1
|
Li M, Chen T, Huang R, Cen Y, Zhao F, Fan R, He G. Chimeric antigen receptor-T cells targeting AFP-GPC3 mediate increased antitumor efficacy in hepatocellular carcinoma. Arab J Gastroenterol 2025; 26:84-93. [PMID: 39757079 DOI: 10.1016/j.ajg.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 11/07/2024] [Accepted: 12/07/2024] [Indexed: 01/07/2025]
Abstract
BACKGROUND AND STUDY AIMS As a novel immunotherapy, chimeric antigen receptor T (CAR-T) cell technology is successful in treating hematologic malignancies, and exhibits potential benefits in partial solid tumors. Therapies targeting one antigen have some weaknesses, and dual-targeted CAR-T cells may be a better option. Alpha-fetoprotein (AFP) and glypican-3 (GPC3) are both highly expressed in hepatocellular carcinoma (HCC) and serve as important markers. Our study aimed to compare the cytotoxicity effect of AFP and GPC3 dual-targeted CAR-T cells on HCC cells in vitro and its therapeutic effects on a SCID xenograft model with those of single-targeted CAR-T cells. MATERIALS AND METHODS pLVX lentivirus vectors loaded with AFP CAR, GPC3 CAR, or AFP-GPC3 CAR constructs were transfected into human T lymphocytes. Control T, AFP CAR-T, GPC3 CAR-T, and AFP-GPC3 CAR-T cells were used as effector cells, and HLE (AFP-GPC3-), Sh-GPC3-Huh-7 (AFP+), Sh-AFP-Huh-7 (GPC3+), and Huh-7 (AFP+GPC3+) cells were used as target cells. After their co-culture for 6 h, the LDH cytotoxicity assay was employed to estimate the cell-killing effects of CAR-T cells on the target HCC cells. SCID mice bearing Huh-7 cell-derived neoplasms were injected with CAR-T cells, after which the pathological changes, CD3ζ expression, and IL-2 and IFN-γ levels in mouse tumor tissues were determined. RESULTS AFP and GPC3 were highly expressed in Huh-7 cells. AFP-GPC3 CAR-T cells exerted significant cell-killing effects on the HCC cells that expressed specific targeting antigen molecules (AFP and GPC3). Besides, AFP-GPC3 CAR-T cells better promoted Th cytokine secretion by Huh-7 cells than AFP CAR-T and GPC3 CAR-T cells. In vivo results suggested that AFP-GPC3 CAR-T cells better inhibited the growth of Huh-7 cell (AFP+GPC3+)-derived neoplasms than AFP CAR-T and GPC3 CAR-T cells. CONCLUSION AFP and GPC3 dual-targeted CAR-T cells showed better anti-tumor effects in HCC than AFP or GPC3 single-targeted CAR-T cells.
Collapse
Affiliation(s)
- Mingxing Li
- Embryo Formation Teaching and Research Section, Guangxi University of Chinese Medicine, No.13 Wuhe Avenue, Nanning 530200, Guangxi, China
| | - Tailin Chen
- Embryo Formation Teaching and Research Section, Guangxi University of Chinese Medicine, No.13 Wuhe Avenue, Nanning 530200, Guangxi, China
| | - Rongshi Huang
- Embryo Formation Teaching and Research Section, Guangxi University of Chinese Medicine, No.13 Wuhe Avenue, Nanning 530200, Guangxi, China.
| | - Yanhui Cen
- Embryo Formation Teaching and Research Section, Guangxi University of Chinese Medicine, No.13 Wuhe Avenue, Nanning 530200, Guangxi, China.
| | - Feilan Zhao
- Embryo Formation Teaching and Research Section, Guangxi University of Chinese Medicine, No.13 Wuhe Avenue, Nanning 530200, Guangxi, China
| | - Rong Fan
- Embryo Formation Teaching and Research Section, Guangxi University of Chinese Medicine, No.13 Wuhe Avenue, Nanning 530200, Guangxi, China
| | - Guozhen He
- Embryo Formation Teaching and Research Section, Guangxi University of Chinese Medicine, No.13 Wuhe Avenue, Nanning 530200, Guangxi, China
| |
Collapse
|
2
|
Yu G, Ye Z, Yuan Y, Wang X, Li T, Wang Y, Wang Y, Yan J. Recent Advancements in Biomaterials for Chimeric Antigen Receptor T Cell Immunotherapy. Biomater Res 2024; 28:0045. [PMID: 39011521 PMCID: PMC11246982 DOI: 10.34133/bmr.0045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/13/2024] [Indexed: 07/17/2024] Open
Abstract
Cellular immunotherapy is an innovative cancer treatment method that utilizes the patient's own immune system to combat tumor cells effectively. Currently, the mainstream therapeutic approaches include chimeric antigen receptor T cell (CAR-T) therapy, T cell receptor gene-modified T cell therapy and chimeric antigen receptor natural killer-cell therapy with CAR-T therapy mostly advanced. Nonetheless, the conventional manufacturing process of this therapy has shortcomings in each step that call for improvement. Marked efforts have been invested for its enhancement while notable progresses achieved in the realm of biomaterials application. With CAR-T therapy as a prime example, the aim of this review is to comprehensively discuss the various biomaterials used in cell immunotherapy, their roles in regulating immune cells, and their potential for breakthroughs in cancer treatment from gene transduction to efficacy enhancement. This article additionally addressed widely adopted animal models for efficacy evaluating.
Collapse
Affiliation(s)
- Gaoyu Yu
- School of Medicine,
Zhejiang University, Hangzhou 310028, China
| | - Zhichao Ye
- Department of General Surgery, Sir Run Run Shaw Hospital Affiliated to School of Medicine,
Zhejiang University, Hangzhou 310016, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Sir Run Run Shaw Hospital, School of Medicine,
Zhejiang University, Hangzhou 310028, China
| | - Yuyang Yuan
- Department of General Surgery, Sir Run Run Shaw Hospital Affiliated to School of Medicine,
Zhejiang University, Hangzhou 310016, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Sir Run Run Shaw Hospital, School of Medicine,
Zhejiang University, Hangzhou 310028, China
- Department of Translational Medicine & Clinical Research, Sir Run Run Shaw Hospital, School of Medicine,
Zhejiang University, Hangzhou 310028, China
| | - Xiaofeng Wang
- Department of Plastic Surgery, Sir Run Run Shaw Hospital,
Zhejiang University School of Medicine, Hangzhou, 310016, Zhejiang Province, China
| | - Tianyu Li
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Sir Run Run Shaw Hospital, School of Medicine,
Zhejiang University, Hangzhou 310028, China
- Department of Translational Medicine & Clinical Research, Sir Run Run Shaw Hospital, School of Medicine,
Zhejiang University, Hangzhou 310028, China
| | - Yi Wang
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Sir Run Run Shaw Hospital, School of Medicine,
Zhejiang University, Hangzhou 310028, China
| | - Yifan Wang
- Department of General Surgery, Sir Run Run Shaw Hospital Affiliated to School of Medicine,
Zhejiang University, Hangzhou 310016, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Sir Run Run Shaw Hospital, School of Medicine,
Zhejiang University, Hangzhou 310028, China
- Department of Translational Medicine & Clinical Research, Sir Run Run Shaw Hospital, School of Medicine,
Zhejiang University, Hangzhou 310028, China
| | - Jianing Yan
- Department of General Surgery, Sir Run Run Shaw Hospital Affiliated to School of Medicine,
Zhejiang University, Hangzhou 310016, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Sir Run Run Shaw Hospital, School of Medicine,
Zhejiang University, Hangzhou 310028, China
| |
Collapse
|
3
|
Carloni R, Sabbioni S, Rizzo A, Ricci AD, Palloni A, Petrarota C, Cusmai A, Tavolari S, Gadaleta-Caldarola G, Brandi G. Immune-Based Combination Therapies for Advanced Hepatocellular Carcinoma. J Hepatocell Carcinoma 2023; 10:1445-1463. [PMID: 37701562 PMCID: PMC10493094 DOI: 10.2147/jhc.s390963] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 08/29/2023] [Indexed: 09/14/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the fourth most frequent cause of cancer-related death worldwide. HCC frequently presents as advanced disease at diagnosis, and disease relapse following radical surgery is frequent. In recent years, immune checkpoint inhibitors (ICIs) have revolutionized the treatment of advanced HCC, particularly with the introduction of atezolizumab/bevacizumab as the new standard of care for first-line treatment. Recently, dual immune checkpoint blockade with durvalumab plus tremelimumab has also emerged as an effective first-line treatment for advanced HCC and most of the research is currently focused on developing combination treatments based mainly on ICIs. In this review, we will discuss the rationale and ongoing clinical trials of immune-based combination therapies for the treatment of advanced HCC, also focusing on new immunotherapy strategies such as chimeric antigen receptor T cells (CAR-T) and anti-cancer vaccines.
Collapse
Affiliation(s)
- Riccardo Carloni
- Department of Specialized, Experimental and Diagnostic Medicine, University of Bologna, Bologna, Italy
- Division of Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Simone Sabbioni
- Department of Specialized, Experimental and Diagnostic Medicine, University of Bologna, Bologna, Italy
- Division of Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Alessandro Rizzo
- Struttura Semplice Dipartimentale di Oncologia Medica per la Presa in Carico Globale del Paziente Oncologico “Don Tonino Bello”, I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”, Bari, Italy
| | - Angela Dalia Ricci
- Medical Oncology Unit, National Institute of Gastroenterology, “Saverio de Bellis” Research Hospital, Bari, Italy
| | - Andrea Palloni
- Department of Specialized, Experimental and Diagnostic Medicine, University of Bologna, Bologna, Italy
- Division of Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Cataldo Petrarota
- Struttura Semplice Dipartimentale di Oncologia Medica per la Presa in Carico Globale del Paziente Oncologico “Don Tonino Bello”, I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”, Bari, Italy
| | - Antonio Cusmai
- Struttura Semplice Dipartimentale di Oncologia Medica per la Presa in Carico Globale del Paziente Oncologico “Don Tonino Bello”, I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”, Bari, Italy
| | - Simona Tavolari
- Department of Specialized, Experimental and Diagnostic Medicine, University of Bologna, Bologna, Italy
- Division of Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | | | - Giovanni Brandi
- Department of Specialized, Experimental and Diagnostic Medicine, University of Bologna, Bologna, Italy
- Division of Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| |
Collapse
|
4
|
De Re V, Tornesello ML, Racanelli V, Prete M, Steffan A. Non-Classical HLA Class 1b and Hepatocellular Carcinoma. Biomedicines 2023; 11:1672. [PMID: 37371767 PMCID: PMC10296335 DOI: 10.3390/biomedicines11061672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
A number of studies are underway to gain a better understanding of the role of immunity in the pathogenesis of hepatocellular carcinoma and to identify subgroups of individuals who may benefit the most from systemic therapy according to the etiology of their tumor. Human leukocyte antigens play a key role in antigen presentation to T cells. This is fundamental to the host's defense against pathogens and tumor cells. In addition, HLA-specific interactions with innate lymphoid cell receptors, such those present on natural killer cells and innate lymphoid cell type 2, have been shown to be important activators of immune function in the context of several liver diseases. More recent studies have highlighted the key role of members of the non-classical HLA-Ib and the transcript adjacent to the HLA-F locus, FAT10, in hepatocarcinoma. The present review analyzes the major contribution of these molecules to hepatic viral infection and hepatocellular prognosis. Particular attention has been paid to the association of natural killer and Vδ2 T-cell activation, mediated by specific HLA class Ib molecules, with risk assessment and novel treatment strategies to improve immunotherapy in HCC.
Collapse
Affiliation(s)
- Valli De Re
- Immunopathology and Cancer Biomarkers Unit, Centro di Riferimento Oncologico di Aviano (CRO), Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), 33081 Aviano, Italy;
| | - Maria Lina Tornesello
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, 80131 Naples, Italy;
| | - Vito Racanelli
- Department of Interdisciplinary Medicine, School of Medicine, ‘Aldo Moro’ University of Bari, 70124 Bari, Italy; (V.R.); (M.P.)
| | - Marcella Prete
- Department of Interdisciplinary Medicine, School of Medicine, ‘Aldo Moro’ University of Bari, 70124 Bari, Italy; (V.R.); (M.P.)
| | - Agostino Steffan
- Immunopathology and Cancer Biomarkers Unit, Centro di Riferimento Oncologico di Aviano (CRO), Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), 33081 Aviano, Italy;
| |
Collapse
|
5
|
Revamping the innate or innate-like immune cell-based therapy for hepatocellular carcinoma: new mechanistic insights and advanced opportunities. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2023; 40:84. [PMID: 36680649 DOI: 10.1007/s12032-023-01948-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 01/02/2023] [Indexed: 01/22/2023]
Abstract
A cancerous tumour termed hepatocellular carcinoma (HCC) is characterized by inflammation and subsequently followed by end-stage liver disease and necrosis of the liver. The liver's continuous exposure to microorganisms and toxic molecules affects the immune response because normal tissue requires some immune tolerance to be safeguarded from damage. Several innate immune cells are involved in this process of immune system activation which includes dendritic cells, macrophages, and natural killer cells. The liver is an immunologic organ with vast quantities of innate and innate-like immune cells subjected to several antigens (bacteria, fungal or viral) through the gut-liver axis. Tumour-induced immune system engagement may be encouraged or suppressed through innate immunological systems, which are recognized promoters of liver disease development in pre-HCC conditions such as fibrosis or cirrhosis, ultimately resulting in HCC. Immune-based treatments containing several classes of drugs have transformed the treatment of several types of cancers in recent times. The effectiveness of such immunotherapies relies on intricate interactions between lymphocytes, tumour cells, and neighbouring cells. Even though immunotherapy therapy has already reported to possess potential effect to treat HCC, a clear understanding of the crosstalk between innate and adaptive immune cell pathways still need to be clearly understood for better exploitation of the same. The identification of predictive biomarkers, understanding the progression of the disease, and the invention of more efficient combinational treatments are the major challenges in HCC immunotherapy. The functions and therapeutic significance of innate immune cells, which have been widely implicated in HCC, in addition to the interplay between innate and adaptive immune responses during the pathogenesis, have been explored in the current review.
Collapse
|