1
|
Kale R, Samant C, Nandakumar K, Ranganath Pai KS, Bhonde M. Drugging the Undruggable and beyond: Emerging precision oncology approaches to target acquired resistance to KRAS G12C and KRAS G12D inhibitors. Biochem Biophys Res Commun 2025; 760:151688. [PMID: 40174369 DOI: 10.1016/j.bbrc.2025.151688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 02/21/2025] [Accepted: 03/22/2025] [Indexed: 04/04/2025]
Abstract
Development of mutant specific KRAS inhibitors validated KRAS as a 'druggable' target. However, excellent initial efficacy was eventually overshadowed by failure to exhibit sustained clinical response, primarily due to acquired resistance. Some targeted therapies like SOS1, SHP2, and MEK inhibitors, in combination with mutant KRAS G12C inhibitors (G12Ci), are currently under clinical investigation with evidences of improving efficacy. However, a deep understanding of the underlying molecular pathways behind the acquired resistance is still at a nascent stage. Recent preclinical studies have uncovered a role of novel proteins and pathways responsible for resistance and their inhibition demonstrated a robust anticancer efficacy in combination. Plethora of combination therapy approaches are now being proposed with emergence of AXL, ULK1, Tissue factor, farnesyltransferase, etc. as targets to counter G12Ci resistance. This review summarizes in a comprehensive manner, some of the novel combination modalities to overcome G12Ci resistance, based on current understanding and with great potential to hit clinical success. Along with G12C, KRAS G12D (G12D) was also considered a formidable foe, until the discovery of selective inhibitors. However, eventual clinical resistance can eclipse the early success and requires an in-depth understanding of resistance mechanisms. Evidences of G12Ci resistance can be exploited as probable combination strategies to tackle ensuing resistance to G12D inhibitors (G12Di), and can translate in superior clinical efficacy. Early preclinical studies of G12Di in combination with ERBB, SOS1, AKT and immune-checkpoints inhibitors indicate encouraging response. This review further describes some of the early affirmations on combination strategies with G12Di. We postulate to go beyond 'Drugging the Undruggable' with advanced combination approaches mitigating G12C and G12D inhibitor resistance.
Collapse
Affiliation(s)
- Ramesh Kale
- Research Scholar, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India; Department of Pharmacology, Novel Drug Discovery and Development (NDDD), Lupin Limited, Survey No. 46A/47A, Village Nande, Taluka Mulshi, Pune, 412115, Maharashtra, India
| | - Charudatt Samant
- Research Scholar, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India; Department of Pharmacology, Novel Drug Discovery and Development (NDDD), Lupin Limited, Survey No. 46A/47A, Village Nande, Taluka Mulshi, Pune, 412115, Maharashtra, India.
| | - Krishnadas Nandakumar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - K Sreedhara Ranganath Pai
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Mandar Bhonde
- Department of Pharmacology, Novel Drug Discovery and Development (NDDD), Lupin Limited, Survey No. 46A/47A, Village Nande, Taluka Mulshi, Pune, 412115, Maharashtra, India
| |
Collapse
|
2
|
Kowash RR, Sabnani M, Gray LT, Deng Q, Saleh NUA, Girard L, Naito Y, Masahiro K, Minna JD, Gerber DE, Koyama S, Liu ZL, Baruah H, Akbay EA. Novel and potent MICA/B antibody is therapeutically effective in KRAS LKB1 mutant lung cancer models. J Immunother Cancer 2025; 13:e009867. [PMID: 39762078 PMCID: PMC11749492 DOI: 10.1136/jitc-2024-009867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 11/30/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Concurrent KRAS LKB1 (STK11, KL) mutant non-small cell lung cancers (NSCLC) do not respond well to current immune checkpoint blockade therapies, however targeting major histocompatibility complex class I-related chain A or B (MICA/B), could pose an alternative therapeutic strategy through activation of natural killer (NK) cells. METHODS Expression of NK cell activating ligands in NSCLC cell line and patient data were analyzed. Cell surface expression of MICA/B in NSCLC cell lines was determined through flow cytometry while ligand shedding in both patient blood and cell lines was determined through ELISA. We engineered an antibody-dependent cellular cytotoxicity (ADCC) enhanced MICA/B monoclonal antibody, AHA-1031, which prevents ligand shedding without interfering with binding to natural killer group 2D while targeting cancer cells via superior ADCC. We performed in vitro assays using ELISA and flow cytometry-based assays to confirm that our antibody potently binds to and stabilizes MICA/B expression across lung cancer and other solid tumor cell lines. Additionally, we used two KL mutant NSCLC cell lines and a KL mutant patient-derived xenograft (PDX) model to demonstrate in vivo antitumor efficacy and flow cytometry analysis for immune cell activation profiling. RESULTS NSCLC cell lines exhibit high MICA/B expression and secrete soluble MICA/B in vitro. Soluble MICA/B is also detected in patient blood samples. AHA-1031 binds to the α3 domain of MICA/B, preventing shedding and targeting tumor cells to ADCC. AHA-1031 exhibits high affinity and specificity to MICA/B, preventing MICA/B shedding in tumor lines and inducing ADCC in vitro. Our antibody also effectively binds and stabilizes MICA/B expression in additional tumor types and demonstrates broad specificity. We show that in two KL mutant NSCLC xenograft models and a KL mutant PDX model, treatment with AHA-1031 monotherapy significantly inhibits tumor growth compared with vehicle-treated animals with no observable toxicity. Tumor tissues from treated mice exhibit significantly increased immune cell infiltrates and activated NK cell populations. CONCLUSIONS Activating NK cells through MICA/B stabilization and inducing ADCC offers an alternative and potent therapy option in KL tumors. MICA/B are shed across different tumors making this therapeutic strategy universally applicable.
Collapse
Affiliation(s)
- Ryan R Kowash
- Department of Pathology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | | | | - Qing Deng
- Department of Pathology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Nusrat U A Saleh
- Department of Pathology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Luc Girard
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Yujiro Naito
- Department of Respiratory Medicine and Clinical Immunology, Osaka University, Suita, Japan
| | - Kentaro Masahiro
- Department of Respiratory Medicine and Clinical Immunology, Osaka University, Suita, Japan
| | - John D Minna
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Pharmacology, UT Southwestern Medical School, Dallas, Texas, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - David E Gerber
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Shohei Koyama
- Exploratory Oncology Research and Clinical Trial Center (EPOC), National Cancer Center Japan, Kashiwa, Japan
| | - Zhiqian Lucy Liu
- Alloy Therapeutics Inc, Lexington, Massachusetts, USA
- Alloy Therapeutics, Lexington, Massachusetts, USA
| | | | - Esra A Akbay
- Department of Pathology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
3
|
Ruffilli C, Röth S, Zelcer N, Moreau K. Orthogonal validation of PROTAC mediated degradation of the integral membrane proteins EGFR and c-MET. Sci Rep 2025; 15:504. [PMID: 39748066 PMCID: PMC11696238 DOI: 10.1038/s41598-024-84217-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 12/20/2024] [Indexed: 01/04/2025] Open
Abstract
Dysregulation of integral membrane proteins (IMPs) has been linked to a myriad of diseases, making these proteins an attractive target in drug research. Whilst PROTAC technology has had a significant impact in scientific research, its application to IMPs is still limited. Limitations of the traditional approach of immunoblotting in PROTAC research include the low throughput compared to other methods, as well as a lack of spatial information for the target. Here we compare orthogonal antibody based approaches, i.e. immunoblotting, flow cytometry and immunofluorescence, to measure PROTAC mediated degradation of two established, endogenous targets, epidermal growth factor receptor (EGFR) and hepatocyte growth-factor receptor (c-MET). We discuss advantages and limitations of each methodology for the assessment of PROTAC efficacy on IMPs. Overall, we recommend the use of immunofluorescence and flow cytometry, for an increased accuracy with both a qualitative and quantitative insight into degradation efficacy and a critical distinction between cell membrane-localized and intracellular IMP protein pools.
Collapse
Affiliation(s)
- Camilla Ruffilli
- Safety Innovation and PROTAC Safety, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, Cambridge, CB2 0SL, UK
- Department of Medical Biochemistry, Amsterdam UMC, University of Amsterdam, 1000 GG, Amsterdam, The Netherlands
| | - Sascha Röth
- Safety Innovation and PROTAC Safety, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, Cambridge, CB2 0SL, UK
| | - Noam Zelcer
- Department of Medical Biochemistry, Amsterdam UMC, University of Amsterdam, 1000 GG, Amsterdam, The Netherlands
| | - Kevin Moreau
- Safety Innovation and PROTAC Safety, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, Cambridge, CB2 0SL, UK.
| |
Collapse
|
4
|
Son A, Park J, Kim W, Yoon Y, Lee S, Ji J, Kim H. Recent Advances in Omics, Computational Models, and Advanced Screening Methods for Drug Safety and Efficacy. TOXICS 2024; 12:822. [PMID: 39591001 PMCID: PMC11598288 DOI: 10.3390/toxics12110822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/10/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024]
Abstract
It is imperative to comprehend the mechanisms that underlie drug toxicity in order to enhance the efficacy and safety of novel therapeutic agents. The capacity to identify molecular pathways that contribute to drug-induced toxicity has been significantly enhanced by recent developments in omics technologies, such as transcriptomics, proteomics, and metabolomics. This has enabled the early identification of potential adverse effects. These insights are further enhanced by computational tools, including quantitative structure-activity relationship (QSAR) analyses and machine learning models, which accurately predict toxicity endpoints. Additionally, technologies such as physiologically based pharmacokinetic (PBPK) modeling and micro-physiological systems (MPS) provide more precise preclinical-to-clinical translation, thereby improving drug safety assessments. This review emphasizes the synergy between sophisticated screening technologies, in silico modeling, and omics data, emphasizing their roles in reducing late-stage drug development failures. Challenges persist in the integration of a variety of data types and the interpretation of intricate biological interactions, despite the progress that has been made. The development of standardized methodologies that further enhance predictive toxicology is contingent upon the ongoing collaboration between researchers, clinicians, and regulatory bodies. This collaboration ensures the development of therapeutic pharmaceuticals that are more effective and safer.
Collapse
Affiliation(s)
- Ahrum Son
- Department of Molecular Medicine, Scripps Research, San Diego, CA 92037, USA;
| | - Jongham Park
- Department of Bio-AI Convergence, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea; (J.P.); (W.K.); (Y.Y.); (S.L.)
| | - Woojin Kim
- Department of Bio-AI Convergence, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea; (J.P.); (W.K.); (Y.Y.); (S.L.)
| | - Yoonki Yoon
- Department of Bio-AI Convergence, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea; (J.P.); (W.K.); (Y.Y.); (S.L.)
| | - Sangwoon Lee
- Department of Bio-AI Convergence, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea; (J.P.); (W.K.); (Y.Y.); (S.L.)
| | - Jaeho Ji
- Department of Convergent Bioscience and Informatics, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea;
| | - Hyunsoo Kim
- Department of Bio-AI Convergence, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea; (J.P.); (W.K.); (Y.Y.); (S.L.)
- Department of Convergent Bioscience and Informatics, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea;
- Protein AI Design Institute, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
- SCICS, Prove Beyond AI, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| |
Collapse
|
5
|
Kowash RR, Sabnani M, Gray LT, Deng Q, Girard L, Naito Y, Masuhiro K, Minna JD, Gerber DE, Koyama S, Liu ZL, Baruah H, Akbay EA. A novel and potent MICA/B antibody is therapeutically effective in KRAS LKB1 mutant lung cancer models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.30.605880. [PMID: 39211152 PMCID: PMC11361202 DOI: 10.1101/2024.07.30.605880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Concurrent KRAS LKB1 (STK11, KL) mutant Non-Small Cell Lung Cancers (NSCLC) is particularly difficult to treat and does not respond well to current immune checkpoint blockade (ICB) therapies. This is due to numerous mechanisms including low antigen presentation limiting T cell mediated killing. To activate anti-tumor immunity, we targeted tumor cell - natural killer (NK) cell interactions. We tested whether a novel antibody based therapeutic strategy that predominantly activates natural killer (NK) cells demonstrates efficacy in pre-clinical mouse models of KL NSCLC. NK cells rely on binding of ligands, such as Major Histocompatibility Complex (MHC) class I-related chain A or B (MICA/B), to the activating receptor NKG2D. Importantly MICA and MICB are widely expressed in elevated levels across NSCLC subtypes including KL lung cancers. Proteases with the tumor microenvironment (TME) can cleave these proteins rendering tumor cells less visible to NK cells. We therefore developed a MICA monoclonal antibody, AHA-1031, which utilizes two NK cell activating receptors. AHA1031 prevents ligand shedding without interfering with binding to NKG2D while targeting cancer cells to antibody mediated cell dependent cytotoxicity (ADCC). Our therapeutic novel antibody has significant monotherapy activity in KL cancer models including xenografts of human cell lines and patient derived xenografts. Activating NK cells through MICA/B stabilization and inducing ADCC offers an alternative and potent therapy option in KL tumors. MICA/B are shed across different tumors making this therapeutic strategy universally applicable.
Collapse
|
6
|
Tang Y, Pu X, Yuan X, Pang Z, Li F, Wang X. Targeting KRASG12D mutation in non-small cell lung cancer: molecular mechanisms and therapeutic potential. Cancer Gene Ther 2024; 31:961-969. [PMID: 38734764 PMCID: PMC11257988 DOI: 10.1038/s41417-024-00778-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/22/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024]
Abstract
Lung malignant tumors are a type of cancer with high incidence and mortality rates worldwide. Non-small cell lung cancer (NSCLC) accounts for over 80% of all lung malignant tumors, and most patients are diagnosed at advanced stages, leading to poor prognosis. Over the past decades, various oncogenic driver alterations associated with lung cancer have been identified, each of which can potentially serve as a therapeutic target. Rat sarcoma (RAS) genes are the most commonly mutated oncogenes in human cancers, with Kirsten rat sarcoma (KRAS) being the most common subtype. The role of KRAS oncogene in NSCLC is still not fully understood, and its impact on prognosis remains controversial. Despite the significant advancements in targeted therapy and immune checkpoint inhibitors (ICI) that have transformed the treatment landscape of advanced NSCLC in recent years, targeting KRAS (both directly and indirectly) remains challenging and is still under intensive research. In recent years, significant progress has been made in the development of targeted drugs targeting the NSCLC KRASG12C mutant subtype. However, research progress on target drugs for the more common KRASG12D subtype has been slow, and currently, no specific drugs have been approved for clinical use, and many questions remain to be answered, such as the mechanisms of resistance in this subtype of NSCLC, how to better utilize combination strategies with multiple treatment modalities, and whether KRASG12D inhibitors offer substantial efficacy in the treatment of advanced NSCLC patients.
Collapse
Affiliation(s)
- Yining Tang
- Department of Radiation Oncology, Cancer Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, 212000, Jiangsu, China
| | - Xi Pu
- Department of Radiation Oncology, Cancer Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, 212000, Jiangsu, China
| | - Xiao Yuan
- Department of Radiation Oncology, Cancer Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, 212000, Jiangsu, China
| | - Zhonghao Pang
- Department of Thoracic Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, 212000, Jiangsu, China
| | - Feng Li
- Department of Thoracic Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, 212000, Jiangsu, China.
| | - Xu Wang
- Department of Radiation Oncology, Cancer Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, 212000, Jiangsu, China.
| |
Collapse
|
7
|
Zhao D, Li H, Mambetsariev I, Mirzapoiazova T, Chen C, Fricke J, Wheeler D, Arvanitis L, Pillai R, Afkhami M, Chen BT, Sattler M, Erhunmwunsee L, Massarelli E, Kulkarni P, Amini A, Armstrong B, Salgia R. Spatial iTME analysis of KRAS mutant NSCLC and immunotherapy outcome. NPJ Precis Oncol 2024; 8:135. [PMID: 38898200 PMCID: PMC11187132 DOI: 10.1038/s41698-024-00626-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 06/04/2024] [Indexed: 06/21/2024] Open
Abstract
We conducted spatial immune tumor microenvironment (iTME) profiling using formalin-fixed paraffin-embedded (FFPE) samples of 25 KRAS-mutated non-small cell lung cancer (NSCLC) patients treated with immune checkpoint inhibitors (ICIs), including 12 responders and 13 non-responders. An eleven-marker panel (CD3, CD4, CD8, FOXP3, CD68, arginase-1, CD33, HLA-DR, pan-keratin (PanCK), PD-1, and PD-L1) was used to study the tumor and immune cell compositions. Spatial features at single cell level with cellular neighborhoods and fractal analysis were determined. Spatial features and different subgroups of CD68+ cells and FOXP3+ cells being associated with response or resistance to ICIs were also identified. In particular, CD68+ cells, CD33+ and FOXP3+ cells were found to be associated with resistance. Interestingly, there was also significant association between non-nuclear expression of FOXP3 being resistant to ICIs. We identified CD68dim cells in the lung cancer tissues being associated with improved responses, which should be insightful for future studies of tumor immunity.
Collapse
Affiliation(s)
- Dan Zhao
- Department of Medical Oncology and Therapeutics Research, City of Hope, Duarte, CA, USA
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Haiqing Li
- Integrative Genomic Core, Beckman Research Institute of City of Hope, Duarte, CA, USA
- Department of Computational & Quantitative Medicine, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Isa Mambetsariev
- Department of Medical Oncology and Therapeutics Research, City of Hope, Duarte, CA, USA
| | - Tamara Mirzapoiazova
- Department of Medical Oncology and Therapeutics Research, City of Hope, Duarte, CA, USA
| | - Chen Chen
- Department of Applied AI & Data Science, City of Hope, Duarte, CA, USA
| | - Jeremy Fricke
- Department of Medical Oncology and Therapeutics Research, City of Hope, Duarte, CA, USA
| | - Deric Wheeler
- Department of Human Oncology, University of Wisconsin, Madison, WI, USA
| | | | - Raju Pillai
- Department of Pathology, City of Hope, Duarte, CA, USA
| | | | - Bihong T Chen
- Department of Diagnostic Radiology, City of Hope, Duarte, CA, USA
| | - Martin Sattler
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | | | - Erminia Massarelli
- Department of Medical Oncology and Therapeutics Research, City of Hope, Duarte, CA, USA
| | - Prakash Kulkarni
- Department of Medical Oncology and Therapeutics Research, City of Hope, Duarte, CA, USA
| | - Arya Amini
- Department of Radiation Oncology, City of Hope, Duarte, CA, USA
| | - Brian Armstrong
- Light Microscopy/Digital Imaging Core, City of Hope, Duarte, CA, USA
| | - Ravi Salgia
- Department of Medical Oncology and Therapeutics Research, City of Hope, Duarte, CA, USA.
| |
Collapse
|
8
|
Lv X, Li Y, Wang B, Wang Y, Xu Z, Hou D. Multisequence MRI-based radiomics signature as potential biomarkers for differentiating KRAS mutations in non-small cell lung cancer with brain metastases. Eur J Radiol Open 2024; 12:100548. [PMID: 38298532 PMCID: PMC10827674 DOI: 10.1016/j.ejro.2024.100548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/08/2024] [Accepted: 01/11/2024] [Indexed: 02/02/2024] Open
Abstract
Background Kirsten rat sarcoma virus (KRAS) has evolved from a genotype with predictive value to a therapeutic target recently. The study aimed to establish non-invasive radiomics models based on MRI to discriminate KRAS from epidermal growth factor receptor (EGFR) or anaplastic lymphoma kinase (ALK) mutations in lung cancer patients with brain metastases (BM), then further explore the optimal sequence for prediction. Methods This retrospective study involved 317 patients (218 patients in training cohort and 99 patients in testing cohort) who had confirmed of KRAS, EGFR or ALK mutations. Radiomics features were separately extracted from T2WI, T2 fluid-attenuated inversion recovery (T2-FLAIR), diffusion weighted imaging (DWI) and contrast-enhanced T1-weighted imaging (T1-CE) sequences. The maximal information coefficient and recursive feature elimination method were used to select informative features. Then we built four radiomics models for differentiating KRAS from EGFR or ALK using random forest classifier. ROC curves were used to validate the capability of the models. Results The four radiomics models for discriminating KRAS from EGFR all worked well, especially DWI and T2WI models (AUCs: 0.942, 0.942 in training cohort, 0.949, 0.954 in testing cohort). When KRAS compared to ALK, DWI and T2-FLAIR models showed excellent performance in two cohorts (AUCs: 0.947, 0.917 in training cohort, 0.850, 0.824 in testing cohort). Conclusions Radiomics classifiers integrating MRI have potential to discriminate KRAS from EGFR or ALK, which are helpful to guide treatment and facilitate the discovery of new approaches capable of achieving this long-sought goal of cure in lung cancer patients with KRAS.
Collapse
Affiliation(s)
- Xinna Lv
- Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| | - Ye Li
- Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| | - Bing Wang
- Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, China
| | - Yichuan Wang
- Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, China
| | - Zexuan Xu
- Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| | - Dailun Hou
- Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| |
Collapse
|
9
|
Caballé-Perez E, Hernández-Pedro N, Ramos-Ramírez M, Barrios-Bernal P, Romero-Núñez E, Lucio-Lozada J, Ávila-Ríos S, Reyes-Terán G, Cardona AF, Arrieta O. Impact of KRAS G12D subtype and concurrent pathogenic mutations on advanced non-small cell lung cancer outcomes. Clin Transl Oncol 2024; 26:836-850. [PMID: 37490263 PMCID: PMC10981588 DOI: 10.1007/s12094-023-03279-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 07/09/2023] [Indexed: 07/26/2023]
Abstract
PURPOSE Mutations in the Kirsten rat sarcoma viral (KRAS) oncogene constitute a significant driver of lung adenocarcinoma, present in 10-40% of patients, which exhibit heterogeneous clinical outcomes, mainly driven by concurrent genetic alterations. However, characterization of KRAS mutational subtypes and their impact on clinical outcomes in Latin America is limited. METHODS A cohort study was conducted at the National Cancer Institute (INCan) of Mexico. Individuals with advance-staged of adenocarcinoma and KRAS mutations, detected by next-generation sequencing, having undergone at least one line of therapy were included for analysis. Clinical and pathological characteristics were retrieved from institutional database from June 2014 to March 2023. RESULTS KRAS was identified in fifty-four (15.6%) of 346 patients, among which 50 cases were included for analysis. KRASG12D (n = 16, 32%) and KRASG12C (n = 16, 32%) represented the most prevalent subtypes. KRASG12D mutations were associated with female (p = 0.018), never smokers (p = 0.108), and concurrences with EGFR (25.0% vs. 17.6%, p = 0.124) and CDKN2A (18.8% vs. 14.7%, p = 0.157). KRASG12D patients showed a better ORR (66.6% vs. 30.0%; OR 4.66, 95% CI 1.23-17.60, p = 0.023) and on multivariate analysis was significantly associated with better PFS (HR 0.36, 95% CI 0.16-0.80; p = 0.012) and OS (HR 0.24, 95% CI 0.08-0.70; p = 0.009). CONCLUSIONS To our knowledge, this study represents the first effort to comprehensively characterize the molecular heterogeneity of KRAS-mutant NSCLC in Latin American patients. Our data reinforce the current view that KRAS-mutated NSCLC is not a single oncogene-driven disease and emphasizes the prognostic impact of diverse molecular profiles in this genomically defined subset of NSCLC. Further validation is warranted in larger multicenter Latin American cohorts to confirm our findings.
Collapse
Affiliation(s)
- Enrique Caballé-Perez
- Thoracic Oncology Unit, Instituto Nacional de Cancerología (INCan), Mexico City, Mexico
- Personalized Medicine Laboratory, Instituto Nacional de Cancerología (INCan), Mexico City, Mexico
| | - Norma Hernández-Pedro
- Personalized Medicine Laboratory, Instituto Nacional de Cancerología (INCan), Mexico City, Mexico
| | - Maritza Ramos-Ramírez
- Thoracic Oncology Unit, Instituto Nacional de Cancerología (INCan), Mexico City, Mexico
| | - Pedro Barrios-Bernal
- Personalized Medicine Laboratory, Instituto Nacional de Cancerología (INCan), Mexico City, Mexico
| | - Eunice Romero-Núñez
- Personalized Medicine Laboratory, Instituto Nacional de Cancerología (INCan), Mexico City, Mexico
| | - José Lucio-Lozada
- Personalized Medicine Laboratory, Instituto Nacional de Cancerología (INCan), Mexico City, Mexico
| | | | | | - Andrés F Cardona
- Thoracic Oncology Unit and Direction of Research, Science and Education, Luis Carlos Sarmiento Angulo, Cancer Treatment and Research Center (CTIC), Bogotá, Colombia
- Clinical and Translational Oncology Group, Clínica del Country, Bogotá, Colombia
- Molecular Oncology and Biology Systems Research Group (Fox-G), Universidad El Bosque, Bogotá, Colombia
| | - Oscar Arrieta
- Thoracic Oncology Unit, Instituto Nacional de Cancerología (INCan), Mexico City, Mexico.
- Personalized Medicine Laboratory, Instituto Nacional de Cancerología (INCan), Mexico City, Mexico.
| |
Collapse
|
10
|
Chen J, Lu W, Chen M, Cai Z, Zhan P, Liu X, Zhu S, Ye M, Lv T, Lv J, Song Y, Wang D. Efficacy of immunotherapy in patients with oncogene-driven non-small-cell lung cancer: a systematic review and meta-analysis. Ther Adv Med Oncol 2024; 16:17588359231225036. [PMID: 38420602 PMCID: PMC10901068 DOI: 10.1177/17588359231225036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 12/18/2023] [Indexed: 03/02/2024] Open
Abstract
Background Immunotherapy is an emerging antitumor therapy that can improve the survival of patients with advanced non-small-cell lung cancer (NSCLC). However, only about 20% of NSCLC patients can benefit from this treatment. At present, whether patients with driving gene-positive NSCLC can benefit from immunotherapy is one of the hot issues. Therefore, we conducted a meta-analysis to evaluate the efficacy of immunotherapy in patients with oncogene-driven NSCLC and concluded the efficacy of altered subtypes. Methods A literature search was performed using PubMed, Web of Science, and Cochrane databases. The primary endpoints included the objective response rate (ORR), median progression-free survival (mPFS), and median overall survival (mOS) in patients with oncogene-driven NSCLC. Results In all, 86 studies involving 4524 patients with oncogene-driven NSCLC were included in this meta-analysis. The pooled ORRs in clinical trials treated with monoimmunotherapy of EGFR, ALK, and KRAS alteration were 6%, 0%, and 23%, respectively. In retrospective studies, the pooled ORRs of EGFR, ALK, KRAS, BRAF, MET, HER2, RET, and ROS1 alteration were 8%, 3%, 28%, 24%, 23%, 14%, 7%, and 8%, respectively. Among them, the pooled ORRs of KRAS non-G12C mutation, KRAS G12C mutation, BRAF V600E mutation, BRAF non-V600E mutation, MET-exon 14 skipping, and MET-amplification were 33% 40%, 20%, 34%, 17%, and 60%, respectively. In addition, the pooled mPFS rates of EGFR, KRAS, MET, HER2, and RET alteration were 2.77, 3.24, 2.48, 2.31, and 2.68 months, while the pooled mOS rates of EGFR and KRAS alteration were 9.98 and 12.29 months, respectively. In prospective data concerning EGFR mutation, the pooled ORR and mPFS treated with chemo-immunotherapy (IC) reached 38% and 6.20 months, while 58% and 8.48 months with chemo-immunotherapy plus anti-angiogenesis therapy (ICA). Moreover, the pooled mPFS and mOS of monoimmunotherapy was 2.33 months and 12.43 months. Conclusions EGFR-, ALK-, HER2-, RET-, and ROS1-altered NSCLC patients have poor reactivity to monoimmunotherapy but the efficacy of immune-based combined therapy is significantly improved. KRAS G12C mutation, BRAF non-V600E mutation, and MET amplification have better responses to immunotherapy, and more prospective studies are needed for further research.
Collapse
Affiliation(s)
- Jiayan Chen
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wanjun Lu
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Mo Chen
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zijing Cai
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ping Zhan
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Xin Liu
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Suhua Zhu
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Mingxiang Ye
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Tangfeng Lv
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Jiawen Lv
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210002 China
| | - Yong Song
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210002 China
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210002 China
| | - Dong Wang
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210002 China
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210002 China
| |
Collapse
|
11
|
Yousef A, Yousef M, Chowdhury S, Abdilleh K, Knafl M, Edelkamp P, Alfaro-Munoz K, Chacko R, Peterson J, Smaglo BG, Wolff RA, Pant S, Lee MS, Willis J, Overman M, Doss S, Matrisian L, Hurd MW, Snyder R, Katz MHG, Wang H, Maitra A, Shen JP, Zhao D. Impact of KRAS mutations and co-mutations on clinical outcomes in pancreatic ductal adenocarcinoma. NPJ Precis Oncol 2024; 8:27. [PMID: 38310130 PMCID: PMC10838312 DOI: 10.1038/s41698-024-00505-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 01/05/2024] [Indexed: 02/05/2024] Open
Abstract
The relevance of KRAS mutation alleles to clinical outcome remains inconclusive in pancreatic adenocarcinoma (PDAC). We conducted a retrospective study of 803 patients with PDAC (42% with metastatic disease) at MD Anderson Cancer Center. Overall survival (OS) analysis demonstrated that KRAS mutation status and subtypes were prognostic (p < 0.001). Relative to patients with KRAS wildtype tumors (median OS 38 months), patients with KRASG12R had a similar OS (median 34 months), while patients with KRASQ61 and KRASG12D mutated tumors had shorter OS (median 20 months [HR: 1.9, 95% CI 1.2-3.0, p = 0.006] and 22 months [HR: 1.7, 95% CI 1.3-2.3, p < 0.001], respectively). There was enrichment of KRASG12D mutation in metastatic tumors (34% vs 24%, OR: 1.7, 95% CI 1.2-2.4, p = 0.001) and enrichment of KRASG12R in well and moderately differentiated tumors (14% vs 9%, OR: 1.7, 95% CI 1.05-2.99, p = 0.04). Similar findings were observed in the external validation cohort (PanCAN's Know Your Tumor® dataset, n = 408).
Collapse
Affiliation(s)
- Abdelrahman Yousef
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mahmoud Yousef
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Saikat Chowdhury
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kawther Abdilleh
- Pancreatic Cancer Action Network, Manhattan Beach, Los Angeles, CA, USA
| | - Mark Knafl
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Paul Edelkamp
- Department of Data Engineering & Analytics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kristin Alfaro-Munoz
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ray Chacko
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jennifer Peterson
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Brandon G Smaglo
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Robert A Wolff
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shubham Pant
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael S Lee
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jason Willis
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael Overman
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sudheer Doss
- Pancreatic Cancer Action Network, Manhattan Beach, Los Angeles, CA, USA
| | - Lynn Matrisian
- Pancreatic Cancer Action Network, Manhattan Beach, Los Angeles, CA, USA
| | - Mark W Hurd
- Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rebecca Snyder
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Matthew H G Katz
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Huamin Wang
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anirban Maitra
- Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - John Paul Shen
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dan Zhao
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
12
|
Yousef A, Yousef M, Chowdhury S, Abdilleh K, Knafl M, Edelkamp P, Alfaro-Munoz K, Chacko R, Peterson J, Smaglo BG, Wolff RA, Pant S, Lee MS, Willis J, Overman M, Doss S, Matrisian L, Hurd MW, Snyder R, Katz MH, Wang H, Maitra A, Shen JP, Zhao D. Impact of KRAS Mutations and Co-mutations on Clinical Outcomes in Pancreatic Ductal Adenocarcinoma. RESEARCH SQUARE 2023:rs.3.rs-3195257. [PMID: 37609177 PMCID: PMC10441514 DOI: 10.21203/rs.3.rs-3195257/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
The relevance of KRAS mutation alleles to clinical outcome remains inconclusive in pancreatic adenocarcinoma (PDAC). We conducted a retrospective study of 803 PDAC patients (42% with metastatic disease) at MD Anderson Cancer Center. Overall survival (OS) analysis demonstrated that KRAS mutation status and subtypes were prognostic (p<0.001). Relative to patients with KRAS wildtype tumors (median OS 38 months), patients with KRASG12R had a similar OS (median 34 months), while patients with KRASQ61 and KRASG12D mutated tumors had shorter OS (median 20 months [HR: 1.9, 95% CI 1.2-3.0, p=0.006] and 22 months [HR: 1.7, 95% CI 1.3-2.3, p<0.001], respectively). There was enrichment of KRASG12D mutation in metastatic tumors (34% vs 24%, OR: 1.7, 95% CI 1.2-2.4, p=0.001) and enrichment of KRASG12R in well and moderately differentiated tumors (14% vs 9%, OR: 1.7, 95% CI 1.05-2.99, p=0.04). Similar findings were observed in the external validation cohort (PanCAN's Know Your Tumor® dataset, n=408).
Collapse
Affiliation(s)
- Abdelrahman Yousef
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mahmoud Yousef
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Saikat Chowdhury
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kawther Abdilleh
- Pancreatic Cancer Action Network, Manhattan Beach, Los Angeles, CA, USA
| | - Mark Knafl
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Paul Edelkamp
- Department of Data Engineering & Analytics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kristin Alfaro-Munoz
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ray Chacko
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jennifer Peterson
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Brandon G. Smaglo
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Robert A. Wolff
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shubham Pant
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael S. Lee
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jason Willis
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael Overman
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sudheer Doss
- Pancreatic Cancer Action Network, Manhattan Beach, Los Angeles, CA, USA
| | - Lynn Matrisian
- Pancreatic Cancer Action Network, Manhattan Beach, Los Angeles, CA, USA
| | - Mark W. Hurd
- Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rebecca Snyder
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Matthew H.G. Katz
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Huamin Wang
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anirban Maitra
- Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - John Paul Shen
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dan Zhao
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
13
|
Knetki-Wróblewska M, Tabor S, Płużański A, Lewandowska Z, Tysarowski A, Pawlik H, Kowalski DM, Krzakowski M. Efficacy of Immunotherapy in Second-Line Treatment of KRAS-Mutated Patients with Non-Small-Cell Lung Cancer-Data from Daily Practice. Curr Oncol 2022; 30:462-475. [PMID: 36661686 PMCID: PMC9858515 DOI: 10.3390/curroncol30010037] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 12/22/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022] Open
Abstract
Background The implementation of next-generation sequencing (NGS) into daily practice allows for the identification of a greater number of molecular abnormalities. We aimed to confirm the benefits of immunotherapy in the group of patients with KRAS aberrations treated within clinical practice. Methods This study was a retrospective analysis of the patients (pts) treated in routine practice within the National Drug Programme in Poland. The NGS was performed using a FusionPlex Comprehensive Thyroid and Lung (CTL) kit (ArcherDx) and sequenced using a MiniSeq (Illumina). The analyses were performed with the R language environment, version 4.1.3. Results A total of 96 pts with chemotherapy-pre-treated advanced NSCLC (CS III−IV) were qualified for nivolumab or atezolizumab treatment following a molecular diagnosis by the NGS and the exclusion of EGFR and ALK gene abnormalities. A mutation in the KRAS gene was found in 26 patients (27%); among them, the variant p.Gly12Cyc (G12C) was the most common (42%). The median PFS and OS for the overall population were 2 months (95% CI: 1.8−2.75) and 10 months (95% CI: 6.9−16.2), respectively. No differences were observed in terms of the mPFS between the KRAS-mutated and KRAS wild-type (WT) patients. A trend toward a longer OS was observed in the group of patients with the KRAS mutation, but the difference was not statistically significant (p = 0.43). In the multivariate analysis, the presence of mutations in the KRAS gene had no prognostic significance, while the occurence of grade 3 toxicity and the neutrophil-to-lymphocyte ratio (NLR) > 3.5 were found as statistically significant factors. Conclusions Immunotherapy in the second-line treatment of advanced NSCLC allows for a benefit regardless of the KRAS gene mutation status. The treatment sequence, including molecularly targeted drugs such as sotorasib and adagrasib, is still discussed. The NGS is a valuable method to identify a variety of molecular abnormalities in patients with NSCLC in daily practice.
Collapse
Affiliation(s)
- Magdalena Knetki-Wróblewska
- Department of Lung Cancer and Thoracic Tumours, The Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Sylwia Tabor
- Department of Lung Cancer and Thoracic Tumours, The Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Adam Płużański
- Department of Lung Cancer and Thoracic Tumours, The Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Zofia Lewandowska
- Department of Lung Cancer and Thoracic Tumours, The Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Andrzej Tysarowski
- Cancer Molecular and Genetic Diagnostics Department, The Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Hubert Pawlik
- Computational Oncology Department, The Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Dariusz M. Kowalski
- Department of Lung Cancer and Thoracic Tumours, The Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Maciej Krzakowski
- Department of Lung Cancer and Thoracic Tumours, The Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| |
Collapse
|