IIT Kanpur, Kanpur, UP, 208016, India
| | - Kajal Chaudhary
- Department of Chemistry, IIT Kanpur, Kanpur, UP, 208016, India
| | - Himanshu Sonker
- Department of Chemistry, IIT Kanpur, Kanpur, UP, 208016, India
| | - Sayari Dewan
- Department of Chemistry, IIT Kanpur, Kanpur, UP, 208016, India
| | | | | |
Collapse
|
3
|
Blanco R, Muñoz JP. Human Cytomegalovirus Infection and Breast Cancer: A Literature Review of Clinical and Experimental Data. BIOLOGY 2025; 14:174. [PMID: 40001942 PMCID: PMC11851556 DOI: 10.3390/biology14020174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/05/2024] [Accepted: 12/09/2024] [Indexed: 02/27/2025]
Abstract
Breast cancer (BC) remains a significant global health challenge, highlighting the need for continued research into novel risk factors, diagnostic approaches, and personalized treatments. Among emerging risk factors, viral infections have been implicated as potential contributors to breast carcinogenesis and BC progression. Recent evidence suggests that specific oncogenic strains of human cytomegalovirus (HCMV) may have the capacity to transform human mammary epithelial cells. This review assesses clinical data regarding HCMV presence in both tumor and non-tumor breast tissues, examining the role of HCMV oncoproteins in BC development and progression. Current findings indicate a higher prevalence of HCMV infection in breast carcinomas compared to non-tumor tissues, associated with an elevated risk of BC. Additionally, the HCMV-driven breast carcinogenesis model proposed here suggests that HCMV oncoproteins may activate multiple oncogenic pathways, fostering cell proliferation, survival, and tumor development. A deeper understanding of the role of HCMV in BC could enhance risk stratification and support the creation of targeted therapeutic strategies.
Collapse
Affiliation(s)
| | - Juan P. Muñoz
- Laboratorio de Bioquímica, Departamento de Química, Facultad de Ciencias, Universidad de Tarapacá, Arica 1000007, Chile
| |
Collapse
|
4
|
Wang C, Liu Y, Zhang R, Gong H, Jiang X, Xia S. Targeting the tumor immune microenvironment: GPCRs as key regulators in triple-negative breast cancer. Int Immunopharmacol 2025; 147:113930. [PMID: 39740508 DOI: 10.1016/j.intimp.2024.113930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 12/12/2024] [Accepted: 12/20/2024] [Indexed: 01/02/2025]
Abstract
Triple-negative breast cancer (TNBC) poses a significant clinical challenge due to its aggressive nature and limited therapeutic options. Recent research underscores the pivotal role of G protein-coupled receptors (GPCRs) in shaping the tumor immune microenvironment (TIME) within TNBC. This review focuses on four principal GPCRs-chemokine receptors, sphingosine-1-phosphate receptors, prostaglandin E2 receptors, and lactate receptors-that have garnered substantial attention in TNBC studies. GPCRs modulate immune cell recruitment, polarization, and function, thereby fostering an immunosuppressive milieu conducive to tumor progression and metastasis. The review examines how alterations in GPCR expression on immune cells influence the pathogenesis and advancement of TNBC. Further, it discusses emerging therapeutic strategies targeting GPCR signaling pathways to remodel the immunosuppressive TIME in TNBC. These insights into GPCR-mediated immune regulation not only deepen our comprehension of TNBC's pathophysiology but also offer promising avenues for developing novel immunotherapies aimed at enhancing clinical outcomes for TNBC patients.
Collapse
Affiliation(s)
- Chengyi Wang
- Clinical Medical School, Jining Medical University, Jining, China
| | - Yanyan Liu
- Clinical Medical School, Jining Medical University, Jining, China
| | - Ru Zhang
- Clinical Medical School, Jining Medical University, Jining, China
| | - Hao Gong
- Clinical Medical School, Jining Medical University, Jining, China
| | - Xinnong Jiang
- National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Shuai Xia
- Department of Biochemistry and Molecular Biology, Jining Medical University, Jining, China.
| |
Collapse
|
5
|
Durgawale TP, Rajashakar V, Gupta JK, Banu SS, Galla SH, Singh J, Rao AA, Prasad PD, Chaudhari PB, Mortuza MR, Sweilam SH, Asiri M, Amin MA, Utpal BK, Mohammad BD. Phytochemical-Based Drug Discovery for Breast Cancer: Combining Virtual Screening and Molecular Dynamics to Identify Novel Therapeutics. Chem Biodivers 2025:e202402864. [PMID: 39868843 DOI: 10.1002/cbdv.202402864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 01/24/2025] [Accepted: 01/27/2025] [Indexed: 01/28/2025]
Abstract
Maternal embryonic leucine zipper kinase (MELK), a pivotal signaling protein, plays a crucial role in various physiological processes, such as cell growth, survival, and differentiation. There is currently a growing interest in MELK as a promising therapeutic target for multiple cancers, including triple-negative breast cancer (TNBC). Exploring MELK as a target offers a prospective strategy to impede cancer progression and enhance the efficacy of conventional anticancer therapies. In this study, we employed a multistep docking procedure to evaluate the anticancer potential of phyto-compounds from the NPACT and PhytoHub databases targeting the MELK protein. A collection of 23 740 compounds underwent hierarchical multistep docking, accompanied by an analysis of binding interactions. The extensive analysis identified five compounds (PHUB000697, PHUB002010, NPACT00373, PHUB002005, and PHUB001739) as potent inhibitors of the MELK protein, exhibiting docking scores lower than -11 Kcal/mol, that is, -12.90, -12.00, -11.23, -11.19, and -11.09 Kcal/mol, respectively. PHUB000697 exhibited very crucial interactions with Gly20, Lys40, Cys89, and Glu93 (2.74 Å). To evaluate the stability of protein-ligand interactions in dynamic states, 100 ns molecular dynamics (MD) simulations were conducted using the entire trajectory, revealing a substantial binding affinity for all identified compounds toward the MELK protein. Consequently, these five compounds emerge as promising candidates for future drug development targeting the MELK protein in treating TNBC. However, experimental assessment is essential to understand the molecular interaction mechanisms better. We are aiming to report a few in vitro and in vivo studies on these compounds to validate the computational results.
Collapse
Affiliation(s)
| | - V Rajashakar
- Department of Pharmaceutical Chemistry, Anurag Pharmacy College, Ananthagiri, Suryapet, Telangana, India
| | - Jeetendra Kumar Gupta
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, Mathura, Uttar Pradesh, India
| | - S Shakila Banu
- Department of Pharmacognosy, Periyar College of Pharmaceutical Sciences, Tiruchirappalli, Tamil Nadu, India
| | - Sri Hari Galla
- Medicinal Chemistry Department, University of Louisville, Louisville, Kentucky, USA
| | - Jyoti Singh
- School of Pharmaceutical Sciences, Jaipur National University, Jaipur, Rajasthan, India
| | - A Anka Rao
- KL College of Pharmacy, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur, Andhra Pradesh, India
| | - P Dharani Prasad
- Department of Pharmacology, Mohan Babu University MB School of Pharmaceutical Sciences, (Erstwhile Sree Vidyaniketan College of Pharmacy), Tirupati, India
| | | | | | - Sherouk Hussein Sweilam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo, Egypt
| | - Mohammed Asiri
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Md Al Amin
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Biswajit Kumar Utpal
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Badrud Duza Mohammad
- Department of Pharmaceutical Chemistry, Chettinad School of Pharmaceutical Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamil Nadu, India
| |
Collapse
|
6
|
Deshpande RP, Wu K, Wu SY, Tyagi A, Smith EC, Hunting J, Ruiz J, Li W, Watabe K. Tumor-intrinsic CDC42BPB confers resistance to anti-PD-1 immune checkpoint blockade in breast cancer. Mol Ther 2024; 32:3669-3682. [PMID: 39086134 PMCID: PMC11489557 DOI: 10.1016/j.ymthe.2024.07.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/04/2024] [Accepted: 07/28/2024] [Indexed: 08/02/2024] Open
Abstract
Immune checkpoint blockade has been used to treat breast cancer, but the clinical responses remain relatively poor. We have used the CRISPR-Cas9 kinome knockout library consisting of 763 kinase genes to identify tumor-intrinsic kinases conferring resistance to anti-PD-1 immune checkpoint blockade. We have identified the CDC42BPB kinase as a potential target to overcome the resistance to anti-PD-1 immune checkpoint blockade immunotherapy. We found that CDC42BPB is highly expressed in breast cancer patients who are non-responsive to immunotherapy. Furthermore, a small-molecule pharmacological inhibitor, BDP5290, which targets CDC42BPB, synergized with anti-PD-1 and enhanced tumor cell killing by promoting T cell proliferation in both in vitro and in vivo assays. Moreover, anti-PD-1-resistant breast cancer cells showed higher expression of CDC42BPB, and its inhibition rendered the resistant cells more susceptible to T cell killing in the presence of anti-PD-1. We also found that CDC42BPB phosphorylated AURKA, which in turn upregulated PD-L1 through cMYC. Our results have revealed a robust link between tumor-intrinsic kinase and immunotherapy resistance and have provided a rationale for a unique combination therapy of CDC42BPB inhibition and anti-PD-1 immunotherapy for breast cancer.
Collapse
Affiliation(s)
- Ravindra Pramod Deshpande
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Kerui Wu
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Shih-Ying Wu
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Abhishek Tyagi
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Eleanor C Smith
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - John Hunting
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Jimmy Ruiz
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Wencheng Li
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Kounosuke Watabe
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.
| |
Collapse
|
7
|
Santos TMR, Tavares CA, da Cunha EFF, Ramalho TC. Vanadium complex as a potential modulator of the autophagic mechanism through proteins PI3K and ULK1: development, validation and biological implications of a specific force field for [VO(bpy) 2Cl]. J Biomol Struct Dyn 2024; 42:9118-9132. [PMID: 37608540 DOI: 10.1080/07391102.2023.2250453] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/12/2023] [Indexed: 08/24/2023]
Abstract
The modulation of autophagy has been presented as a very useful strategy in anticancer treatments. In this sense, the vanadium complex (VC) bis(2,2'-bipyridine)chlorooxovanadium(IV), [VO(bpy)2Cl], is known for its ability to induce autophagy in triple-negative breast cancer cells (TNBC). An excellent resource to investigate the role of VC in the induction of autophagy is to make use of Molecular Dynamics (MD) simulations. However, until now, the scarcity of force field parameters for the VC prevented a reliable analysis. The autophagy signaling pathway starts with the PI3K protein and ends with ULK1. Therefore, in the first stage of this work, we developed a new AMBER force field for the VC (VCFF) from a quantum structure, obtained by DFT calculations. In the second stage, the VCFF was validated through structural analyses. From this, it was possible to investigate, through docking and MD (200 ns), the performance of the PI3K-VC and ULK1-VC systems (third stage). The analyses of this last stage involved RMSD, hydrogen bonds, RMSF and two pathways for the modulation of autophagy. In general, this work fills in the absence of force field parameters (FF) for VC by proposing an efficient and new FF, in addition to investigating, at the molecular level, how VC is able to induce autophagy in TNBC cells. This study encourages new parameterizations of metallic complexes and contributes to the understanding of the duality of autophagic processes.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Taináh M R Santos
- Laboratory of Molecular Modelling, Department of Chemistry, Federal University of Lavras, Lavras, MG, Brazil
| | - Camila A Tavares
- Laboratory of Molecular Modelling, Department of Chemistry, Federal University of Lavras, Lavras, MG, Brazil
| | - Elaine F F da Cunha
- Laboratory of Molecular Modelling, Department of Chemistry, Federal University of Lavras, Lavras, MG, Brazil
| | - Teodorico C Ramalho
- Laboratory of Molecular Modelling, Department of Chemistry, Federal University of Lavras, Lavras, MG, Brazil
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|
8
|
Bakhshivand M, Masoumi J, Ghorbaninezhad F, Aghebati-Maleki L, Shanebandi D, Sandoghchian Shotorbani S, Jadidi-Niaragh F, Baghbanzadeh A, Hemmat N, Baghbani E, Ghaffari A, Baradaran B. Boosting immunotherapy efficacy: Empowering the Potency of Dendritic cells loaded with breast cancer lysates through CTLA-4 suppression. Heliyon 2024; 10:e37699. [PMID: 39309891 PMCID: PMC11416247 DOI: 10.1016/j.heliyon.2024.e37699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/25/2024] Open
Abstract
Anticancer immunotherapies with a dendritic Cell (DC) basis are becoming more popular. However, it has been suggested that the tumor's immunosuppressive mechanisms, such as inhibitory immunological checkpoint molecules, reduce the effectiveness of anticancer immunogenicity mediated by DC. Thus, overcoming immune checkpoints and inducing effective antigen-specific T-cell responses uniquely produced with malignant cells represent the key challenges. Among the inhibitory immune checkpoints, DCs' ability to mature and present antigens is decreased by CTLA-4 expression. Consequently, we hypothesized that by expressing CTLA-4 cells on DCs, the T cells' activation against tumor antigens would be suppressed when confronted with these antigens presented by DCs. In this research, by loading cell lysate of breast cancer (BC) on DCs and the other hand by inhibiting the induction of CTLA-4 using small interfering RNA (siRNA), we assessed the functional activities and phenotypes of DCs, and also the responses associated with T-cells following co-culture DC/T cell. Our research has shown that the suppression of CTLA-4 enhanced the stimulating capabilities of DCs. Additionally, CTLA-4-suppressed BC cell lysate-loaded DCs produced more IL-4 and IFN-ϒ and increased T cell induction in contrast to DCs without CTLA-4 suppression. Together, our data point to CTLA-4-suppressed DCs loaded with BC cell lysate as a potentially effective treatment method. However, further research is required before employing this method in therapeutic contexts.
Collapse
Affiliation(s)
- Mohammad Bakhshivand
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javad Masoumi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farid Ghorbaninezhad
- Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Iran
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Dariush Shanebandi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Siamak Sandoghchian Shotorbani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nima Hemmat
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Baghbani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Ghaffari
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
9
|
Ombredane AS, Martins NO, de Souza GMV, Araujo VHS, Szlachetka ÍO, da Silva SW, da Rocha MCO, de Oliveira AS, Holanda CA, Romeiro LAS, Damas EBDO, Azevedo RB, Joanitti GA. Combinatory Effect of Pequi Oil ( Caryocar brasiliense)-Based Nanoemulsions Associated to Docetaxel and Anacardic Acid ( Anacardium occidentale) in Triple-Negative Breast Cancer Cells In Vitro. Pharmaceutics 2024; 16:1170. [PMID: 39339206 PMCID: PMC11435098 DOI: 10.3390/pharmaceutics16091170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/15/2024] [Accepted: 08/23/2024] [Indexed: 09/30/2024] Open
Abstract
Combination therapy integrated with nanotechnology offers a promising alternative for breast cancer treatment. The inclusion of pequi oil, anacardic acid (AA), and docetaxel (DTX) in a nanoemulsion can amplify the antitumor effects of each molecule while reducing adverse effects. Therefore, the study aims to develop pequi oil-based nanoemulsions (PeNE) containing DTX (PDTX) or AA (PAA) and to evaluate their cytotoxicity against triple-negative breast cancer cells (4T1) in vitro. The PeNE without and with AA (PAA) and DTX (PDTX) were prepared by sonication and characterized by ZetaSizer® and electronic transmission microscopy. Viability testing and combination index (CI) were determined by MTT and Chou-Talalay methods, respectively. Flow cytometry was employed to investigate the effects of the formulations on cell structures. PeNE, PDTX, and PAA showed hydrodynamic diameter < 200 nm and a polydispersity index (PdI) of 0.3. The association PDTX + PAA induced a greater decrease in cell viability (~70%, p < 0.0001) and additive effect (CI < 1). In parallel, an association of the DTX + AA molecules led to antagonism (CI > 1). Additionally, PDTX + PAA induced an expressive morphological change, a major change in lysosome membrane permeation and mitochondria membrane permeation, cell cycle blockage in G2/M, and phosphatidylserine exposure. The study highlights the successful use of pequi oil nanoemulsions as delivery systems for DTX and AA, which enhances their antitumor effects against breast cancer cells. This nanotechnological approach shows significant potential for the treatment of triple-negative breast cancer.
Collapse
Affiliation(s)
- Alicia Simalie Ombredane
- Laboratory of Bioactive Compounds and Nanobiotechnology (LCBNano), University of Brasilia, Campus Universitário—Centro Metropolitano, Ceilandia Sul, Brasilia 72220-275, Brazil; (A.S.O.); (N.O.M.); (G.M.V.d.S.); (V.H.S.A.); (E.B.d.O.D.)
- Post-Graduation Program in Nanoscience and Nanobiotechnology, University of Brasilia, Campus Universitário Darcy Ribeiro, Brasilia 70910-900, Brazil; (Í.O.S.); (S.W.d.S.); (M.C.O.d.R.); (R.B.A.)
| | - Natália Ornelas Martins
- Laboratory of Bioactive Compounds and Nanobiotechnology (LCBNano), University of Brasilia, Campus Universitário—Centro Metropolitano, Ceilandia Sul, Brasilia 72220-275, Brazil; (A.S.O.); (N.O.M.); (G.M.V.d.S.); (V.H.S.A.); (E.B.d.O.D.)
| | - Gabriela Mara Vieira de Souza
- Laboratory of Bioactive Compounds and Nanobiotechnology (LCBNano), University of Brasilia, Campus Universitário—Centro Metropolitano, Ceilandia Sul, Brasilia 72220-275, Brazil; (A.S.O.); (N.O.M.); (G.M.V.d.S.); (V.H.S.A.); (E.B.d.O.D.)
| | - Victor Hugo Sousa Araujo
- Laboratory of Bioactive Compounds and Nanobiotechnology (LCBNano), University of Brasilia, Campus Universitário—Centro Metropolitano, Ceilandia Sul, Brasilia 72220-275, Brazil; (A.S.O.); (N.O.M.); (G.M.V.d.S.); (V.H.S.A.); (E.B.d.O.D.)
| | - Ísis O. Szlachetka
- Post-Graduation Program in Nanoscience and Nanobiotechnology, University of Brasilia, Campus Universitário Darcy Ribeiro, Brasilia 70910-900, Brazil; (Í.O.S.); (S.W.d.S.); (M.C.O.d.R.); (R.B.A.)
- Laboratory of Optical Espectroscopy, Physics Institute, University of Brasilia, Campus Universitário Darcy Ribeiro, Brasilia 70910-900, Brazil
| | - Sebastião William da Silva
- Post-Graduation Program in Nanoscience and Nanobiotechnology, University of Brasilia, Campus Universitário Darcy Ribeiro, Brasilia 70910-900, Brazil; (Í.O.S.); (S.W.d.S.); (M.C.O.d.R.); (R.B.A.)
- Laboratory of Optical Espectroscopy, Physics Institute, University of Brasilia, Campus Universitário Darcy Ribeiro, Brasilia 70910-900, Brazil
| | - Márcia Cristina Oliveira da Rocha
- Post-Graduation Program in Nanoscience and Nanobiotechnology, University of Brasilia, Campus Universitário Darcy Ribeiro, Brasilia 70910-900, Brazil; (Í.O.S.); (S.W.d.S.); (M.C.O.d.R.); (R.B.A.)
| | - Andressa Souza de Oliveira
- Graduate Program in Pharmaceutical Sciences, Department of Pharmacy, Health Sciences Faculty, University of Brasilia, Brasilia 70910-900, Brazil; (A.S.d.O.); (C.A.H.); (L.A.S.R.)
- Laboratory of Development of Therapeutic Innovations (LDT), Center for Tropical Medicine, Faculty of Medicine, University of Brasilia, Brasilia 70910-900, Brazil
| | - Cleonice Andrade Holanda
- Graduate Program in Pharmaceutical Sciences, Department of Pharmacy, Health Sciences Faculty, University of Brasilia, Brasilia 70910-900, Brazil; (A.S.d.O.); (C.A.H.); (L.A.S.R.)
- Laboratory of Development of Therapeutic Innovations (LDT), Center for Tropical Medicine, Faculty of Medicine, University of Brasilia, Brasilia 70910-900, Brazil
| | - Luiz Antonio Soares Romeiro
- Graduate Program in Pharmaceutical Sciences, Department of Pharmacy, Health Sciences Faculty, University of Brasilia, Brasilia 70910-900, Brazil; (A.S.d.O.); (C.A.H.); (L.A.S.R.)
- Laboratory of Development of Therapeutic Innovations (LDT), Center for Tropical Medicine, Faculty of Medicine, University of Brasilia, Brasilia 70910-900, Brazil
| | - Elysa Beatriz de Oliveira Damas
- Laboratory of Bioactive Compounds and Nanobiotechnology (LCBNano), University of Brasilia, Campus Universitário—Centro Metropolitano, Ceilandia Sul, Brasilia 72220-275, Brazil; (A.S.O.); (N.O.M.); (G.M.V.d.S.); (V.H.S.A.); (E.B.d.O.D.)
| | - Ricardo Bentes Azevedo
- Post-Graduation Program in Nanoscience and Nanobiotechnology, University of Brasilia, Campus Universitário Darcy Ribeiro, Brasilia 70910-900, Brazil; (Í.O.S.); (S.W.d.S.); (M.C.O.d.R.); (R.B.A.)
| | - Graziella Anselmo Joanitti
- Laboratory of Bioactive Compounds and Nanobiotechnology (LCBNano), University of Brasilia, Campus Universitário—Centro Metropolitano, Ceilandia Sul, Brasilia 72220-275, Brazil; (A.S.O.); (N.O.M.); (G.M.V.d.S.); (V.H.S.A.); (E.B.d.O.D.)
- Post-Graduation Program in Nanoscience and Nanobiotechnology, University of Brasilia, Campus Universitário Darcy Ribeiro, Brasilia 70910-900, Brazil; (Í.O.S.); (S.W.d.S.); (M.C.O.d.R.); (R.B.A.)
| |
Collapse
|
10
|
Cao Z, Li Y. Mechanisms of RNA alternative splicing dysregulation in triple-negative breast cancer. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2024; 49:1143-1154. [PMID: 39788502 PMCID: PMC11495985 DOI: 10.11817/j.issn.1672-7347.2024.240434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Indexed: 01/12/2025]
Abstract
Triple-negative breast cancer (TNBC) is a highly aggressive breast cancer subtype with poor prognosis. RNA alternative splicing dysregulation plays a critical role in the initiation and progression of TNBC. This article systematically introduces the basic process of RNA splicing and then focuses on reviewing the aberrant alternative splicing events and their biological effects in TNBC: 1) Multiple splicing-related factors promote tumor cell proliferation and mediate chemotherapy resistance by regulating the alternative splicing of genes involved in cell survival and drug response; 2) dysregulation of splicing regulatory networks leads to altered splicing of multiple metastasis-related genes, promoting tumor invasion and metastasis; 3) aberrant alternative splicing events participate in tumor progression by affecting the expression of DNA damage repair genes; 4) dysregulation of alternative splicing is also involved in the regulation of tumor immune evasion and stem cell properties. A deeper understanding of the mechanisms underlying RNA alternative splicing dysregulation in TNBC is essential for elucidating its molecular pathology, identifying novel prognostic markers, and developing therapeutic strategies.
Collapse
Affiliation(s)
- Ziyu Cao
- Zhejiang University-University of Edinburgh Institute, Haining Zhejiang 314400, China.
- College of Biomedical Sciences, Faculty of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom.
| | - Yingrui Li
- Southern Hospital affiliated with Shenzhen University, Shenzhen Guangdong 518001, China
| |
Collapse
|
11
|
Montecillo-Aguado M, Soca-Chafre G, Antonio-Andres G, Morales-Martinez M, Tirado-Rodriguez B, Rocha-Lopez AG, Hernandez-Cueto D, Sánchez-Ceja SG, Alcala-Mota-Velazco B, Gomez-Garcia A, Gutiérrez-Castellanos S, Huerta-Yepez S. Upregulated Nuclear Expression of Soluble Epoxide Hydrolase Predicts Poor Outcome in Breast Cancer Patients: Importance of the Digital Pathology Approach. Int J Mol Sci 2024; 25:8024. [PMID: 39125591 PMCID: PMC11312095 DOI: 10.3390/ijms25158024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 08/12/2024] Open
Abstract
Breast cancer (BC) is the most common cancer in women, with incidence rates increasing globally in recent years. Therefore, it is important to find new molecules with prognostic and therapeutic value to improve therapeutic response and quality of life. The polyunsaturated fatty acids (PUFAs) metabolic pathway participates in various physiological processes, as well as in the development of malignancies. Although aberrancies in the PUFAs metabolic pathway have been implicated in carcinogenesis, the functional and clinical relevance of this pathway has not been well explored in BC. To evaluate the clinical significance of soluble epoxide hydrolase (EPHX2) expression in Mexican patients with BC using tissue microarrays (TMAs) and digital pathology (DP). Immunohistochemical analyses were performed on 11 TMAs with 267 BC samples to quantify this enzyme. Using DP, EPHX2 protein expression was evaluated solely in tumor areas. The association of EPHX2 with overall survival (OS) was detected through bioinformatic analysis in public databases and confirmed in our cohort via Cox regression analysis. Clear nuclear expression of EPHX2 was identified. Receiver operating characteristics (ROC) curves revealed the optimal cutoff point at 2.847062 × 10-3 pixels, with sensitivity of 69.2% and specificity of 67%. Stratification based on this cutoff value showed elevated EPHX2 expression in multiple clinicopathological features, including older age and nuclear grade, human epidermal growth factor receptor 2 (HER2) and triple negative breast cancer (TNBC) subtypes, and recurrence. Kaplan-Meier curves demonstrated how higher nuclear expression of EPHX2 predicts shorter OS. Consistently, multivariate analysis confirmed EPHX2 as an independent predictor of OS, with a hazard ratio (HR) of 3.483 and a 95% confidence interval of 1.804-6.724 (p < 0.001). Our study demonstrates for the first time that nuclear overexpression of EPHX2 is a predictor of poor prognosis in BC patients. The DP approach was instrumental in identifying this significant association. Our study provides valuable insights into the potential clinical utility of EPHX2 as a prognostic biomarker and therapeutic target in BC.
Collapse
Affiliation(s)
- Mayra Montecillo-Aguado
- Unidad de Investigación en Enfermedades Oncológicas, Hospital Infantil de México, Federico Gómez, Ciudad de México 06720, Mexico; (M.M.-A.); (G.S.-C.); (G.A.-A.)
| | - Giovanny Soca-Chafre
- Unidad de Investigación en Enfermedades Oncológicas, Hospital Infantil de México, Federico Gómez, Ciudad de México 06720, Mexico; (M.M.-A.); (G.S.-C.); (G.A.-A.)
| | - Gabriela Antonio-Andres
- Unidad de Investigación en Enfermedades Oncológicas, Hospital Infantil de México, Federico Gómez, Ciudad de México 06720, Mexico; (M.M.-A.); (G.S.-C.); (G.A.-A.)
| | - Mario Morales-Martinez
- Unidad de Investigación en Enfermedades Oncológicas, Hospital Infantil de México, Federico Gómez, Ciudad de México 06720, Mexico; (M.M.-A.); (G.S.-C.); (G.A.-A.)
| | - Belen Tirado-Rodriguez
- Unidad de Investigación en Enfermedades Oncológicas, Hospital Infantil de México, Federico Gómez, Ciudad de México 06720, Mexico; (M.M.-A.); (G.S.-C.); (G.A.-A.)
| | - Angelica G. Rocha-Lopez
- División de Estudios de Posgrado, Facultad de Ciencias Médicas y Biológicas Dr. Ignacio Chávez, Universidad Michoacana de San Nicolás de Hidalgo (UMSNH), Morelia 58060, Mexico
| | - Daniel Hernandez-Cueto
- Unidad de Investigación en Enfermedades Oncológicas, Hospital Infantil de México, Federico Gómez, Ciudad de México 06720, Mexico; (M.M.-A.); (G.S.-C.); (G.A.-A.)
| | - Sandra G. Sánchez-Ceja
- Laboratorio de Patología, Facultad de Químico Farmacobiología, Universidad Michoacana de San Nicolás de Hidalgo (UMSNH), Morelia 58060, Mexico;
| | - Berenice Alcala-Mota-Velazco
- Departamento de Patología, Facultad de Odontología, Universidad Michoacana de San Nicolás de Hidalgo (UMSNH), Morelia 58060, Mexico;
| | - Anel Gomez-Garcia
- Centro de investigación Biomédica de Michoacán, División de Investigación Clínica, Instituto Mexicano del Seguro Social, Morelia 58060, Mexico;
| | - Sergio Gutiérrez-Castellanos
- División de Estudios de Posgrado, Facultad de Ciencias Médicas y Biológicas Dr. Ignacio Chávez, Universidad Michoacana de San Nicolás de Hidalgo (UMSNH), Morelia 58060, Mexico
- Centro de investigación Biomédica de Michoacán, División de Investigación Clínica, Instituto Mexicano del Seguro Social, Morelia 58060, Mexico;
| | - Sara Huerta-Yepez
- Unidad de Investigación en Enfermedades Oncológicas, Hospital Infantil de México, Federico Gómez, Ciudad de México 06720, Mexico; (M.M.-A.); (G.S.-C.); (G.A.-A.)
| |
Collapse
|
12
|
Kaur S, Mendonca P, Soliman KFA. The Anticancer Effects and Therapeutic Potential of Kaempferol in Triple-Negative Breast Cancer. Nutrients 2024; 16:2392. [PMID: 39125273 PMCID: PMC11314279 DOI: 10.3390/nu16152392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/16/2024] [Accepted: 07/21/2024] [Indexed: 08/12/2024] Open
Abstract
Breast cancer is the second-leading cause of cancer death among women in the United States. Triple-negative breast cancer (TNBC), a subtype of breast cancer, is an aggressive phenotype that lacks estrogen (ER), progesterone (PR), and human epidermal growth (HER-2) receptors, which is challenging to treat with standardized hormonal therapy. Kaempferol is a natural flavonoid with antioxidant, anti-inflammatory, neuroprotective, and anticancer effects. Besides anti-tumorigenic, antiproliferative, and apoptotic effects, kaempferol protects non-cancerous cells. Kaempferol showed anti-breast cancer effects by inducing DNA damage and increasing caspase 3, caspase 9, and pAMT expression, modifying ROS production by Nrf2 modulation, inducing apoptosis by increasing cleaved PARP and Bax and downregulating Bcl-2 expression, inducing cell cycle arrest at the G2/M phase; inhibiting immune evasion by modulating the JAK-STAT3 pathway; and inhibiting the angiogenic and metastatic potential of tumors by downregulating MMP-3 and MMP-9 levels. Kaempferol holds promise for boosting the efficacy of anticancer agents, complementing their effects, or reversing developed chemoresistance. Exploring novel TNBC molecular targets with kaempferol could elucidate its mechanisms and identify strategies to overcome limitations for clinical application. This review summarizes the latest research on kaempferol's potential as an anti-TNBC agent, highlighting promising but underexplored molecular pathways and delivery challenges that warrant further investigation to achieve successful clinical translation.
Collapse
Affiliation(s)
- Sukhmandeep Kaur
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL 32307, USA;
| | - Patricia Mendonca
- Department of Biology, College of Science and Technology, Florida A&M University, Tallahassee, FL 32307, USA
| | - Karam F. A. Soliman
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL 32307, USA;
| |
Collapse
|
13
|
Pellizzari S, Athwal H, Bonvissuto AC, Parsyan A. Role of AURKB Inhibition in Reducing Proliferation and Enhancing Effects of Radiotherapy in Triple-Negative Breast Cancer. BREAST CANCER (DOVE MEDICAL PRESS) 2024; 16:341-346. [PMID: 39006183 PMCID: PMC11246031 DOI: 10.2147/bctt.s444965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 06/04/2024] [Indexed: 07/16/2024]
Abstract
Breast cancer is a leading cause of cancer-related deaths in females. Triple-negative breast cancer (TNBC) subtype is the most aggressive form of breast cancer that lacks biomarkers and effective targeted therapies. Its high degree of heterogeneity as well as innate and acquired resistance to treatment creates further barriers in achieving positive clinical outcomes in TNBC. Thus, development of novel treatment approaches in TNBC is of high clinical significance. Multimodality approaches with targeted agents and radiotherapy (RT) are promising for increasing efficacy of treatment and circumventing resistance. Here we examined anticancer effects of the Aurora Kinase B (AURKB) inhibitor AZD1152 as a single agent and in combination with RT using various TNBC cell lines, MDA-MB-468, MDA-MB-231 and SUM-159. We observed that AZD1152 alone effectively inhibited colony formation in TNBC cell lines. The combination of AZD1152 at IC50 concentrations together with ionizing radiation further reduced colony formation as compared to the single agent treatment. Our data support the notion that inhibition of the AURKB pathway is a promising strategy for treatment and radiosensitization of TNBC and warrants further translational studies.
Collapse
Affiliation(s)
- Sierra Pellizzari
- Department of Anatomy and Cell Biology, Western University, London, ON, Canada
| | - Harjot Athwal
- Department of Anatomy and Cell Biology, Western University, London, ON, Canada
| | - Anne Claudine Bonvissuto
- Department of Anatomy and Cell Biology, Western University, London, ON, Canada
- Verspeeten Family Cancer Centre, London Health Sciences Centre, London, ON, Canada
| | - Armen Parsyan
- Department of Anatomy and Cell Biology, Western University, London, ON, Canada
- Verspeeten Family Cancer Centre, London Health Sciences Centre, London, ON, Canada
- Department of Oncology, Western University, London, ON, Canada
- Department of Surgery, St Joseph’s Health Care and London Health Sciences Centre, Western University, London, ON, Canada
| |
Collapse
|
14
|
Chen Y, Zhu H, Luo Y, Tong S, Liu Y. EZH2: The roles in targeted therapy and mechanisms of resistance in breast cancer. Biomed Pharmacother 2024; 175:116624. [PMID: 38670045 DOI: 10.1016/j.biopha.2024.116624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/04/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Drug resistance presents a formidable challenge in the realm of breast cancer therapy. Accumulating evidence suggests that enhancer of zeste homolog 2 (EZH2), a component of the polycomb repressive complex 2 (PRC2), may serve as a key regulator in controlling drug resistance. EZH2 overexpression has been observed in breast cancer and many other malignancies, showing a strong correlation with poor outcomes. This review aims to summarize the mechanisms by which EZH2 regulates drug resistance, with a specific focus on breast cancer, in order to provide a comprehensive understanding of the underlying molecular processes. Additionally, we will discuss the current strategies and outcomes of targeting EZH2 using both single agents and combination therapies, with the goal of offering improved guidance for the clinical treatment of breast cancer patients who have developed drug resistance.
Collapse
Affiliation(s)
- Yun Chen
- Department of Clinical Pharmacy, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, PR China; Clinical Pharmacy Innovation Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, PR China.
| | - Hongyan Zhu
- Department of Clinical Pharmacy, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, PR China; Clinical Pharmacy Innovation Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, PR China.
| | - Yi Luo
- Clinical Pharmacy Innovation Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, PR China; Biotheus Inc., Guangdong Province, Zhuhai 519080, PR China.
| | - Shuangmei Tong
- Department of Clinical Pharmacy, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, PR China; Clinical Pharmacy Innovation Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, PR China.
| | - Yan Liu
- Department of Clinical Pharmacy, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, PR China; Clinical Pharmacy Innovation Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, PR China.
| |
Collapse
|
15
|
Xiong N, Wu H, Yu Z. Advancements and challenges in triple-negative breast cancer: a comprehensive review of therapeutic and diagnostic strategies. Front Oncol 2024; 14:1405491. [PMID: 38863622 PMCID: PMC11165151 DOI: 10.3389/fonc.2024.1405491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/14/2024] [Indexed: 06/13/2024] Open
Abstract
Triple-negative breast cancer (TNBC) poses significant challenges in oncology due to its aggressive nature, limited treatment options, and poorer prognosis compared to other breast cancer subtypes. This comprehensive review examines the therapeutic and diagnostic landscape of TNBC, highlighting current strategies, emerging therapies, and future directions. Targeted therapies, including PARP inhibitors, immune checkpoint inhibitors, and EGFR inhibitors, hold promise for personalized treatment approaches. Challenges in identifying novel targets, exploring combination therapies, and developing predictive biomarkers must be addressed to optimize targeted therapy in TNBC. Immunotherapy represents a transformative approach in TNBC treatment, yet challenges in biomarker identification, combination strategies, and overcoming resistance persist. Precision medicine approaches offer opportunities for tailored treatment based on tumor biology, but integration of multi-omics data and clinical implementation present challenges requiring innovative solutions. Despite these challenges, ongoing research efforts and collaborative initiatives offer hope for improving outcomes and advancing treatment strategies in TNBC. By addressing the complexities of TNBC biology and developing effective therapeutic approaches, personalized treatments can be realized, ultimately enhancing the lives of TNBC patients. Continued research, clinical trials, and interdisciplinary collaborations are essential for realizing this vision and making meaningful progress in TNBC management.
Collapse
Affiliation(s)
- Nating Xiong
- Department of Blood Transfusion, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, China
| | - Heming Wu
- Meizhou Municipal Engineering and Technology Research Centre for Molecular Diagnostics of Major Genetic Disorders, Meizhou People’s Hospital, Meizhou, China
| | - Zhikang Yu
- Research Experiment Centre, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, China
- Guangdong Engineering Technological Research Centre of Clinical Molecular Diagnosis and Antibody Drugs, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, China
| |
Collapse
|
16
|
Calahorra J, Blaya-Cánovas JL, Castellini-Pérez O, Aparicio-Puerta E, Cives-Losada C, Marin JJG, Rementeria M, Cara FE, López-Tejada A, Griñán-Lisón C, Aulicino F, Berger I, Marchal JA, Delgado-Almenta V, Granados-Principal S. Unlocking the effective alliance of β-lapachone and hydroxytyrosol against triple-negative breast cancer cells. Biomed Pharmacother 2024; 174:116439. [PMID: 38518601 DOI: 10.1016/j.biopha.2024.116439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/06/2024] [Accepted: 03/15/2024] [Indexed: 03/24/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is characterised by its aggressiveness and resistance to chemotherapy, demanding the development of effective strategies against its unique characteristics. Derived from lapacho tree bark, β-lapachone (β-LP) selectively targets cancer cells with elevated levels of the detoxifying enzyme NQO1. Hydroxytyrosol (HT) is a phenolic compound derived from olive trees with important anticancer properties that include the inhibition of cancer stem cells (CSCs) and metastatic features in TNBC, as well as relevant antioxidant activities by mechanisms such as the induction of NQO1. We aimed to study whether these compounds could have synergistic anticancer activity in TNBC cells and the possible role of NQO1. For this pourpose, we assessed the impact of β-LP (0.5 or 1.5 μM) and HT (50 and 100 μM) on five TNBC cell lines. We demonstrated that the combination of β-LP and HT exhibits anti-proliferative, pro-apoptotic, and cell cycle arrest effects in several TNBC cells, including docetaxel-resistant TNBC cells. Additionally, it effectively inhibits the self-renewal and clonogenicity of CSCs, modifying their aggressive phenotype. However, the notable impact of the β-LP-HT combination does not appear to be solely associated with the levels of the NQO1 protein and ROS. RNA-Seq analysis revealed that the combination's anticancer activity is linked to a strong induction of endoplasmic reticulum stress and apoptosis through the unfolded protein response. In conclusion, in this study, we demonstrated how the combination of β-LP and HT could offer an affordable, safe, and effective approach against TNBC.
Collapse
Affiliation(s)
- Jesús Calahorra
- UGC de Oncología Médica, Hospital Universitario de Jaén, Jaén 23007, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada-University of Granada, Granada 18100, Spain; GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, Granada 18016, Spain.
| | - José L Blaya-Cánovas
- UGC de Oncología Médica, Hospital Universitario de Jaén, Jaén 23007, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada-University of Granada, Granada 18100, Spain; GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, Granada 18016, Spain
| | - Olivia Castellini-Pérez
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, Granada 18016, Spain
| | - Ernesto Aparicio-Puerta
- Clinical Bioinformatics, Center for Bioinformatics, Saarland University, Saarbrücken 66123, Germany
| | - Candela Cives-Losada
- Experimental Hepatology and Drug Targeting (HEVEFARM), University of Salamanca, IBSAL, Salamanca 37007, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid 28029, Spain
| | - Jose J G Marin
- Experimental Hepatology and Drug Targeting (HEVEFARM), University of Salamanca, IBSAL, Salamanca 37007, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid 28029, Spain
| | - Markel Rementeria
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, Granada 18016, Spain
| | - Francisca E Cara
- Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada-University of Granada, Granada 18100, Spain
| | - Araceli López-Tejada
- Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada-University of Granada, Granada 18100, Spain; GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, Granada 18016, Spain; Department of Biochemistry and Molecular Biology 2, Faculty of Pharmacy, University of Granada, Campus de Cartuja s/n, Granada 18071, Spain
| | - Carmen Griñán-Lisón
- Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada-University of Granada, Granada 18100, Spain; GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, Granada 18016, Spain; Department of Biochemistry and Molecular Biology 2, Faculty of Pharmacy, University of Granada, Campus de Cartuja s/n, Granada 18071, Spain
| | - Francesco Aulicino
- BrisSynBio Bristol Synthetic Biology Centre, Biomedical Sciences, School of Biochemistry, University of Bristol, 1 Tankard's Close, Bristol BS8 1TD, UK
| | - Imre Berger
- BrisSynBio Bristol Synthetic Biology Centre, Biomedical Sciences, School of Biochemistry, University of Bristol, 1 Tankard's Close, Bristol BS8 1TD, UK; Max Planck Bristol Centre for Minimal Biology, School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK
| | - Juan A Marchal
- Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada-University of Granada, Granada 18100, Spain
| | - Violeta Delgado-Almenta
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, Granada 18016, Spain
| | - Sergio Granados-Principal
- Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada-University of Granada, Granada 18100, Spain; GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, Granada 18016, Spain; Department of Biochemistry and Molecular Biology 2, Faculty of Pharmacy, University of Granada, Campus de Cartuja s/n, Granada 18071, Spain.
| |
Collapse
|
17
|
Ahmad J, Ahamad J, Algahtani MS, Garg A, Shahzad N, Ahmad MZ, Imam SS. Nanotechnology-mediated delivery of resveratrol as promising strategy to improve therapeutic efficacy in triple negative breast cancer (TNBC): progress and promises. Expert Opin Drug Deliv 2024; 21:229-244. [PMID: 38344809 DOI: 10.1080/17425247.2024.2317194] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 02/07/2024] [Indexed: 02/29/2024]
Abstract
INTRODUCTION Triple-negative breast cancer (TNBC) presents unique challenges in diagnosis and treatment. Resveratrol exhibits potential as a therapeutic intervention against TNBC by regulating various pathways such as the PI3K/AKT, RAS/RAF/ERK, PKCδ, and AMPK, leading to apoptosis through ROS-mediated CHOP activationand the expression of DR4 and DR5. However, the clinical efficacy of resveratrol is limited due to its poor biopharmaceutical characteristics and low bioavailability at the tumor site. Nanotechnology offers a promising approach to improving the biopharmaceutical characteristics of resveratrol to achieve clinical efficacy in different cancers. The small dimension (<200 nm) of nanotechnology-mediated drug delivery system is helpful to improve the bioavailability, internalization into the TNBC cell, ligand-specific targeted delivery of loaded resveratrol to tumor site including reversal of MDR (multi-drug resistance) condition. AREAS COVERED This manuscript provides a comprehensive discussion on the structure-activity relationship (SAR), underlying anticancer mechanism, evidence of anticancer activity in in-vitro/in-vivo investigations, and the significance of nanotechnology-mediated delivery of resveratrol in TNBC. EXPERT OPINION Advanced nano-formulations of resveratrol such as oxidized mesoporous carbon nanoparticles, macrophage-derived vesicular system, functionalized gold nanoparticles, etc. have increased the accumulation of loaded therapeutics at the tumor-site, and avoid off-target drug release. In conclusion, nano-resveratrol as a strategy may provide improved tumor-specific image-guided treatment options for TNBC utilizing theranostic approach.
Collapse
Affiliation(s)
- Javed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Javed Ahamad
- Department of Pharmacognosy, Tishk International University, Erbil, Iraq
| | - Mohammed S Algahtani
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Anuj Garg
- Department of Pharmaceutics, Institute of Pharmaceutical Research, GLA University, Mathura, India
| | - Naiyer Shahzad
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Mohammad Zaki Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Syed Sarim Imam
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
18
|
Keskinkılıc M, Gökmen-Polar Y, Badve SS. Triple Negative Breast Cancers: An Obsolete Entity? Clin Breast Cancer 2024; 24:1-6. [PMID: 38016912 DOI: 10.1016/j.clbc.2023.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 10/23/2023] [Indexed: 11/30/2023]
Abstract
Triple negative breast cancer is defined on the basis of what it is not. It has served as a useful umbrella entity for management of patients with breast cancer for the last couple of decades. However, during this period a number of novel therapies have become available. These therapies have been documented to be useful in subsets of TNBCs that can be identified on the basis of distinct biologic alterations. Herein we revisit the categorization and usage of the TNBC as an entity to assess its utility in view of the currently available therapies.
Collapse
Affiliation(s)
- Merve Keskinkılıc
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA
| | - Yesim Gökmen-Polar
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA
| | - Sunil S Badve
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA.
| |
Collapse
|
19
|
Wu Q, Ma X, Jin Z, Ni R, Pan Y, Yang G. Zhuidu Formula suppresses the migratory and invasive properties of triple-negative breast cancer cells via dual signaling pathways of RhoA/ROCK and CDC42/MRCK. JOURNAL OF ETHNOPHARMACOLOGY 2023; 315:116644. [PMID: 37196814 DOI: 10.1016/j.jep.2023.116644] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/04/2023] [Accepted: 05/15/2023] [Indexed: 05/19/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Zhuidu Formula (ZDF) is composed of triptolide, cinobufagin and paclitaxel, which are the active ingredients of Tripterygium wilfordii Hook. F, dried toad skin and Taxus wallichiana var. chinensis (Pilg) Florin, respectively. Modern pharmacological studies show that triptolide, cinobufagin, and paclitaxel are well-known natural compounds that exert anti-tumor effects by interfering with DNA synthesis, inducing tumor cell apoptosis, and inhibiting the dynamic balance of the tubulin. However, the mechanism by which the three compounds inhibit triple-negative breast cancer (TNBC) metastasis is unknown. OBJECTIVE The objective of this investigation was to examine the inhibitory essences of ZDF on the metastasis of TNBC and elucidate its potential mechanism. MATERIALS AND METHODS Cell viability of triptolide (TPL), cinobufagin (CBF), and paclitaxel (PTX) on MDA-MB-231 cells was assessed employing a CCK-8 assay. The drug interactions of the three drugs on MDA-MB-231 cells were determined in vitro utilizing the Chou-Talalay method. MDA-MB-231 cells were identified for migration, invasion and adhesion in vitro through the implementation of the scratch assay, transwell assay and adhesion assay, respectively. The formation of cytoskeleton protein F-actin was detected by immunofluorescence assay. The expressions of MMP-2 and MMP-9 in the supernatant of the cells were determined by ELISA analysis. The Western blot and RT-qPCR were employed to explore the protein expressions associated with the dual signaling pathways of RhoA/ROCK and CDC42/MRCK. The anti-tumor efficacy of ZDF in vivo and its preliminary mechanism were investigated in the mouse 4T1 TNBC model. RESULTS The results demonstrated that ZDF could significantly reduce the viability of the MDA-MB-231 cell, and the combination index (CI) values of actual compatibility experimental points were all less than 1, demonstrating a favorable synergistic compatibility relationship. It was found that ZDF reduces RhoA/ROCK and CDC42/MRCK dual signaling pathways, which are responsible for MDA-MB-231cell migration, invasion, and adhesion. Additionally, there has been a significant reduction in the manifestation of cytoskeleton-related proteins. Furthermore, the expression levels of RhoA, CDC42, ROCK2, and MRCKβ mRNA and protein were down-regulated. ZDF significantly decreased the protein expressions of vimentin, cytokeratin-8, Arp2 and N-WASP, and inhibited actin polymerization and actomyosin contraction. Furthermore, MMP-2 and MMP-9 levels in the high-dose ZDF group were decreased by 30% and 26%, respectively. ZDF significantly reduced the tumor volume and protein expressions of ROCK2 and MRCKβ in tumor tissues without eliciting any perceptible alterations in the physical mass of the mice, and the reduction was more pronounced than that of the BDP5290 treated group. CONCLUSION The current investigation demonstrates that ZDF exhibits a proficient inhibitory impact on TNBC metastasis by regulating cytoskeletal proteins through the dual signaling pathways of RhoA/ROCK and CDC42/MRCK. Furthermore, the findings indicate that ZDF has significant anti-tumorigenic and anti-metastatic characteristics in breast cancer animal models.
Collapse
Affiliation(s)
- Qinhang Wu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, PR China
| | - Xuelin Ma
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, PR China
| | - Zhuolin Jin
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, PR China
| | - Ruijun Ni
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, PR China
| | - Yang Pan
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, PR China.
| | - Guangming Yang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, PR China.
| |
Collapse
|
20
|
Yan W, Li Y, Zou Y, Zhu R, Wu T, Sun X, Yuan W, Lang T, Yin Q, Li Y. Breaking Tumor Immunosuppressive Network by Regulating Multiple Nodes with Triadic Drug Delivery Nanoparticles. ACS NANO 2023; 17:17826-17844. [PMID: 37690028 DOI: 10.1021/acsnano.3c03387] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Inside the tumor microenvironment, a complicated immunosuppressive network is constituted by tumor cells and suppressive immune cells as its nodes, including myeloid-derived suppressor cells (MDSCs), tumor-associated macrophages (TAMs), and regulatory T cells, which have mutual promotion on each other and superimposed inhibition on natural killer (NK) cells and cytotoxic T cells. Breaking the whole balance of this web is critical to tumor immunotherapy since modulation on a single node may be diluted by other factors in the network. To achieve multifaceted regulation on antitumor immunity against triple-negative breast cancer, in this work, a micelle, termed BEM, co-delivering the MDSC inhibitor, entinostat (ENT), and the immune checkpoint inhibitor, BMS-1, was constructed with pH-sensitive amphiphilic poly(β-amino ester) derivatives. Then, BEM and the scavenger receptor A (SR-A) ligand dextran sulfate (DXS) formed a negatively charged nanoparticle (BEN). DXS detached from BEN in the weakly acidic tumor microenvironment and blocked SR-A on TAMs, reprogramming TAMs toward the M1 type. The positively charged BEM with facilitated intratumoral penetration and cellular uptake dissociated in the lysosomes, accompanied by the release of ENT and BMS-1 to suppress MDSCs and block the programmed cell death protein (PD)-1/PD-ligand 1 pathway, respectively. As a result, NK cells and CD8+ T cells in tumors were increased, as were their effector cytokines. The activated innate and adaptive antitumor immune responses suppressed the growth and metastasis of tumors and prolonged survival of 4T1 tumor-bearing mice. BEN provides a reliable approach for improving cancer immunotherapy by destroying the immunosuppression web in tumors via multinode regulation.
Collapse
Affiliation(s)
- Wenlu Yan
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Yantai 264000, China
| | - Yu Li
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yiting Zou
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Runqi Zhu
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ting Wu
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 211116, China
| | - Xujie Sun
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenhui Yuan
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tianqun Lang
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Qi Yin
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Yantai 264000, China
| | - Yaping Li
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Yantai 264000, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai rim Advanced Research Institute for Drug Discovery, Yantai 264117, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
21
|
Chawengrum P, Luepongpatthana N, Thongnest S, Sirirak J, Boonsombat J, Lirdprapamongkol K, Keeratichamroen S, Kongwaen P, Montatip P, Kittakoop P, Svasti J, Ruchirawat S. The amide derivative of anticopalic acid induces non-apoptotic cell death in triple-negative breast cancer cells by inhibiting FAK activation. Sci Rep 2023; 13:13456. [PMID: 37596365 PMCID: PMC10439230 DOI: 10.1038/s41598-023-40669-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 08/16/2023] [Indexed: 08/20/2023] Open
Abstract
Anticopalic acid (ACP), a labdane type diterpenoid obtained from Kaempferia elegans rhizomes, together with 21 semi-synthetic derivatives, were evaluated for their cancer cytotoxic activity. Most derivatives displayed higher cytotoxic activity than the parent compound ACP in a panel of nine cancer cell lines. Among the tested compounds, the amide 4p showed the highest cytotoxic activity toward leukemia cell lines, HL-60 and MOLT-3, with IC50 values of 6.81 ± 1.99 and 3.72 ± 0.26 µM, respectively. More interestingly, the amide derivative 4l exhibited cytotoxic activity with an IC50 of 13.73 ± 0.04 µM against the MDA-MB-231 triple-negative breast cancer cell line, which is the most aggressive type of breast cancer. Mechanistic studies revealed that 4l induced cell death in MDA-MB-231 cells through non-apoptotic regulated cell death. In addition, western blot analysis showed that compound 4l decreased the phosphorylation of FAK protein in a concentration-dependent manner. Molecular docking simulations elucidated that compound 4l could potentially inhibit FAK activation by binding to a pocket of FAK kinase domain. The data suggested that compound 4l could be a potential FAK inhibitor for treating triple-negative breast cancer and worth being further investigated.
Collapse
Affiliation(s)
- Pornsuda Chawengrum
- Chemical Biology Program, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Natthaorn Luepongpatthana
- Applied Biological Sciences Program, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Sanit Thongnest
- Laboratory of Natural Products, Chulabhorn Research Institute, Bangkok, Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), Office of the Permanent Secretary (OPS), Ministry of Higher Education, Science, Research and Innovation (MHESI), Bangkok, Thailand
| | - Jitnapa Sirirak
- Department of Chemistry, Faculty of Science, Silpakorn University, Nakhon Pathom, Thailand
| | - Jutatip Boonsombat
- Laboratory of Natural Products, Chulabhorn Research Institute, Bangkok, Thailand.
- Center of Excellence on Environmental Health and Toxicology (EHT), Office of the Permanent Secretary (OPS), Ministry of Higher Education, Science, Research and Innovation (MHESI), Bangkok, Thailand.
| | - Kriengsak Lirdprapamongkol
- Center of Excellence on Environmental Health and Toxicology (EHT), Office of the Permanent Secretary (OPS), Ministry of Higher Education, Science, Research and Innovation (MHESI), Bangkok, Thailand.
- Laboratory of Biochemistry, Chulabhorn Research Institute, Bangkok, Thailand.
| | | | - Patcharin Kongwaen
- Laboratory of Natural Products, Chulabhorn Research Institute, Bangkok, Thailand
| | - Phreeranat Montatip
- Laboratory of Biochemistry, Chulabhorn Research Institute, Bangkok, Thailand
| | - Prasat Kittakoop
- Chemical Biology Program, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok, Thailand
- Laboratory of Natural Products, Chulabhorn Research Institute, Bangkok, Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), Office of the Permanent Secretary (OPS), Ministry of Higher Education, Science, Research and Innovation (MHESI), Bangkok, Thailand
| | - Jisnuson Svasti
- Applied Biological Sciences Program, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok, Thailand
- Laboratory of Biochemistry, Chulabhorn Research Institute, Bangkok, Thailand
| | - Somsak Ruchirawat
- Chemical Biology Program, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok, Thailand
- Laboratory of Natural Products, Chulabhorn Research Institute, Bangkok, Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), Office of the Permanent Secretary (OPS), Ministry of Higher Education, Science, Research and Innovation (MHESI), Bangkok, Thailand
| |
Collapse
|
22
|
Lyu H, Hou D, Liu H, Ruan S, Tan C, Wu J, Hicks C, Liu B. HER3 targeting augments the efficacy of panobinostat in claudin-low triple-negative breast cancer cells. NPJ Precis Oncol 2023; 7:72. [PMID: 37537339 PMCID: PMC10400567 DOI: 10.1038/s41698-023-00422-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 07/03/2023] [Indexed: 08/05/2023] Open
Abstract
Patients with triple-negative breast cancer (TNBC) have a poor prognosis and high relapse rate due to limited therapeutic options. This study was conducted to determine the mechanisms of action of panobinostat, a pan-inhibitor of histone deacetylase (HDAC) and FDA-approved medication for multiple myeloma, in TNBC and to provide a rationale for effective drug combinations against this aggressive disease. RNA sequencing analyses of the claudin-low (CL) TNBC (MDA-MB-231) cells untreated or treated with panobinostat were performed to identify the differentially expressed genes. Adaptive alterations in gene expression were analyzed and validated in additional CL TNBC cells. Tumor xenograft models were used to test the in vivo antitumor activity of panobinostat alone or its combinations with gefitinib, an EGFR-tyrosine kinase inhibitor (TKI). Panobinostat potently inhibited proliferation and induced apoptosis in all TNBC cells tested. However, in CL TNBC cells, this HDAC inhibitor markedly enhanced expression of HER3, which interacted with EGFR to activate both receptors and Akt signaling pathways. Combinations of panobinostat and gefitinib synergistically suppressed CL TNBC cell proliferation and promoted apoptosis in vitro and in vivo. Upregulation of HER3 compromises the efficacy of panobinostat in CL TNBC. Inactivation of HER3 combined with panobinostat represents a practical approach to combat CL TNBC.
Collapse
Affiliation(s)
- Hui Lyu
- Departments of Interdisciplinary Oncology, Louisiana State University (LSU) Health Sciences Center, New Orleans, LA, USA.
- Departments of Genetics, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University (LSU) Health Sciences Center, New Orleans, LA, USA.
| | - Defu Hou
- Departments of Interdisciplinary Oncology, Louisiana State University (LSU) Health Sciences Center, New Orleans, LA, USA
- Department of Biochemistry and Molecular Biology, School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Hao Liu
- Departments of Interdisciplinary Oncology, Louisiana State University (LSU) Health Sciences Center, New Orleans, LA, USA
| | - Sanbao Ruan
- Departments of Interdisciplinary Oncology, Louisiana State University (LSU) Health Sciences Center, New Orleans, LA, USA
| | - Congcong Tan
- Departments of Interdisciplinary Oncology, Louisiana State University (LSU) Health Sciences Center, New Orleans, LA, USA
| | - Jiande Wu
- Departments of Genetics, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University (LSU) Health Sciences Center, New Orleans, LA, USA
| | - Chindo Hicks
- Departments of Genetics, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University (LSU) Health Sciences Center, New Orleans, LA, USA
| | - Bolin Liu
- Departments of Interdisciplinary Oncology, Louisiana State University (LSU) Health Sciences Center, New Orleans, LA, USA.
- Departments of Genetics, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University (LSU) Health Sciences Center, New Orleans, LA, USA.
| |
Collapse
|
23
|
Moloudizargari M, Hekmatirad S, Gharaghani S, Moghadamnia AA, Najafzadehvarzi H, Asghari MH. Virtual screening reveals aprepitant to be a potent inhibitor of neutral sphingomyelinase 2: implications in blockade of exosome release in cancer therapy. J Cancer Res Clin Oncol 2023; 149:7207-7216. [PMID: 36884117 DOI: 10.1007/s00432-023-04674-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/01/2023] [Indexed: 03/09/2023]
Abstract
PURPOSE Exosomes are membrane-derived nano-vesicles upregulated in pathological conditions like cancer. Therefore, inhibiting their release is a potential strategy for the development of more efficient combination therapies. Neutral sphingomyelinase 2 (nSMase2) is a key component in exosome release; however, a clinically safe yet efficient nSMase2 inhibitor remains to be used discovered. Accordingly, we made an effort to identify potential nSMase2 inhibitor(s) among the approved drugs. METHODS Virtual screening was performed and aprepitant was selected for further investigation. To evaluate the reliability of the complex, molecular dynamics were performed. Finally, using the CCK-8 assay in HCT116 cells, the highest non-toxic concentrations of aprepitant were identified and the nSMase2 activity assay was performed to measure the inhibitory activity of aprepitant, in vitro. RESULTS To validate the screening results, molecular docking was performed, and the retrieved scores were in line with the screening results. The root-mean-square deviation (RMSD) plot of aprepitant-nSMase2 showed proper convergence. Following treatment with different concentrations of aprepitant in both cell-free and cell-dependent assays, nSMase2 activity was remarkably decreased. CONCLUSION Aprepitant, at a concentration as low as 15 µM, was able to inhibit nSmase2 activity in HCT116 cells without any significant effects on their viability. Aprepitant is therefore suggested to be a potentially safe exosome release inhibitor.
Collapse
Affiliation(s)
- Milad Moloudizargari
- Department of Hematologic Malignancies Translational Science, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Shirin Hekmatirad
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Sajjad Gharaghani
- Laboratory of Bioinformatics and Drug Design (LBD), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Ali Akbar Moghadamnia
- Department of Pharmacology and Toxicology, School of Medicine, Babol University of Medical Sciences, Babol, 4717647745, Iran
| | - Hossein Najafzadehvarzi
- Department of Pharmacology and Toxicology, School of Medicine, Babol University of Medical Sciences, Babol, 4717647745, Iran
| | - Mohammad Hossein Asghari
- Department of Pharmacology and Toxicology, School of Medicine, Babol University of Medical Sciences, Babol, 4717647745, Iran.
| |
Collapse
|
24
|
Anifowose LO, Paimo OK, Adegboyega FN, Ogunyemi OM, Akano RO, Hammad SF, Ghazy MA. Molecular docking appraisal of Dysphania ambrosioides phytochemicals as potential inhibitor of a key triple-negative breast cancer driver gene. In Silico Pharmacol 2023; 11:15. [PMID: 37323538 PMCID: PMC10267046 DOI: 10.1007/s40203-023-00152-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/31/2023] [Indexed: 06/17/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is a lethal and aggressive breast cancer subtype. It is characterized by the deficient expression of the three main receptors implicated in breast cancers, making it unresponsive to hormone therapy. Hence, an existing need to develop a targeted molecular therapy for TNBC. The PI3K/AKT/mTOR signaling pathway mediates critical cellular processes, including cell proliferation, survival, and angiogenesis. It is activated in approximately 10-21% of TNBCs, emphasizing the importance of this intracellular target in TNBC treatment. AKT is a prominent driver of the PI3K/AKT/mTOR pathway, validating it as a promising therapeutic target. Dysphania ambrosioides is an important ingredient of Nigeria's traditional herbal recipe for cancer treatment. Thus, our present study explores its anticancer properties through a structure-based virtual screening of 25 biologically active compounds domiciled in the plant. Interestingly, our molecular docking study identified several potent inhibitors of AKT 1 and 2 isoforms from D. ambrosioides. However, cynaroside and epicatechin gallate having a binding energy of - 9.9 and - 10.2 kcal/mol for AKT 1 and 2, respectively, demonstrate considerable drug-likeness than the reference drug (capivasertib), whose respective binding strengths for AKT 1 and 2 are - 9.5 and - 8.4 kcal/mol. Lastly, the molecular dynamics simulation experiment showed that the simulated complex systems of the best hits exhibit structural stability throughout the 50 ns run. Together, our computational modeling analysis suggests that these compounds could emerge as efficacious drug candidates in the treatment of TNBC. Nevertheless, further experimental, translational, and clinical research is required to establish an empirical clinical application. Graphical Abstract A structure-based virtual screening and simulation of Dysphania ambrosioides phytochemicals in the active pocket of AKT 1 and 2 isoforms.
Collapse
Affiliation(s)
- Lateef O. Anifowose
- Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Oyo State Nigeria
- Department of Biochemistry, Faculty of Basic Medical Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo State Nigeria
- Department of Biotechnology, Institute of Basic and Applied Sciences, Egypt-Japan University of Science and Technology, New Borg El-Arab, Alexandria, Egypt
| | - Oluwatomiwa K. Paimo
- Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Oyo State Nigeria
- Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Ogun State Nigeria
| | - Fikayo N. Adegboyega
- Department of Biochemistry, Faculty of Basic Medical Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo State Nigeria
- Department of Biotechnology, Institute of Basic and Applied Sciences, Egypt-Japan University of Science and Technology, New Borg El-Arab, Alexandria, Egypt
| | - Oludare M. Ogunyemi
- Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Oyo State Nigeria
| | - Rukayat O. Akano
- Department of Biochemistry, Faculty of Basic Medical Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo State Nigeria
| | - Sherif F. Hammad
- Department of Biotechnology, Institute of Basic and Applied Sciences, Egypt-Japan University of Science and Technology, New Borg El-Arab, Alexandria, Egypt
| | - Mohamed A. Ghazy
- Department of Biotechnology, Institute of Basic and Applied Sciences, Egypt-Japan University of Science and Technology, New Borg El-Arab, Alexandria, Egypt
| |
Collapse
|
25
|
Ngule CM, Hemati H, Ren X, Obaleye O, Akinyemi AO, Oyelami FF, Xiong X, Song J, Liu X, Yang JM. Identification of a NACC1-Regulated Gene Signature Implicated in the Features of Triple-Negative Breast Cancer. Biomedicines 2023; 11:1223. [PMID: 37189841 PMCID: PMC10136325 DOI: 10.3390/biomedicines11041223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/05/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
Triple-negative breast cancer (TNBC), characterized by a deficiency in estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor2 (HER2), is among the most lethal subtypes of breast cancer (BC). Nevertheless, the molecular determinants that contribute to its malignant phenotypes such as tumor heterogeneity and therapy resistance, remain elusive. In this study, we sought to identify the stemness-associated genes involved in TNBC progression. Using bioinformatics approaches, we found 55 up- and 9 downregulated genes in TNBC. Out of the 55 upregulated genes, a 5 gene-signature (CDK1, EZH2, CCNB1, CCNA2, and AURKA) involved in cell regeneration was positively correlated with the status of tumor hypoxia and clustered with stemness-associated genes, as recognized by Parametric Gene Set Enrichment Analysis (PGSEA). Enhanced infiltration of immunosuppressive cells was also positively correlated with the expression of these five genes. Moreover, our experiments showed that depletion of the transcriptional co-factor nucleus accumbens-associated protein 1 (NAC1), which is highly expressed in TNBC, reduced the expression of these genes. Thus, the five genes signature identified by this study warrants further exploration as a potential new biomarker of TNBC heterogeneity/stemness characterized by high hypoxia, stemness enrichment, and immune-suppressive tumor microenvironment.
Collapse
Affiliation(s)
- Chrispus M. Ngule
- Department of Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Hami Hemati
- Department of Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Xingcong Ren
- Department of Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Oluwafunminiyi Obaleye
- Department of Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Amos O. Akinyemi
- Department of Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Felix F. Oyelami
- Department of Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Xiaofang Xiong
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| | - Jianxun Song
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| | - Xia Liu
- Department of Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
- Markey Cancer Center, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Jin-Ming Yang
- Department of Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
- Markey Cancer Center, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
- Department of Pharmacology and Nutritional Science, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
26
|
Ben-Yaakov H, Meshel T, Pasmanik-Chor M, Körner C, Ben-Baruch A. A Tumor Microenvironment-Driven Network Regulated by STAT3 and p65 Negatively Controls the Enrichment of Cancer Stem Cells in Human HR+/HER2- Breast Cancer. Cancers (Basel) 2023; 15:cancers15082255. [PMID: 37190183 DOI: 10.3390/cancers15082255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 05/17/2023] Open
Abstract
Hormone receptor-positive and HER2-negative (HR+/HER2-; luminal A) tumors are prevalent in breast cancer. Our past studies demonstrated that "TME Stimulation" (estrogen + TNFα + EGF, representing three arms of the tumor microenvironment, TME) has enriched metastasis-forming cancer stem cells (CSCs) in HR+/HER2- human breast cancer cells. Here, following information obtained by RNAseq analyses of TME-stimulated CSCs and Non-CSCs, we found that TME Stimulation has induced the activation of S727-STAT3, Y705-STAT3, STAT1 and p65. Upon TME Stimulation, stattic (STAT3 inhibitor) usage demonstrated that Y705-STAT3 activation negatively controlled CSC enrichment and epithelial-to-mesenchymal transition (EMT) traits, while inducing CXCL8 (IL-8) and PD-L1 expression. However, STAT3 knock-down (siSTAT3) had no effect on these functions; in terms of CSC enrichment, p65 had down-regulatory roles that compensated for the loss of an entire STAT3 protein. Y705-STAT3 and p65 acted additively in reducing CSC enrichment, and Y705A-STAT3 variant + sip65 has enriched chemo-resistant CSCs. Clinical data analyses revealed an inverse correlation between Y705-STAT3 + p65 phosphorylation and CSC signature in luminal A patients, and connection to improved disease course. Overall, we find regulatory roles for Y705-STAT3 and p65 in TME-stimulated HR+/HER2- tumors, with the ability to limit CSC enrichment. These findings raise concerns about using inhibitors of STAT3 and p65 as therapeutic strategies in the clinic.
Collapse
Affiliation(s)
- Hagar Ben-Yaakov
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Tsipi Meshel
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Metsada Pasmanik-Chor
- Bioinformatics Unit, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Cindy Körner
- Division of Molecular Genome Analysis, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Adit Ben-Baruch
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
27
|
Ławicki P, Malinowski P, Motyka J, Ławicki M, Kicman A, Kulesza M, Gacuta E, Guszczyn T, Januszkiewicz M, Zbucka-Krętowska M, Ławicki S. Plasma Levels of Metalloproteinase 3 (MMP-3) and Metalloproteinase 7 (MMP-7) as New Candidates for Tumor Biomarkers in Diagnostic of Breast Cancer Patients. J Clin Med 2023; 12:jcm12072618. [PMID: 37048701 PMCID: PMC10094779 DOI: 10.3390/jcm12072618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/17/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Matrix metalloproteinases (MMPs) are a group of enzymes that mediate both physiological and pathological processes such as carcinogenesis. The role of matrix metalloproteinase-3 (MMP-3) and (MMP-7) in the pathogenesis of breast cancer (BC) has been demonstrated, suggesting that they may be considered as potential markers of this condition. The aim of this study was to assess plasma concentrations and diagnostic utility of MMP-3 and MMP-7 in 100 patients with early-stage breast cancer with Luminal A subtype or Luminal B HER-negative subtype, before and after surgical treatment, and in the following control groups: patients with a benign tumor (fibroadenoma) and healthy subjects. The concentrations of MMP-3 and MMP-7 were referenced to the levels of the widely recognized marker for BC diagnosis CA 15-3. MMP-3 and MMP-7 was measured by ELISA method and CA 15-3 by CMIA. Plasma levels of MMP-7 were significantly higher in Luminal A and Luminal B HER2-negative subtype breast cancer patients as compared to the healthy group. MMP-7 demonstrated comparable but mostly higher to CA 15-3 or MMP-3 values of diagnostic sensitivity, specificity, positive and negative predictive values and AUC (0.6888 for Luminal A subtype; 0.7612 for Luminal B HER2-negative; 0.7250 for BC total group, respectively) in the groups tested. The combined use of the tested parameters resulted in a further increase in diagnostic criteria and AUC. These results suggest the usefulness of combining MMP-7 with CA 15-3 in the diagnostics of breast cancer, especially in Luminal B HER2-negative subtypes patients, as a new candidate for tumor markers.
Collapse
|
28
|
(Stămat) LRB, Dinescu S, Costache M. Regulation of Inflammasome by microRNAs in Triple-Negative Breast Cancer: New Opportunities for Therapy. Int J Mol Sci 2023; 24:ijms24043245. [PMID: 36834660 PMCID: PMC9963301 DOI: 10.3390/ijms24043245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/28/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
During the past decade, researchers have investigated the molecular mechanisms of breast cancer initiation and progression, especially triple-negative breast cancer (TNBC), in order to identify specific biomarkers that could serve as feasible targets for innovative therapeutic strategies development. TNBC is characterized by a dynamic and aggressive nature, due to the absence of estrogen, progesterone and human epidermal growth factor 2 receptors. TNBC progression is associated with the dysregulation of nucleotide-binding oligomerization domain-like receptor and pyrin domain-containing protein 3 (NLRP3) inflammasome, followed by the release of pro-inflammatory cytokines and caspase-1 dependent cell death, termed pyroptosis. The heterogeneity of the breast tumor microenvironment triggers the interest of non-coding RNAs' involvement in NLRP3 inflammasome assembly, TNBC progression and metastasis. Non-coding RNAs are paramount regulators of carcinogenesis and inflammasome pathways, which could help in the development of efficient treatments. This review aims to highlight the contribution of non-coding RNAs that support inflammasome activation and TNBC progression, pointing up their potential for clinical applications as biomarkers for diagnosis and therapy.
Collapse
Affiliation(s)
| | - Sorina Dinescu
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania
- Research Institute of the University of Bucharest, 050663 Bucharest, Romania
- Correspondence:
| | - Marieta Costache
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania
- Research Institute of the University of Bucharest, 050663 Bucharest, Romania
| |
Collapse
|