1
|
Lv Z, Xu C, Wang Z, Liu Z, Jiao J. Excessive activation?induced cytidine deaminase accumulated by proteasome inhibitors rescues abnormal class switch in activated B?cell?like diffuse large B?cell lymphoma. Exp Ther Med 2025; 29:113. [PMID: 40242597 PMCID: PMC12000863 DOI: 10.3892/etm.2025.12863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 10/18/2024] [Indexed: 04/18/2025] Open
Abstract
Activation-induced cytidine deaminase (AID) is an enzyme that plays a crucial role in mediating somatic hypermutation and class-switch recombination (CSR). It has been found to be associated with aberrant immunoglobulin CSR in activated B-cell-like diffuse large B-cell lymphoma (ABC-DLBCL). In the present study, MG132, a potent proteasome and calpain inhibitor, induced significant cell death in ABC-DLBCL cells and inhibited the growth of ABC-DLBCL cell xenograft tumors. The results also showed that MG132 induced AID accumulation by impairing proteasome degradation of AID. Excessive endogenous AID accumulation was observed in both AID-deficient and C57/BL6 wild-type mice treated with MG132, and apparent CSR of IgM to IgG1, IgG3 and IgE. Upon stimulation of cytokines such as LPS and/or IL-4, ABC-DLBCL cells also showed a noticeable increase in CSR of IgM to IgG1, IgG3 and IgE with decreased AID protein levels. The present study demonstrates that MG132 can induce AID accumulation, which in turn restores dysfunctional CSR in ABC-DLBCL. Using MG132 as a tool, the present study elucidates the anti-lymphoma effect of proteasome inhibitors on ABC-DLBCL by rescuing the abnormal AID-induced CSR.
Collapse
Affiliation(s)
- Zhuangwei Lv
- Department of Laboratory Medicine, Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
- School of Forensic Medicine, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Chen Xu
- Department of Infectious Diseases, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Zhenzhen Wang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
- Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Zixian Liu
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
- Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Junna Jiao
- Department of Laboratory Medicine, Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
- Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| |
Collapse
|
2
|
He T, Geng J, Hou C, Li H, Zhang H, Zhao P, He P, Lu X. Predictive biomarkers and molecular subtypes in DLBCL: insights from PCD gene expression and machine learning. Discov Oncol 2025; 16:542. [PMID: 40240734 PMCID: PMC12003219 DOI: 10.1007/s12672-025-02349-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 04/09/2025] [Indexed: 04/18/2025] Open
Abstract
BACKGROUND Diffuse large B-cell lymphoma (DLBCL) is the most common subtype of non-Hodgkin lymphoma, characterized by significant clinical and molecular heterogeneity, which leads to considerable variability in patient prognosis. Programmed cell death (PCD) plays a critical role in the development and progression of various cancers. A comprehensive analysis of PCD-related gene expression in DLBCL could enhance risk stratification and inform personalized treatment strategies. METHODS This study integrated five DLBCL datasets with 18 PCD-related gene expression profiles to identify differentially expressed genes (DEGs) associated with PCD. Patients were stratified into two subgroups (C1 and C2) using consensus clustering analysis. We further performed immune infiltration analysis, GSVA enrichment analysis, and WGCNA to uncover significant differences in the immune microenvironment and signaling pathways between the subgroups. Additionally, 12 machine learning algorithms were employed to construct predictive models for DLBCL, with performance evaluated using AUC and F-score metrics. Finally, transcriptome sequencing of the DLBCL cell line VAL and the normal human B lymphocyte cell line IM-9 was conducted to validate potential biomarkers. RESULTS A total of 1074 PCD-related DEGs were identified. Unsupervised clustering revealed two distinct molecular subtypes of DLBCL. The C2 subgroup exhibited upregulation of pathways involved in DNA repair, cell cycle, and energy metabolism, alongside significant downregulation of immune evasion-related pathways, indicating its classification as a high-risk group. Machine learning algorithms and transcriptome sequencing validation identified five potential biomarkers for DLBCL, including CTSB, DPYD, SCARB2, STOM, and GBP1. CONCLUSIONS This study identifies two distinct DLBCL subtypes based on PCD-related gene expression, with the C2 subtype characterized as high-risk due to enhanced DNA repair and cell cycle pathways. Five key biomarkers (CTSB, DPYD, SCARB2, STOM, GBP1) may improve risk stratification and understanding of DLBCL heterogeneity. These findings lay the groundwork for further exploration of DLBCL progression and potential prognostic improvements.
Collapse
Affiliation(s)
- Tiantian He
- Academy of Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Jie Geng
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Chuandong Hou
- PLA Medical School, Chinese PLA General Hospital, Beijing, China
| | - Hongyi Li
- PLA Medical School, Chinese PLA General Hospital, Beijing, China
| | - Hong Zhang
- Department of Respiratory and Critical Care Medicine, Second Medical Center of Chinese, PLA General Hospital, Beijing, China
| | - Peng Zhao
- School of Management, Shanxi Medical University, Taiyuan, China
| | - Peifeng He
- School of Management, Shanxi Medical University, Taiyuan, China.
- Shanxi Key Laboratory of Big Data for Clinical Decision Research, Taiyuan, China.
| | - Xuechun Lu
- Department of Hematology, The Second Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Geriatric Disease, Beijing, China.
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China.
| |
Collapse
|
3
|
Lin C, Xie S, Wang M, Yang B, Shen J. Angiogenesis-related gene signature for prognostic prediction and immune microenvironment characterization in diffuse large B-cell lymphoma. Clin Exp Med 2025; 25:108. [PMID: 40198448 PMCID: PMC11978719 DOI: 10.1007/s10238-025-01628-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 03/07/2025] [Indexed: 04/10/2025]
Abstract
Diseases often result from multiple factors, and angiogenesis-related genes (ARGs) have been demonstrated to be associated with cancer. However, their role in diffuse large B-cell lymphoma (DLBCL) has not been fully elucidated. ARGs associated with DLBCL prognosis were identified utilizing Cox regression and LASSO analyses. A prognostic model was constructed based on 7 ARGs, and its biological function was analyzed. Differences in the tumor immune microenvironment based on the prognostic signature were evaluated. Finally, DLBCL cell experiments confirmed the differential expression of genes in DLBCL. The prognostic value of ARGs in DLBCL patients was comprehensively analyzed for the first time, identifying 7 ARGs with prognostic significance. A prognostic risk model was constructed based on these 7 ARGs and validated on an independent external DLBCL dataset. In DLBCL patients, this prognostic feature was an independent risk factor and significantly correlated with clinical characteristics. This feature was also associated with the immune microenvironment of DLBCL. DLBCL cell experiments confirmed significant expression of the 7 ARGs in DLBCL cells. This research provides a fundamental theoretical basis for improving the diagnosis and treatment of DLBCL in clinical practice.
Collapse
MESH Headings
- Humans
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/immunology
- Lymphoma, Large B-Cell, Diffuse/pathology
- Lymphoma, Large B-Cell, Diffuse/mortality
- Tumor Microenvironment/immunology
- Tumor Microenvironment/genetics
- Prognosis
- Neovascularization, Pathologic/genetics
- Male
- Female
- Middle Aged
- Gene Expression Regulation, Neoplastic
- Gene Expression Profiling
- Biomarkers, Tumor/genetics
- Transcriptome
- Aged
- Cell Line, Tumor
- Angiogenesis
Collapse
Affiliation(s)
- Chuanming Lin
- Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, 350001, China
- Department of Hematology, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
| | - Shuiling Xie
- Department of Hematology, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
| | - Menger Wang
- Gannan Medical University, Ganzhou, 341000, China
| | - Bin Yang
- Gannan Medical University, Ganzhou, 341000, China
| | - Jianzhen Shen
- Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, 350001, China.
| |
Collapse
|
4
|
Yijia Z, Li X, Ma L, Wang S, Du H, Wu Y, Yu J, Xiang Y, Xiong D, Shan H, Wang Y, Wang Z, Hao J, Wang J. Identification of intratumoral microbiome-driven immune modulation and therapeutic implications in diffuse large B-cell lymphoma. Cancer Immunol Immunother 2025; 74:131. [PMID: 40029433 PMCID: PMC11876501 DOI: 10.1007/s00262-025-03972-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 02/07/2025] [Indexed: 03/05/2025]
Abstract
OBJECTIVE Diffuse large B-cell lymphoma (DLBCL) is the most common subtype of non-Hodgkin lymphoma, with significant clinical heterogeneity. Recent studies suggest that the intratumoral microbiome may influence the tumor microenvironment, affecting patient prognosis and therapeutic responses. This study aims to identify microbiome-related subtypes in DLBCL and assess their impact on prognosis, immune infiltration, and therapeutic sensitivity. METHODS Transcriptomic and microbiome data from 48 DLBCL patients were obtained from public databases. Consensus clustering was used to classify patients into distinct microbiome-related subtypes. Functional enrichment analysis, immune infiltration assessments, and single-cell RNA sequencing were performed to explore the biological characteristics of these subtypes. Drug sensitivity predictions were made using the OncoPredict tool. Hub genes' expression and biological function were validated and inferred in cell lines and independent cohorts of DLBCL. RESULTS Two distinct microbiome-related subtypes were identified. Patients in Cluster 1 exhibited significantly better overall survival (P < 0.05), with higher immune infiltration of regulatory T cells and M0 macrophages compared to Cluster 2, which was associated with poorer outcomes. Functional enrichment analysis revealed that genes in Cluster 1 were involved in immune regulatory pathways, including cytokine-cytokine receptor interactions and chemokine signaling, suggesting enhanced anti-tumor immune responses. In contrast, genes in Cluster 2 were enriched in immunosuppressive pathways, contributing to a less favorable prognosis. Single-cell RNA sequencing analysis revealed significant heterogeneity in immune cell populations within the tumor microenvironment. B cells exhibited the most notable heterogeneity, as indicated by stemness and differentiation potential scoring. Intercellular communication analysis demonstrated that B cells played a key role in immune cell interactions, with significant differences observed in MIF signaling between B-cell subgroups. Pseudo-time analysis further revealed distinct differentiation trajectories of B cells, highlighting their potential heterogeneity across different immune environments. Metabolic pathway analysis showed significant differences in the average expression levels of metabolic pathways among B-cell subgroups, suggesting functional specialization. Furthermore, interaction analysis between core genes involved in B-cell differentiation and microbiome-driven differentially expressed genes identified nine common genes (GSTM5, LURAP1, LINC02802, MAB21L3, C2CD4D, MMEL1, TSPAN2, and CITED4), which were found to play critical roles in B-cell differentiation and were influenced by the intratumoral microbiome. DLBCL cell lines and clinical cohorts validated that MMEL1 and CITED4 with important biologically function in DLBCL cell survival and subtype classification. CONCLUSIONS This study demonstrates the prognostic significance of the intratumoral microbiome in DLBCL, identifying distinct microbiome-related subtypes that impact immune infiltration, metabolic activity, and therapeutic responses. The findings provide insights into the immune heterogeneity within the tumor microenvironment, focusing on B cells and their differentiation dynamics. These results lay the foundation for microbiome-based prognostic biomarkers and personalized treatment approaches, ultimately aiming to enhance patient outcomes in DLBCL.
Collapse
Affiliation(s)
- Zheng Yijia
- School of Pharmacy, Xinjiang Medical University, Urumqi, 830011, China
| | - Xiaoyu Li
- School of Pharmacy, Xinjiang Medical University, Urumqi, 830011, China
| | - Lina Ma
- School of Pharmacy, Xinjiang Medical University, Urumqi, 830011, China
| | - Siying Wang
- School of Pharmacy, Xinjiang Medical University, Urumqi, 830011, China
| | - Hong Du
- School of Pharmacy, Xinjiang Medical University, Urumqi, 830011, China
| | - Yun Wu
- Department of General Medicine, The First Affiliated Hospital of the Xinjiang Medical University, Urumqi, 830011, China
| | - Jing Yu
- School of Pharmacy, Xinjiang Medical University, Urumqi, 830011, China
| | - Yunxia Xiang
- Department of Pharmacy, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, China
- Xinjiang Key Laboratory of Clinical Drug Research, Urumqi, 830011, China
| | - Daiqin Xiong
- Department of Pharmacy, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, China
- Xinjiang Key Laboratory of Clinical Drug Research, Urumqi, 830011, China
| | - Huiting Shan
- Department of Pharmacy, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, China
- Xinjiang Key Laboratory of Clinical Drug Research, Urumqi, 830011, China
| | - Yubo Wang
- Department of Pharmacy, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, China
- Xinjiang Key Laboratory of Clinical Drug Research, Urumqi, 830011, China
| | - Zhi Wang
- Department of Pharmacy, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, China
- Xinjiang Key Laboratory of Clinical Drug Research, Urumqi, 830011, China
| | - Jianping Hao
- Department of Haematology, The First Affiliated Hospital of the Xinjiang Medical University, Urumqi, 830011, China
| | - Jie Wang
- Department of Pharmacy, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, China.
- Xinjiang Key Laboratory of Clinical Drug Research, Urumqi, 830011, China.
| |
Collapse
|
5
|
Liang H, Cao Z, Ren Y, Li Y, Wang H, Sun F, Xue M, Zhu G, Zhou Y. Raman spectroscopy and bioinformatics-based identification of key genes and pathways capable of distinguishing between diffuse large B cell lymphoma and chronic lymphocytic leukemia. Front Immunol 2025; 16:1516946. [PMID: 40070829 PMCID: PMC11893875 DOI: 10.3389/fimmu.2025.1516946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 02/10/2025] [Indexed: 03/14/2025] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) and chronic lymphocytic leukemia (CLL) are subtypes of non-Hogkin lymphoma (NHL) that are generally distinct form one cases, but the transformation of one of these diseases into the other is possible. Some patients with CLL, for instance, have the potential to develop Richter transformation such that they are diagnosed with a rare, invasive DLBCL subtype. In this study, bioinformatics analyses of these two NHL subtypes were conducted, identifying key patterns of gene expression and then experimentally validating the results. Disease-related gene expression datasets from the GEO database were used to identify differentially expressed genes (DEGs) and DEG functions were examined using GO analysis and protein-protein interaction network construction. This strategy revealed many up- and down-regulated DEGs, with functional enrichment analyses identifying these genes as being closely associated with inflammatory and immune response activity. PPI network analyses and the evaluation of clustered network modules indicated the top 10 up- and down-regulated genes involved in disease onset and development. Serological analyses revealed significantly higher ALB, TT, and WBC levels in CLL patients relative to DLBCL patients, whereas the opposite was true with respect to TG, HDL, GGT, ALP, ALT, and NEUT% levels. In comparison to the CLL and DLBCL groups, the healthy control samples demonstrated higher signals of protein peak positions (621, 643, 848, 853, 869, 935, 1003, 1031, 1221, 1230, 1260, 1344, 1443, 1446, 1548, 1579, 1603, 1647 cm-1), nucleic acid peak positions (726, 781, 786, 1078, 1190, 1415, 1573, 1579 cm-1), beta carotene peak positions (957, 1155, 1162 cm-1), carbohydrate peak positions (842 cm-1), collagen peak positions (1345 cm-1), and lipid peak positions (957, 1078, 1119, 1285, 1299, 1437, 1443, 1446 cm-1) compared to the CLL and DLBCL groups. Verification of these key genes in patient samples yielded results consistent with findings derived from bioinformatics analyses, highlighting their relevance to diagnosing and treating these forms of NHL. Together, these analyses identified genes and pathways involved in both DLBCL and CLL. The set of molecular markers established herein can aid in patient diagnosis and prognostic evaluation, providing a valuable foundation for their therapeutic application.
Collapse
MESH Headings
- Humans
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/diagnosis
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis
- Computational Biology/methods
- Protein Interaction Maps
- Gene Expression Profiling
- Male
- Female
- Middle Aged
- Gene Regulatory Networks
- Biomarkers, Tumor/genetics
- Diagnosis, Differential
- Aged
- Gene Expression Regulation, Neoplastic
- Transcriptome
- Signal Transduction/genetics
Collapse
Affiliation(s)
- Haoyue Liang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Zhijie Cao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Yansong Ren
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Yihan Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Haoyu Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Fanfan Sun
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Mei Xue
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Guoqing Zhu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Yuan Zhou
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| |
Collapse
|
6
|
Chen Q, Xu L, Lu C, Xue Y, Gong X, Shi Y, Wang C, Yu L. Prognostic significance of CDK1 expression in diffuse large B-Cell lymphoma. BMC Cancer 2025; 25:20. [PMID: 39773464 PMCID: PMC11705832 DOI: 10.1186/s12885-024-13388-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 12/23/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Diffuse large B-cell lymphoma (DLBCL) is the most common lymphoma in adult, characterized by uncontrolled cell proliferation and strong aggressiveness. Previous studies have found that cyclin-dependent kinase 1(CDK1) are related to tumor growth and metastasis. However, the role of CDK1 in DLBCL is exclusive. This study investigated the clinical implications and expression of CDK1 in DLBCL. METHODS Gene expression data for healthy subjects were sourced from the Genotype-Tissue Expression repository. Clinical details and survival statistics of patients with DLBCL were obtained from the Gene Expression Omnibus archive (GSE10846). Patients were categorized based on CDK1 expression levels, and differences in clinical outcomes between the groups were examined. Univariate and multivariate Cox regression analyses were used to ascertain whether CDK1 expression independently predicted DLBCL prognosis. The protein expression of CDK1 was gauged by immunohistochemistry. Additionally, we investigated the effect of CDK1 inhibition on DLBCL cell growth and death using the Cell Counting Kit-8 and flow cytometry. RESULTS In the control group, CDK1 expression was predominantly observed in the hematopoietic and reproductive systems. CDK1 levels in patients with DLBCL were notably elevated compared with those in controls. Significant differences were noted in the lactate dehydrogenase ratio and overall survival based on CDK1 expression. Statistical analyses confirmed that CDK1 was an independent predictor of DLBCL outcomes. Elevated CDK1 protein levels were observed in a significant number of DLBCL samples, in contrast to normal lymph node samples from individuals without lymphoma. The inhibitor Ro-3306 curtails DLBCL cell growth and enhances cell death in vitro. CONCLUSIONS Elevated CDK1 levels are correlated with poor prognosis in patients with DLBCL.
Collapse
MESH Headings
- Humans
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/metabolism
- Lymphoma, Large B-Cell, Diffuse/pathology
- Lymphoma, Large B-Cell, Diffuse/mortality
- CDC2 Protein Kinase/metabolism
- CDC2 Protein Kinase/genetics
- Prognosis
- Male
- Female
- Middle Aged
- Aged
- Adult
- Biomarkers, Tumor/metabolism
- Biomarkers, Tumor/genetics
- Cell Proliferation
- Gene Expression Regulation, Neoplastic
- Cell Line, Tumor
Collapse
Affiliation(s)
- Qiuni Chen
- Department of Hematology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, 223300, Jiangsu Province, PR China
- Key Laboratory of Hematology, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, PR China
| | - Lei Xu
- Department of Hematology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, 223300, Jiangsu Province, PR China
- Key Laboratory of Hematology, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, PR China
| | - Chuanyang Lu
- Department of Hematology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, 223300, Jiangsu Province, PR China
- Key Laboratory of Hematology, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, PR China
| | - Yujie Xue
- Department of Pathology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, 223300, Jiangsu Province, PR China
| | - Xue Gong
- Department of Pathology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, 223300, Jiangsu Province, PR China
| | - Yuye Shi
- Department of Hematology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, 223300, Jiangsu Province, PR China
- Key Laboratory of Hematology, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, PR China
| | - Chunling Wang
- Department of Hematology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, 223300, Jiangsu Province, PR China.
- Key Laboratory of Hematology, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, PR China.
| | - Liang Yu
- Department of Hematology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, 223300, Jiangsu Province, PR China.
- Key Laboratory of Hematology, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, PR China.
| |
Collapse
|
7
|
Xu X, Liu J, Fang C, Deng X, Zhu D, Jiang J, Wu C. NAALADL2-AS2 functions as a competing endogenous RNA to regulate apoptosis and drug resistance in DLBCL. Cancer Biol Ther 2024; 25:2432690. [PMID: 39575888 PMCID: PMC11587827 DOI: 10.1080/15384047.2024.2432690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 11/05/2024] [Accepted: 11/17/2024] [Indexed: 11/27/2024] Open
Abstract
To explore role of NAALADL2-AS2 as ceRNA in DLBCL. Fluorescence in situ hybridization was used to determine location of NAALADL2-AS2 in cells and to verify its expression in DLBCL tissues. The miRNAs interacting with NAALADL2-AS2 and related regulatory genes were identified by small interfering RNA (siRNA) assay, luciferase reporter assay, fluorescent quantitative polymerase chain reaction, western blotting. DLBCL cells transfected with NAALADL2-AS2 siRNA or control siRNA were treated with doxorubicin, rituximab at different concentrations alone or in combination. The growth curves, drug sensitivity changes of cells before and after transfection were detected by MTT assay, ATP-TCA drug sensitivity test. Cell proliferation was detected by BrdU cell proliferation assay, and apoptosis was detected by Annexin V-fluorescein isothiocyanate/propidium iodide staining. The effects and mechanisms of NAALADL2-AS2 on proliferation, apoptosis, drug resistance of DLBCL cells were studied at cellular level. We confirmed expression of NAALADL2-AS2 in both cytoplasm and nuclei of DLBCL cells. Additionally, we observed elevated levels of NAALADL2-AS2 in DLBCL tissues. We discovered that NAALADL2-AS2 functions as ceRNA to inhibit expression of miR-34a, miR-125a, whereas overexpression of NAALADL2-AS2 indirectly upregulates expression of BCL-2. Interfering with NAALADL2-AS2 promoted apoptosis in DLBCL cells, resulting in approximately a 40% increase in sensitivity to doxorubicin and rituximab. In vivo experiments further confirmed that targeting NAALADL2-AS2 effectively suppressed tumor growth, leading to upregulation of miR-34a and miR-125a, downregulation of BCL-2, and enhanced apoptosis in DLBCL cells, which significantly improved their sensitivity to doxorubicin and rituximab by approximately 50%. These results indicate that NAALADL2-AS2/miR-34a, miR-125a/BCL-2 networks hold promise as therapeutic targets for treatment of DLBCL.
Collapse
MESH Headings
- Humans
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Lymphoma, Large B-Cell, Diffuse/pathology
- Lymphoma, Large B-Cell, Diffuse/metabolism
- Apoptosis/drug effects
- Drug Resistance, Neoplasm/genetics
- Animals
- Cell Line, Tumor
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Mice
- Doxorubicin/pharmacology
- Doxorubicin/therapeutic use
- Cell Proliferation/drug effects
- Rituximab/pharmacology
- Rituximab/therapeutic use
- Gene Expression Regulation, Neoplastic/drug effects
- Xenograft Model Antitumor Assays
- RNA, Competitive Endogenous
Collapse
Affiliation(s)
- Xiaoli Xu
- Department of Integrated Chinese and Western Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, China
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Juan Liu
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Cheng Fang
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, China
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Xu Deng
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, China
- Department of Pathology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Danxia Zhu
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, China
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Jingting Jiang
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Changping Wu
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, China
| |
Collapse
|
8
|
Guo B, Duan Y, Cen H. Prognostic model based on M2 macrophage-related signatures for predicting outcomes, enhancing risk stratification, and providing therapeutic insights in diffuse large B-cell lymphoma. Heliyon 2024; 10:e41007. [PMID: 39759325 PMCID: PMC11696775 DOI: 10.1016/j.heliyon.2024.e41007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 12/02/2024] [Accepted: 12/04/2024] [Indexed: 01/07/2025] Open
Abstract
Purpose The tumor microenvironment (TME) in lymphoma is influenced by M2 macrophages. This research proposes an novel predictive model that leverages M2 macrophage-associated genes to categorize risk, forecast outcomes, and evaluate the immune profile in patients with newly diagnosed diffuse large B-cell lymphoma (DLBCL) undergoing R-CHOP therapy. Methods Gene expression data and clinical information from DLBCL patients were retrieved from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Co-expressed genes linked to M2 macrophage in DLBCL were analyzed using CIBERSORT. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were conducted to explore associated signaling pathways. The M2 macrophage-related gene prognostic model was developed and validated using Cox and LASSO regression. Prognostic signature genes were verified by single-cell RNA-seq analysis. Results 92 M2 macrophage-related genes were identified based on bulk-seq data. MS4A4A, CCL13, LTB, CCL23, CCL18, XKR4, IL22RA2, and FOLR2 were used to construct the risk model. AUC values for 1-, 3-, and 5-year survival were 0.74, 0.72, and 0.72, respectively. High-risk patients demonstrated elevated immune scores and poorer overall survival. The high-risk subgroup also exhibited greater sensitivity to both chemotherapeutic agents and immune checkpoint inhibitors. Conclusion This study presents an accurate and reliable M2 macrophage-related risk model, enhancing understanding of distinct prognostic subsets in DLBCL. It offers potential novel drug options for future treatments.
Collapse
Affiliation(s)
- Baoping Guo
- Department of Hematology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, 530021, China
| | - Ying Duan
- Department of Hematology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, 530021, China
| | - Hong Cen
- Department of Hematology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, 530021, China
| |
Collapse
|
9
|
Ren Y, He A. Identification of Key Genes and Drug Recommendations in Diffuse Large B-Cell Lymphoma Based on Analysis of Glutathione-Related Genes. Cytogenet Genome Res 2024; 164:218-235. [PMID: 39581181 DOI: 10.1159/000542722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 11/19/2024] [Indexed: 11/26/2024] Open
Abstract
BACKGROUND Various malignancies can be efficiently combated by focusing on glutathione. It is unclear how glutathione-related genes link to diffuse large B-cell lymphoma (DLBCL). METHODS Clinical information was gathered from DLBCL patients, and differences in glutathione-related differentially expressed genes (DEGs) between DLBCL and healthy groups were found. Enrichment analysis was run on the DEGs associated with glutathione. We discovered hub genes in glutathione, confirmed hub genes' capacity for diagnosis and function prediction, and estimated drug sensitivity. Immune microenvironmental variations between healthy and DLBCL people were assessed, and hub genes for transcription factor (TF) targeting and miRNAs were found. RESULTS The glutathione-related DEGs were linked to biological processes such as response to oxidative stress and response to xenobiotic stimulus, according to enrichment analysis. Out of DEGs associated with glutathione, six hub genes were chosen. In the DLBCL population, there was a notable upregulation of the six hub genes. All the genes' AUC values in the diagnostic ability category were more than 0.7, showing strong hub gene diagnostic capacity. The DLBCL population had a high level of T-cell infiltration, according to immune infiltration analysis techniques. Similar activities, such as the cell cycle G2/M phase transition and the negative control of organelle formation, are demonstrated by gene function prediction for hub. According to drug sensitivity prediction, there was a favorable link between KPNA2 with pracinostat, BRCA1 with B-7100, and LEE-011. The gene KPNA2 was shown to be concurrently targeted by many miRNAs and TFs, according to the miRNA-gene-TF interaction network. CONCLUSION The relationship between DLBCL and glutathione-related genes was uncovered by our research, and six glutathione genes were linked to DLBCL. These genes might be used as diagnostic biomarkers or targets for treatment for DLBCL patients.
Collapse
Affiliation(s)
- Yu Ren
- Department of Hematology, Affiliated Hospital of Yan'an University, Yan'an, China
| | - Aijun He
- Department of Gastrointestinal Surgery, Affiliated Hospital of Yan'an University, Yan'an, China
| |
Collapse
|
10
|
Miao Z, Chen H, Zhou Y. Causal effect of primary sclerosing cholangitis on diffuse large B-cell lymphoma: A two-sample Mendelian randomized study. Medicine (Baltimore) 2024; 103:e40542. [PMID: 39809190 PMCID: PMC11596531 DOI: 10.1097/md.0000000000040542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 10/25/2024] [Indexed: 01/16/2025] Open
Abstract
The connection between Primary sclerosing cholangitis (PSC) and lymphoma remains uncertain. To address this, Mendelian randomization (MR) was utilized to investigate the potential causal links between PSC and lymphoma. A 2-sample MR analysis was conducted utilizing summary-level data obtained from genome-wide association study datasets. Four complementary MR methods were performed, including inverse-variance weighting (IVW), MR-Egger, weighted median, and MR-robust adjusted profile score (MR-RAPS). Several sensitivity analyses were also employed to further validate the results. The results of IVW estimates showed that there was a potential causal association between PSC and diffuse large B-cell lymphoma (DLBCL) risk (OR = 1.138, 95% CI = 1.052-1.230, P = .001). No causal association was observed between PSC and other lymphoma subtypes. No horizontal and directional pleiotropy was observed in the MR studies. This study represents the inaugural utilization of MR analysis to investigate the causal associations between PSC and DLBCL. Further investigation is warranted to elucidate the underlying mechanism of this causal relationship.
Collapse
Affiliation(s)
- Zhengyang Miao
- Department of Hematology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hailin Chen
- Department of Hematology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yongming Zhou
- Department of Hematology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
11
|
Zhang C, Zhan S, He Y, Pan Z, You Z, Zhu X, Lin Q. Inhibition of CISD2 enhances sensitivity to doxorubicin in diffuse large B-cell lymphoma by regulating ferroptosis and ferritinophagy. Front Pharmacol 2024; 15:1482354. [PMID: 39605902 PMCID: PMC11598492 DOI: 10.3389/fphar.2024.1482354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 10/29/2024] [Indexed: 11/29/2024] Open
Abstract
Background CDGSH iron-sulfur domain 2 (CISD2), an iron-sulfur protein with a [2Fe-2S] cluster, plays a pivotal role in the progression of various cancers, including Diffuse Large B-cell Lymphoma (DLBCL). However, the mechanisms by which CISD2 regulates the occurrence and development of DLBCL remain to be fully elucidated. Methods The potential role of CISD2 as a predictive marker in DLBCL patients treated with the R-CHOP regimen was investigated through bioinformatics analysis and clinical cohort studies. DLBCL cell lines (SUDHL-4 and HBL-1) were employed in this research. Adenoviral (AV) plasmids were used to either silence or overexpress CISD2 in these DLBCL cell lines. Additionally, the induction of ferroptosis in DLBCL cell lines was assessed. Various parameters, including cell proliferation, intracellular free iron levels, lipid peroxides, reactive oxygen species (ROS), and mitochondrial membrane potential (MMP), were measured. Furthermore, the expression of proteins associated with ferroptosis and ferritinophagy was analyzed. Drug-resistant DLBCL cell lines were developed by gradually increasing doxorubicin (DOX) concentration over 6 months. The biological role of CISD2 in these drug-resistant DLBCL cell lines was subsequently assessed. Results Elevated CISD2 levels were found to be associated with decreased sensitivity of DLBCL patients to the R-CHOP regimen, as indicated by bioinformatics and clinical cohort analysis. Silencing CISD2 significantly reduced cell proliferation, increased iron accumulation, depleted glutathione (GSH), and elevated malondialdehyde (MDA) levels, alongside the accumulation of ROS and increased MMP. Additionally, BECN1 and NCOA4 expressions were upregulated, while p62, FTH1, and GPX4 expressions were downregulated. Conversely, overexpression of CISD2 reversed these effects. Treatment of DLBCL cell lines with Erastin led to decreased CISD2 levels. Notably, in drug-resistant DLBCL cell lines, CISD2 knockdown promoted ferroptosis and ferritinophagy, restoring sensitivity to DOX and enhancing the efficacy of Erastin treatment. Conclusion Our findings suggest that CISD2 may play a role in the drug resistance observed in DLBCL patients. Inhibition of CISD2 could enhance ferroptosis and ferritinophagy, potentially improving the sensitivity of DLBCL cells to DOX treatment.
Collapse
Affiliation(s)
- Chaofeng Zhang
- Department of Hematology and Rheumatology, the Affiliated Hospital of Putian University, Putian, Fujian Province, China
- Department of Haematology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, China
- School of Basic Medical Science, Putian University, Putian, Fujian Province, China
| | - Siting Zhan
- School of Basic Medical Science, Putian University, Putian, Fujian Province, China
| | - Yanjun He
- Department of Haematology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, China
| | - Zhiqun Pan
- Department of Hematology and Rheumatology, the Affiliated Hospital of Putian University, Putian, Fujian Province, China
| | - Zhongyi You
- School of Basic Medical Science, Putian University, Putian, Fujian Province, China
| | - Xiongpeng Zhu
- Department of Haematology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, China
| | - Qi Lin
- Department of Pharmacy, The Affiliated Hospital of Putian University, Putian, Fujian Province, China
- Key Laboratory of Translational Tumor Medicine in Fujian Province, Putian University, Putian, Fujian Province, China
| |
Collapse
|
12
|
Masnikosa R, Cvetković Z, Pirić D. Tumor Biology Hides Novel Therapeutic Approaches to Diffuse Large B-Cell Lymphoma: A Narrative Review. Int J Mol Sci 2024; 25:11384. [PMID: 39518937 PMCID: PMC11545713 DOI: 10.3390/ijms252111384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 10/13/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is a malignancy of immense biological and clinical heterogeneity. Based on the transcriptomic or genomic approach, several different classification schemes have evolved over the years to subdivide DLBCL into clinically (prognostically) relevant subsets, but each leaves unclassified samples. Herein, we outline the DLBCL tumor biology behind the actual and potential drug targets and address the challenges and drawbacks coupled with their (potential) use. Therapeutic modalities are discussed, including small-molecule inhibitors, naked antibodies, antibody-drug conjugates, chimeric antigen receptors, bispecific antibodies and T-cell engagers, and immune checkpoint inhibitors. Candidate drugs explored in ongoing clinical trials are coupled with diverse toxicity issues and refractoriness to drugs. According to the literature on DLBCL, the promise for new therapeutic targets lies in epigenetic alterations, B-cell receptor and NF-κB pathways. Herein, we present putative targets hiding in lipid pathways, ferroptosis, and the gut microbiome that could be used in addition to immuno-chemotherapy to improve the general health status of DLBCL patients, thus increasing the chance of being cured. It may be time to devote more effort to exploring DLBCL metabolism to discover novel druggable targets. We also performed a bibliometric and knowledge-map analysis of the literature on DLBCL published from 2014-2023.
Collapse
Affiliation(s)
- Romana Masnikosa
- Department of Physical Chemistry, Vinca Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovica Alasa 12-14, 11000 Belgrade, Serbia;
| | - Zorica Cvetković
- Department of Hematology, Clinical Hospital Centre Zemun, Vukova 9, 11000 Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, Dr Subotića 8, 11000 Belgrade, Serbia
| | - David Pirić
- Department of Physical Chemistry, Vinca Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovica Alasa 12-14, 11000 Belgrade, Serbia;
| |
Collapse
|
13
|
Ma Y, Yu X, Liu YF, Song B, Sun Z, Zhao S. Immunoregulation and male reproductive function: Impacts and mechanistic insights into inflammation. Andrology 2024. [PMID: 39428853 DOI: 10.1111/andr.13772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/06/2024] [Accepted: 09/16/2024] [Indexed: 10/22/2024]
Abstract
This paper investigates the complex relationship between the immune system and male reproductive processes, emphasizing how chronic inflammation can adversely affect male reproductive health. The immune system plays a dual role; it protects and regulates reproductive organs and spermatogenesis while maintaining reproductive health through immune privilege in the testes and the activities of various immune cells and cytokines. However, when chronic inflammation persists or intensifies, it can disrupt this balance, leading to immune attacks on reproductive tissues and resulting in infertility.This study provides a detailed analysis of how chronic inflammation can impair sperm production, sperm quality, and the secretion of gonadal hormones both directly and indirectly. It also delves into the critical roles of testicular immune privilege, various immune cells, and cytokines in sustaining reproductive health and examines the impacts of infections, autoimmune diseases, and environmental factors on male fertility.
Collapse
Affiliation(s)
- Yingjie Ma
- The First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Xinru Yu
- School of PharmacyJinan, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yi Fan Liu
- School of Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Bihan Song
- School of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Zhengao Sun
- Reproductive and Genetic Center of Integrative Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Shengtian Zhao
- The First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- Affiliated Provincial Hospital, Shandong First Medical University, Jinan, Shandong, China
- Department of Urology, Binzhou Medical University Hospital, Yantai, Shandong, China
- Institute of Urology, Shandong University, Jinan, Shandong, China
| |
Collapse
|
14
|
Heshmatpour N, Kazemi SM, Schmidt ND, Patnaik SR, Korus P, Wilkens BGC, Macarrón Palacios A. Targeting DLBCL by mutation-specific disruption of cancer-driving oncogenes. Front Genome Ed 2024; 6:1427322. [PMID: 39469218 PMCID: PMC11513324 DOI: 10.3389/fgeed.2024.1427322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 09/12/2024] [Indexed: 10/30/2024] Open
Abstract
Diffuse large B cell lymphomas (DLBCL) are highly aggressive tumors. Their genetic complexity and heterogeneity have hampered the development of novel approaches for precision medicine. Our study aimed to develop a personalized therapy for DLBCL by utilizing the CRISPR/Cas system to induce knockouts (KO) of driver genes, thereby causing cancer cell death while minimizing side effects. We focused on OCI-LY3 cells, modeling DLBCL, and compared them with BJAB cells as controls. Analysis of whole exome sequencing revealed significant mutations in genes like PAX5, CD79B, and MYC in OCI-LY3 cells. CRISPR/Cas9-mediated KO of these genes resulted in reduced cancer cell viability. Subsequent single and dual gRNA targeting of PAX5 mutations inhibited proliferation specifically in OCI-LY3 cells. Moreover, dual gRNA targeting of PAX5 and MYC induced chromosomal rearrangements, reducing cell proliferation substantially. However, targeting single intronic mutations did not affect cell viability, highlighting the importance of disrupting protein function. Targeting multiple mutations simultaneously addresses intra-tumoral heterogeneity, and the transient delivery of CRISPR/Cas9 allows for permanent gene disruption. While challenges such as incomplete editing efficiency and delivery limitations exist, further optimization may enhance therapeutic efficacy. Overall, our findings demonstrate the efficacy of CRISPR/Cas9 in targeting oncogenic mutations, opening avenues for precision medicine in DLBCL treatment.
Collapse
|
15
|
An R, Zhang Z, Zhang D, Li Y, Lin Y, Sun H, Xu F, Li M, Liu Z. A novel EZH1/2 dual inhibitor inhibits GCB DLBCL through cell cycle regulation and M2 tumor-associated macrophage polarization. J Biol Chem 2024; 300:107788. [PMID: 39303914 PMCID: PMC11538787 DOI: 10.1016/j.jbc.2024.107788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 09/22/2024] Open
Abstract
The incidence of germinal center B-cell-like type diffuse large B-cell lymphoma (GCB DLBCL) is steadily increasing, with a known hereditary component. Although some molecular mechanisms in GCB DLBCL have been elucidated, understanding remains incomplete, limiting the effectiveness of targeted therapies. In GCB DLBCL patients, abnormally high expression of zeste homologs 2 (EZH2) is noted, and the compensatory effect of EZH1 following EZH2 inhibition contributes to poor prognosis. This highlights the potential of dual targeting of EZH1/2 as a promising strategy. In this study, we developed a novel inhibitor, EZH-1-P2, targeting EZH1/2 and evaluated its antitumor effects on DLBCL cells. Mechanistically, inhibition of EZH1/2 affects the epigenetic regulation of gene expression related to p53, impacting cell cycle progression and GCB DLBCL cell growth. Additionally, while EZH1/2 inhibition impacts NOTCH signaling, the precise mechanism by which it affects M2-type tumor-associated macrophage polarization and germinal center expansion requires further investigation. Our research introduces EZH-1-P2 as a novel inhibitor with potential as a candidate for GCB DLBCL therapy, although further studies are needed to fully elucidate its mechanisms.
Collapse
Affiliation(s)
- Ran An
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Center of Genetic Medicine, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Zhimeng Zhang
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Center of Genetic Medicine, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Dongli Zhang
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Center of Genetic Medicine, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Yuqing Li
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Center of Genetic Medicine, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Yueling Lin
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Center of Genetic Medicine, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Hongtao Sun
- Guangdong Second Provincial General Hospital, Department of Orthopedics, Guangzhou, China
| | - Fang Xu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), School of Pharmacy, Jinan University, Guangzhou, China
| | - Manmei Li
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), School of Pharmacy, Jinan University, Guangzhou, China.
| | - Zhong Liu
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Center of Genetic Medicine, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China; Key Laboratory of Innovative Technology Research on Natural Products and Cosmetics Raw Materials, Guangzhou, China.
| |
Collapse
|
16
|
Hong Y, Ma H, Yang H, Zhu Y, Wei Y, Xu Z, Zhang Y, Jin D, Chen Z, Song W, Li J. Ouabain-mediated downregulation of ALKBH5 and IGF2BP2 inhibits the malignant progression of DLBCL. Front Pharmacol 2024; 15:1447830. [PMID: 39281280 PMCID: PMC11392878 DOI: 10.3389/fphar.2024.1447830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/19/2024] [Indexed: 09/18/2024] Open
Abstract
m6A modification is a crucial epigenetic regulatory mechanism in diffuse large B-cell lymphoma (DLBCL). Low-dose cardiotonic drugs have been shown to induce apoptosis in DLBCL cells through epigenetic modulation. However, the involvement of the cardiotonic drug ouabain in the malignant progression of DLBCL remains unclear. Our study revealed that ouabain indeed contributes to the malignant progression of DLBCL through m6A modification. Through qPCR analysis, we observed a negative correlation between ouabain concentration and the expression levels of the demethylase ALKBH5 and the m6A-binding protein IGF2BP2 in DLBCL cells. Furthermore, high expression levels of ALKBH5 and IGF2BP2 were identified in both the GEO database and DLBCL patient tissue samples. Notably, elevated ALKBH5 and IGF2BP2 promoted cell proliferation both in vitro and in vivo. Inhibition of their expression rendered DLBCL cells more sensitive to ouabain treatment, resulting in significant suppression of cell proliferation, G1/S phase cell cycle arrest, and increased apoptosis. In summary, our results clarify that the demethylase ALKBH5 and the m6A-binding protein IGF2BP2 are involved in the malignant progression of DLBCL, and that the cardiotonic drug ouabain can inhibit the proliferation of DLBCL cells by inhibiting the expression of ALKBH5 and IGF2BP2, which provides new insights into the targeted treatment of DLBCL.
Collapse
Affiliation(s)
- Yuxin Hong
- Department of Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Hehua Ma
- Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Haoyi Yang
- Department of Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuning Zhu
- Department of Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuan Wei
- Department of Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhenzhen Xu
- Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yuwen Zhang
- Department of Phase I Clinical Trials Unit, China Pharmaceutical University Nanjing Drum Tower Hospital, Nanjing, China
| | - Dandan Jin
- Department of Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhiyou Chen
- Department of Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Wei Song
- Department of Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
- Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Department of Phase I Clinical Trials Unit, China Pharmaceutical University Nanjing Drum Tower Hospital, Nanjing, China
| | - Juan Li
- Department of Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
- Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Department of Phase I Clinical Trials Unit, China Pharmaceutical University Nanjing Drum Tower Hospital, Nanjing, China
| |
Collapse
|
17
|
Zhao M, Wang L, Wang X, He J, Yu K, Li D. Non-neoplastic cells as prognostic biomarkers in diffuse large B-cell lymphoma: A system review and meta-analysis. TUMORI JOURNAL 2024; 110:227-240. [PMID: 38183180 DOI: 10.1177/03008916231221636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2024]
Abstract
The microenvironment of diffuse large B-cell lymphoma (DLBCL) is composed of various components, including immune cells and immune checkpoints, some of which have been correlated with the prognosis of DLBCL, but their results remain controversial. Therefore, we conducted a systematic review and meta-analysis to investigate the association between the microenvironment and prognosis in DLBCL. We searched PubMed, Web of Science, and EMBASE for relevant articles between 2001 and 2022. Twenty-five studies involving 4495 patients with DLBCL were included in the analysis. This meta-analysis confirmed that high densities of Foxp3+Tregs and PD-1+T cells are good indicators for overall survival (OS) in DLBCL, while high densities of programmed cell death protein ligand1(PD-L1)-positive expression cells and T-cell immunoglobulin-and mucin domain-3-containing molecule 3 (TIM-3)-positive expression tumor-infiltrating cells (TILs) play a contrary role in OS. Additionally, higher numbers of T-cell intracytoplasmic antigen-1(TIA-1)-positive expression T cells imply better OS and progression-free survival (PFS), while high numbers of lymphocyte activation gene(LAG)-positive expression TILs predict bad OS and PFS. Various non-tumoral cells in the microenvironment play important roles in the prognosis of DLBCL.
Collapse
MESH Headings
- Humans
- Biomarkers, Tumor/immunology
- Biomarkers, Tumor/metabolism
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Lymphoma, Large B-Cell, Diffuse/pathology
- Lymphoma, Large B-Cell, Diffuse/immunology
- Lymphoma, Large B-Cell, Diffuse/metabolism
- Lymphoma, Large B-Cell, Diffuse/mortality
- Prognosis
- Tumor Microenvironment/immunology
Collapse
Affiliation(s)
- Min Zhao
- Department of Pathology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Pathology, Chongqing Medical University, Chongqing, China
- Molecular Medicine Diagnostic and Testing Center of Chongqing Medical University, Chongqing, China
| | - Lixing Wang
- Department of Pathology, Chongqing Medical University, Chongqing, China
| | - Xingyu Wang
- Department of Pathology, Chongqing Medical University, Chongqing, China
| | - Juan He
- Department of Pathology, Chongqing Medical University, Chongqing, China
| | - Kuai Yu
- Department of Pathology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Molecular Medicine Diagnostic and Testing Center of Chongqing Medical University, Chongqing, China
- Department of Pathology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Dan Li
- Department of Pathology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Pathology, Chongqing Medical University, Chongqing, China
- Molecular Medicine Diagnostic and Testing Center of Chongqing Medical University, Chongqing, China
| |
Collapse
|
18
|
Olejarz W, Sadowski K, Szulczyk D, Basak G. Advancements in Personalized CAR-T Therapy: Comprehensive Overview of Biomarkers and Therapeutic Targets in Hematological Malignancies. Int J Mol Sci 2024; 25:7743. [PMID: 39062986 PMCID: PMC11276786 DOI: 10.3390/ijms25147743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/12/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Chimeric antigen receptor T-cell (CAR-T) therapy is a novel anticancer therapy using autologous or allogeneic T-cells. To date, six CAR-T therapies for specific B-cell acute lymphoblastic leukemia (B-ALL), non-Hodgkin lymphomas (NHL), and multiple myeloma (MM) have been approved by the Food and Drug Administration (FDA). Significant barriers to the effectiveness of CAR-T therapy include cytokine release syndrome (CRS), neurotoxicity in the case of Allogeneic Stem Cell Transplantation (Allo-SCT) graft-versus-host-disease (GVHD), antigen escape, modest antitumor activity, restricted trafficking, limited persistence, the immunosuppressive microenvironment, and senescence and exhaustion of CAR-Ts. Furthermore, cancer drug resistance remains a major problem in clinical practice. CAR-T therapy, in combination with checkpoint blockades and bispecific T-cell engagers (BiTEs) or other drugs, appears to be an appealing anticancer strategy. Many of these agents have shown impressive results, combining efficacy with tolerability. Biomarkers like extracellular vesicles (EVs), cell-free DNA (cfDNA), circulating tumor (ctDNA) and miRNAs may play an important role in toxicity, relapse assessment, and efficacy prediction, and can be implicated in clinical applications of CAR-T therapy and in establishing safe and efficacious personalized medicine. However, further research is required to fully comprehend the particular side effects of immunomodulation, to ascertain the best order and combination of this medication with conventional chemotherapy and targeted therapies, and to find reliable predictive biomarkers.
Collapse
Affiliation(s)
- Wioletta Olejarz
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, 02-097 Warsaw, Poland;
- Centre for Preclinical Research, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Karol Sadowski
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, 02-097 Warsaw, Poland;
- Centre for Preclinical Research, Medical University of Warsaw, 02-097 Warsaw, Poland
- Department of Hematology, Transplantation and Internal Medicine, Medical University of Warsaw, 02-097 Warsaw, Poland;
| | - Daniel Szulczyk
- Chair and Department of Biochemistry, The Medical University of Warsaw, 02-097 Warsaw, Poland;
| | - Grzegorz Basak
- Department of Hematology, Transplantation and Internal Medicine, Medical University of Warsaw, 02-097 Warsaw, Poland;
| |
Collapse
|
19
|
Koumpis E, Papoudou-Bai A, Papathanasiou K, Kolettas E, Kanavaros P, Hatzimichael E. Unraveling the Immune Microenvironment in Diffuse Large B-Cell Lymphoma: Prognostic and Potential Therapeutic Implications. Curr Issues Mol Biol 2024; 46:7048-7064. [PMID: 39057061 PMCID: PMC11276293 DOI: 10.3390/cimb46070420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
Diffuse large B cell lymphoma (DLBCL) is a multifaceted condition characterized by significant diversity in its molecular and pathological subtypes and clinical manifestation. Despite the progress made in the treatment of DLBCL through the development of novel drugs, an estimated one-third of patients encounter relapse or acquire refractory disease. The tumor microenvironment (TME) of DLBCL, a complex network consisting of cellular and noncellular components that engage in interactions with the tumor, is a parameter that is gaining increasing attention. The TME comprises both the immune and nonimmune microenvironments. The immune microenvironment comprises natural killer (NK) cells, dendritic cells (DCs), tumor-associated macrophages (TAMs), neutrophils, myeloid-derived suppressor cells (MDSCs), and T and B lymphocytes. The nonimmune microenvironment consists of the extracellular matrix (ECM), cancer-associated fibroblasts (CAFs), mesenchymal stromal cells, and other molecules that are secreted. Despite ongoing research, the exact impact of these components and their interaction on the progression of the disease remains elusive. A comprehensive review of significant discoveries concerning the cellular and noncellular constituents, molecular characteristics, and treatment response and prognosis of the TME in DLBCL, as well as the potential targeting of the TME with novel therapeutic approaches, is provided in this article.
Collapse
Affiliation(s)
- Epameinondas Koumpis
- Department of Hematology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45 500 Ioannina, Greece; (E.K.); (K.P.)
| | - Alexandra Papoudou-Bai
- Department of Pathology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45 500 Ioannina, Greece;
| | - Konstantina Papathanasiou
- Department of Hematology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45 500 Ioannina, Greece; (E.K.); (K.P.)
| | - Evangelos Kolettas
- Laboratory of Biology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45 110 Ioannina, Greece;
- Biomedical Research Institute, Foundation for Research and Technology, 45 110 Ioannina, Greece
| | - Panagiotis Kanavaros
- Department of Anatomy-Histology-Embryology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45 110 Ioannina, Greece;
| | - Eleftheria Hatzimichael
- Department of Hematology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45 500 Ioannina, Greece; (E.K.); (K.P.)
| |
Collapse
|
20
|
Peng H, Su M, Guo X, Shi L, Lei T, Yu H, Xu J, Pan X, Chen X. Artificial intelligence-based prognostic model accurately predicts the survival of patients with diffuse large B-cell lymphomas: analysis of a large cohort in China. BMC Cancer 2024; 24:621. [PMID: 38773392 PMCID: PMC11110380 DOI: 10.1186/s12885-024-12337-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 05/03/2024] [Indexed: 05/23/2024] Open
Abstract
BACKGROUND Diffuse large B-cell lymphomas (DLBCLs) display high molecular heterogeneity, but the International Prognostic Index (IPI) considers only clinical indicators and has not been updated to include molecular data. Therefore, we developed a widely applicable novel scoring system with molecular indicators screened by artificial intelligence (AI) that achieves accurate prognostic stratification and promotes individualized treatments. METHODS We retrospectively enrolled a cohort of 401 patients with DLBCL from our hospital, covering the period from January 2015 to January 2019. We included 22 variables in our analysis and assigned them weights using the random survival forest method to establish a new predictive model combining bidirectional long-short term memory (Bi-LSTM) and logistic hazard techniques. We compared the predictive performance of our "molecular-contained prognostic model" (McPM) and the IPI. In addition, we developed a simplified version of the McPM (sMcPM) to enhance its practical applicability in clinical settings. We also demonstrated the improved risk stratification capabilities of the sMcPM. RESULTS Our McPM showed superior predictive accuracy, as indicated by its high C-index and low integrated Brier score (IBS), for both overall survival (OS) and progression-free survival (PFS). The overall performance of the McPM was also better than that of the IPI based on receiver operating characteristic (ROC) curve fitting. We selected five key indicators, including extranodal involvement sites, lactate dehydrogenase (LDH), MYC gene status, absolute monocyte count (AMC), and platelet count (PLT) to establish the sMcPM, which is more suitable for clinical applications. The sMcPM showed similar OS results (P < 0.0001 for both) to the IPI and significantly better PFS stratification results (P < 0.0001 for sMcPM vs. P = 0.44 for IPI). CONCLUSIONS Our new McPM, including both clinical and molecular variables, showed superior overall stratification performance to the IPI, rendering it more suitable for the molecular era. Moreover, our sMcPM may become a widely used and effective stratification tool to guide individual precision treatments and drive new drug development.
Collapse
Affiliation(s)
- Huilin Peng
- Department of Lymphatic Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Mengmeng Su
- Binjiang Institute of Zhejiang University, Hangzhou, Zhejiang, 310053, China
| | - Xiang Guo
- Zhejiang University of Science & Technology, Hangzhou, Zhejiang, 310027, China
| | - Liang Shi
- Department of Pharmacy, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Tao Lei
- Department of Lymphatic Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Haifeng Yu
- Department of Lymphatic Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Jieyu Xu
- Department of Lymphatic Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Xiaohua Pan
- Binjiang Institute of Zhejiang University, Hangzhou, Zhejiang, 310053, China.
| | - Xi Chen
- Department of Lymphatic Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China.
| |
Collapse
|
21
|
Watanabe G, Shimizu Y, Mataki Y, Tokeji K, Hada Y. A Multidisciplinary Rehabilitation Approach for a Patient With Diffuse Large B-cell Lymphoma and Bone Metastasis: A Case Report. Cureus 2024; 16:e60713. [PMID: 38903364 PMCID: PMC11186799 DOI: 10.7759/cureus.60713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2024] [Indexed: 06/22/2024] Open
Abstract
Cancer is often accompanied by bone metastasis, which may lead to skeletal-related events (SREs), such as pain, hypercalcemia, pathological fractures, spinal cord compression, orthopedic surgical intervention, and palliative radiation directed at the bone. Herein, we report the case of a 75-year-old female patient diagnosed with diffuse large B-cell lymphoma (DLBCL) with bone metastasis and a pathological fracture of the right iliac bone. The management strategy and follow-up were determined by a multidisciplinary cancer board comprising physicians, physiatrists, orthopedic surgeons, radiologists, and rehabilitation therapists. A conservative approach was chosen, incorporating a bone-modifying agent and weight-bearing restrictions for the right leg, along with rehabilitation therapy and post-discharge support. A multidisciplinary rehabilitation approach for two months enabled the patient to walk independently upon discharge. She maintains her activities of daily living (ADL) for over six months after discharge without any skeletal issues. This case highlights the effectiveness of a multidisciplinary approach in managing bone metastasis or involvement in patients with lymphoma.
Collapse
Affiliation(s)
- Gaku Watanabe
- Rehabilitation Medicine, University of Tsukuba Hospital, Tsukuba, JPN
| | - Yukiyo Shimizu
- Rehabilitation Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, JPN
| | - Yuki Mataki
- Rehabilitation Medicine, University of Tsukuba Hospital, Tsukuba, JPN
| | - Kayo Tokeji
- Rehabilitation Medicine, University of Tsukuba Hospital, Tsukuba, JPN
| | - Yasushi Hada
- Rehabilitation Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, JPN
| |
Collapse
|
22
|
Wang Y, Chen X, Li Y, Zhang Z, Xia L, Jiang J, Chai Y, Wang Z, Wan Y, Li T, Jin F, Li H. SLC27A2 is a potential immune biomarker for hematological tumors and significantly regulates the cell cycle progression of diffuse large B-cell lymphoma. BMC Med Genomics 2024; 17:105. [PMID: 38664735 PMCID: PMC11046844 DOI: 10.1186/s12920-024-01853-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Research on the fatty acid metabolism related gene SLC27A2 is currently mainly focused on solid tumors, and its mechanism of action in hematological tumors has not been reported. METHOD This study aims to explore the pathological and immune mechanisms of the fatty acid metabolism related gene SLC27A2 in hematological tumors and verify its functional role in hematological tumors through cell experiments to improve treatment decisions and clinical outcomes of hematological tumors. RESULT This study identified the fatty acid metabolism related gene SLC27A2 as a common differentially expressed gene between DLBCL and AML. Immune microenvironment analysis showed that SLC27A2 was significantly positively correlated with T cell CD4 + , T cell CD8 + , endothelial cells, macrophages, and NK cells in DLBCL. In AML, there is a significant negative correlation between SLC27A2 and B cells, T cell CD8 + , and macrophages. SLC27A2 participates in the immune process of hematological tumors through T cell CD8 + and macrophages. The GESA results indicate that high expression of SLC27A2 is mainly involved in the fatty acid pathway, immune pathway, and cell cycle pathway of DLBCL. The low expression of SLC27A2 is mainly involved in the immune pathway of AML. Therefore, SLC27A2 is mainly involved in the pathological mechanisms of hematological tumors through immune pathways, and cell experiments have also confirmed that SLC27A2 is involved in the regulation of DLBCL cells. CONCLUSION In summary, our research results comprehensively report for the first time the mechanism of action of SLC27A2 in the immune microenvironment of DLBCL and AML, and for the first time verify the cycle and apoptotic effects of the fatty acid related gene SLC27A2 in DLBCL cells through cell experiments. Research can help improve the treatment of AML and DLBCL patients.
Collapse
MESH Headings
- Humans
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/immunology
- Lymphoma, Large B-Cell, Diffuse/pathology
- Cell Cycle
- Tumor Microenvironment/immunology
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Gene Expression Regulation, Neoplastic
- Hematologic Neoplasms/genetics
- Hematologic Neoplasms/immunology
- Hematologic Neoplasms/pathology
- Cell Line, Tumor
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/metabolism
- Fatty Acids/metabolism
Collapse
Affiliation(s)
- Yi Wang
- Department of Oncology, The Third Affiliated Hospital of Anhui Medical, Anhui, China
| | - Xue Chen
- Graduate School Internal Medicine, Bengbu Medical College, Anhui, China
| | - Yun Li
- Kindstar Global Precision Medicine Institute, Wuhan, China
- Department of Scientific Research Project, Wuhan Kindstar Medical Laboratory Co., Ltd, Wuhan, Hubei, China
| | - Zhixue Zhang
- Department of Hematology, The Ji'an Central Hospital, Jiangxi, China
| | - Leiming Xia
- Department of Hematology, The First Affiliated Hospital of Anhui Medical, Anhui, China
| | - Jiang Jiang
- Department of Ophthalmology, The First Affiliated Hospital of Anhui Medical, Hefei, Anhui, China
| | - Yuqin Chai
- Department of Oncology, The Third Affiliated Hospital of Anhui Medical, Anhui, China
| | - Ziming Wang
- Department of Oncology, The Third Affiliated Hospital of Anhui Medical, Anhui, China
| | - Yu Wan
- Department of Oncology, The Third Affiliated Hospital of Anhui Medical, Anhui, China
| | - Tongyu Li
- Ningbo Clinical Research Center for Hematologic Malignancies, the First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Fengbo Jin
- Department of Hematology, The First Affiliated Hospital of Anhui Medical, Anhui, China.
| | - Hongxia Li
- Department of Oncology, The Third Affiliated Hospital of Anhui Medical, Anhui, China.
- Graduate School Internal Medicine, Bengbu Medical College, Anhui, China.
| |
Collapse
|
23
|
Bian W, Li H, Chen Y, Yu Y, Lei G, Yang X, Li S, Chen X, Li H, Yang J, Yang C, Li Y, Zhou Y. Ferroptosis mechanisms and its novel potential therapeutic targets for DLBCL. Biomed Pharmacother 2024; 173:116386. [PMID: 38492438 DOI: 10.1016/j.biopha.2024.116386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/28/2024] [Accepted: 03/06/2024] [Indexed: 03/18/2024] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL), a heterogeneous lymphoid malignancy, poses a significant threat to human health. The standard therapeutic regimen for patients with DLBCL is rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP), with a typical cure rate of 50-70%. However, some patients either relapse after complete remission (CR) or exhibit resistance to R-CHOP treatment. Therefore, novel therapeutic approaches are imperative for managing high-risk or refractory DLBCL. Ferroptosis is driven by iron-dependent phospholipid peroxidation, a process that relies on the transition metal iron, reactive oxygen species (ROS), and phospholipids containing polyunsaturated fatty acids-containing phospholipids (PUFA-PLs). Research indicates that ferroptosis is implicated in various carcinogenic and anticancer pathways. Several hematological disorders exhibit heightened sensitivity to cell death induced by ferroptosis. DLBCL cells, in particular, demonstrate an increased demand for iron and an upregulation in the expression of fatty acid synthase. Additionally, there exists a correlation between ferroptosis-associated genes and the prognosis of DLBCL. Therefore, ferroptosis may be a promising novel target for DLBCL therapy. In this review, we elucidate ferroptosis mechanisms, its role in DLBCL, and the potential therapeutic targets in DLBCL. This review offers novel insights into the application of ferroptosis in treatment strategies for DLBCL.
Collapse
Affiliation(s)
- Wenxia Bian
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Haoran Li
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yuhan Chen
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yanhua Yu
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Guojie Lei
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Xinyi Yang
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Sainan Li
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Xi Chen
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Huanjuan Li
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jing Yang
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Chen Yang
- Cancer Center, Department of Ultrasound Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China.
| | - Yanchun Li
- Department of Central Laboratory, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China.
| | - Yi Zhou
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
24
|
Roschewski M, Hodson DJ. Diffuse large B-cell lymphoma involving the central nervous system: biologic rationale for targeted therapy. Haematologica 2024; 109:388-400. [PMID: 37706315 PMCID: PMC10828633 DOI: 10.3324/haematol.2021.278613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 09/04/2023] [Indexed: 09/15/2023] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is an aggressive B-cell lymphoma curable even in advanced stages. DLBCL involving the central nervous system (CNS) is more difficult to cure and fewer treatment options exist. Primary CNS lymphoma (PCNSL) refers to aggressive lymphomas confined to the CNS, and are almost always DLBCL. Standard approaches for PCNSL use high-dose methotrexate-based combinations as induction therapy and younger patients often receive dose-intensive consolidation. However, dose-intensive therapies are not suitable for all patients, and older patients have fewer effective treatment options. Patients with relapsed or chemotherapy-refractory disease have a very poor prognosis. Secondary CNS lymphoma (SCNSL) describes aggressive lymphomas involving the CNS at initial presentation or relapses within the CNS after treatment for systemic DLBCL. Isolated CNS relapse is often managed as PCNSL, but patients with synchronous involvement of DLBCL in both the periphery and the CNS pose a unique clinical challenge. Insights into the molecular circuitry of DLBCL have identified distinct genetic subtypes including cases with a predilection for CNS invasion. PCNSL and subsets of SCNSL are characterized by chronically activated B-cell receptor and NFκB signaling along with genetic evidence of immune evasion which may be exploited therapeutically. Improved mechanistic understanding of targetable pathways underpinning CNS lymphomas has led to numerous clinical trials testing targeted agent combinations and immunotherapy approaches with promising early results. Biologically rational strategies may further improve the cure rate of CNS lymphomas, either by overcoming intrinsic or acquired treatment resistance and/or by being broadly applicable to patients of all ages.
Collapse
Affiliation(s)
- Mark Roschewski
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer nstitute, Bethesda, MD, 20892.
| | - Daniel J Hodson
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge Biomedical Campus, Cambridge.
| |
Collapse
|
25
|
Yan C, Xie Y, Hua Y, Li S, Fu H, Cheng Z, Wu J. Prognostic value of geriatric nutritional risk index in patients with diffuse large B-cell lymphoma: a meta-analysis. Clin Transl Oncol 2024; 26:515-523. [PMID: 37438653 DOI: 10.1007/s12094-023-03271-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 06/27/2023] [Indexed: 07/14/2023]
Abstract
BACKGROUND Geriatric nutritional risk index (GNRI) on the prognosis of patients with diffuse large B-cell lymphoma (DLBCL) remains unclear. The purpose of this meta-analysis was to discuss the value of the GNRI in evaluating long-term outcomes in DLBCL. METHODS We systematically and roundly retrieved PubMed, Cochrane Library, Embase, Scopus and Web of Science electronic databases from inception of the databases to March 20, 2023. At the same time, we calculated the pool hazard ratios (HRs) with their 95% confidence interval (CI) for overall survival and progression-free survival to assess the effect of GNRI on the prognosis of DLBCL patients. RESULTS In our primary meta-analysis, 7 trials with a total of 2448 patients were enrolled. Results showed that lower level of GNRI was related to poorer overall survival (HR = 1.78, 95% CI 1.27, 2.50, p < 0.01) and worse progression-free survival (HR = 2.31, 95% CI 1.71, 3.13, p < 0.01) in DLBCL patients. CONCLUSION The results of our meta-analysis indicate that a lower GNRI significantly associated with poorer prognosis for DLBCL. It is believed that GNRI was a promisingly predictive indicator of survival outcomes in DLBCL patients. However, large multicenter prospective studies are necessary to verify the results.
Collapse
Affiliation(s)
- Chengkun Yan
- The Second Affiliated Hospital of Nanchang University, 1 Min De Road, Nanchang, 330006, Jiangxi, China
- School of Nursing, Nanchang University, 461 Ba Yi Road, Nanchang, 330006, Jiangxi, China
| | - Yanyou Xie
- The Second Affiliated Hospital of Nanchang University, 1 Min De Road, Nanchang, 330006, Jiangxi, China
| | - Yaqi Hua
- The Second Affiliated Hospital of Nanchang University, 1 Min De Road, Nanchang, 330006, Jiangxi, China
- School of Nursing, Nanchang University, 461 Ba Yi Road, Nanchang, 330006, Jiangxi, China
| | - Sihui Li
- Red Flag Hospital Affiliated to Mudanjiang Medical College, 5 Tong Xiang Road, Mudanjiang, 157011, Heilongjiang, China
| | - Huanxu Fu
- School of Nursing, Nanchang University, 461 Ba Yi Road, Nanchang, 330006, Jiangxi, China
- The First Affiliated Hospital of Nanchang University, 17, Yong Wai Zheng Road, Nanchang, 330006, Jiangxi, China
| | - Zhiqiang Cheng
- School of Nursing, Nanchang University, 461 Ba Yi Road, Nanchang, 330006, Jiangxi, China
- The First Affiliated Hospital of Nanchang University, 17, Yong Wai Zheng Road, Nanchang, 330006, Jiangxi, China
| | - Jiehua Wu
- The Second Affiliated Hospital of Nanchang University, 1 Min De Road, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
26
|
Lin Q, Su J, Fang Y, Zhong Z, Chen J, Zhang C. S100A8 is a prognostic signature and associated with immune response in diffuse large B-cell lymphoma. Front Oncol 2024; 14:1344669. [PMID: 38361783 PMCID: PMC10867108 DOI: 10.3389/fonc.2024.1344669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 01/12/2024] [Indexed: 02/17/2024] Open
Abstract
Background S100A8, a calcium-binding protein belonging to the S100 family, is involved in immune responses and multiple tumor pathogens. Diffuse large B-cell lymphoma (DLBCL) is one of the most common types of B-cell lymphoma and remains incurable in 40% of patients. However, the role of S100A8 and its regulation of the immune response in DLBCL remain unclear. Methods The differential expression of S100A8 was identified via the GEO and TCGA databases. The prognostic role of S100A8 in DLBCL was calculated using the Kaplan-Meier curve. The function enrichment of differentially expressed genes (DEGs) was explored through GO, KEGG, GSEA, and PPI analysis. In our cohort, the expression of S100A8 was verified. Meanwhile, the biological function of S100A8 was applied after the inhibition of S100A8 in an in vitro experiment. The association between S100A8 and immune cell infiltration and treatment response in DLBCL was analyzed. Results S100A8 was significantly overexpressed and related to a poor prognosis in DLBCL patients. Function enrichment analysis revealed that DEGs were mainly enriched in the IL-17 signaling pathway. Our cohort also verified this point. In vitro experiments suggested that inhibition of S100A8 should promote cell apoptosis and suppress tumor growth. Single-cell RNA sequence analysis indicated that S100A8 might be associated with features of the tumor microenvironment (TME), and immune infiltration analyses discovered that S100A8 expression was involved in TME. In terms of drug screening, we predicted that many drugs were associated with preferable sensitivity. Conclusion Elevated S100A8 expression is associated with a poor prognosis and immune infiltration in DLBCL. Inhibition of S100A8 could promote cell apoptosis and suppress tumor growth. Meanwhile, S100A8 has the potential to be a promising immunotherapeutic target for patients with DLBCL.
Collapse
Affiliation(s)
- Qi Lin
- Department of Pharmacy, The Affiliated Hospital of Putian University, Putian, Fujian, China
- Pharmaceutical and Medical Technology College, Putian University, Putian, Fujian, China
| | - Jianlin Su
- Pharmaceutical and Medical Technology College, Putian University, Putian, Fujian, China
| | - Yuanyuan Fang
- Pharmaceutical and Medical Technology College, Putian University, Putian, Fujian, China
| | - Zhihao Zhong
- Pharmaceutical and Medical Technology College, Putian University, Putian, Fujian, China
| | - Jie Chen
- Pharmaceutical and Medical Technology College, Putian University, Putian, Fujian, China
| | - Chaofeng Zhang
- Department of Hematology and Rheumatology, the Affiliated Hospital of Putian University, Putian, Fujian, China
| |
Collapse
|
27
|
Zhang C, Lin Q, Li C, Qiu Y, Chen J, Zhu X. Comprehensive analysis of the prognostic implication and immune infiltration of CISD2 in diffuse large B-cell lymphoma. Front Immunol 2023; 14:1277695. [PMID: 38155967 PMCID: PMC10754510 DOI: 10.3389/fimmu.2023.1277695] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/15/2023] [Indexed: 12/30/2023] Open
Abstract
Background Diffuse large B-cell lymphoma (DLBCL) is the most common B-cell lymphoma in adults. CDGSH iron sulfur domain 2 (CISD2) is an iron-sulfur protein and plays a critical role of cell proliferation. The aberrant expression of CISD2 is associated with the progression of multiple cancers. However, its role in DLBCL remains unclear. Methods The differential expression of CISD2 was identified via public databases, and quantitative real-time PCR (qRT-PCR) and western blot were used to identifed the expression of CISD2. We estimated the impact of CISD2 on clinical prognosis using the Kaplan-Meier plotter. Meanwhile, the drug sensitivity of CISD2 was assessed using CellMiner database. The 100 CISD2-related genes from STRING obtained and analyzed using the LASSO Cox regression. A CISD2 related signature for risk model (CISD2Risk) was established. The PPI network of CISD2Risk was performed, and functional enrichment was conducted through the DAVID database. The impacts of CISD2Risk on clinical features were analyzed. ESTIMATE, CIBERSORT, and MCP-counter algorithm were used to identify CISD2Risk associated with immune infiltration. Subsequently, Univariate and multivariate Cox regression analysis were applied, and a prognostic nomogram, accompanied by a calibration curve, was constructed to predict 1-, 3-, and 5-years survival probabilities. Results CISD2 was upregulated in DLBCL patients comparing with normal controls via public datasets, similarly, CISD2 was highly expressed in DLBCL cell lines. Overexpression of CISD2 was associated with poor prognosis in DLBCL patients based on the GSE31312, the GSE32918, and GSE93984 datasets (P<0.05). Nine drugs was considered as a potential therapeutic agents for CISD2. By using the LASSO cox regression, twenty seven genes were identified to construct CISD2Risk, and biological functions of these genes might be involved in apoptosis and P53 signaling pathway. The high CISD2Risk value had a worse prognosis and therapeutic effect (P<0.05). The higher stromal score, immune score, and ESTIMATE score were associated with lowe CISD2Risk value, CISD2Risk was negatively correlated with several immune infiltrating cells (macrophages M0 and M1, CD8 T cells, CD4 naïve T cells, NK cell, etc) that might be correlated with better prognosis. Additionally, The high CISD2Risk was identified as an independent prognostic factor for DLBCL patients using both univariate and multivariate Cox regression. The nomogram produced accurate predictions and the calibration curves were in good agreement. Conclusion Our study demonstrates that high expression of CISD2 in DLBCL patients is associated with poor prognosis. We have successfully constructed and validated a good prognostic prediction and efficacy monitoring for CISD2Risk that included 27 genes. Meanwhile, CISD2Risk may be a promising evaluator for immune infiltration and serve as a reference for clinical decision-making in DLBCL patients.
Collapse
Affiliation(s)
- ChaoFeng Zhang
- Department of Haematology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, China
- Department of Hematology and Rheumatology, The Affiliated Hospital of Putian University, Putian, China
- The School of Basic Medicine, Putian University, Putian, China
| | - Qi Lin
- Department of Pharmacy, The Affiliated Hospital of Putian University, Putian, China
| | - ChunTuan Li
- Department of Haematology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, China
| | - Yang Qiu
- The School of Basic Medicine, Putian University, Putian, China
| | - JingYu Chen
- The School of Basic Medicine, Putian University, Putian, China
| | - XiongPeng Zhu
- Department of Haematology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, China
| |
Collapse
|
28
|
Pandiella A, Calvo E, Moreno V, Amir E, Templeton A, Ocana A. Considerations for the clinical development of immuno-oncology agents in cancer. Front Immunol 2023; 14:1229575. [PMID: 37638048 PMCID: PMC10451075 DOI: 10.3389/fimmu.2023.1229575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/26/2023] [Indexed: 08/29/2023] Open
Abstract
Targeting of the immune system has shown to be a successful therapeutic approach in cancer, with the development of check point inhibitors (ICI) or T-cell engagers (TCE). As immuno-oncology agents modulate the immune system to attack cancer cells and do not act directly on oncogenic vulnerabilities, specific characteristics of these compounds should be taken in consideration during clinical development. In this review we will discuss relevant concepts including limitations of preclinical models, special pharmacologic boundaries, clinical development strategies such as the selection of clinical indication, line of treatment and backbone partner, as well as the endpoints and expected magnitude of benefit required at different stages of the drug development. In addition, future directions for early and late trial designs will be reviewed. Examples from approved drugs or those currently in clinical development will be discussed and options to overcome these limitations will be provided.
Collapse
Affiliation(s)
- Atanasio Pandiella
- Centro de Investigación del Cáncer, CIC-CSIC, Salamanca, Spain
- Centro de Investigación Biomédica en Red en Oncología (CIBERONC), Madrid, Spain
| | - Emiliano Calvo
- START Madrid-HM Centro Integral Oncológico Clara Campal (CIOCC), Early Phase Program, HM Sanchinarro University Hospital, Madrid, Spain
| | - Victor Moreno
- START Madrid-Fundación Jiménez Díaz (FJD) Early Phase Program, Fundación Jiménez Díaz Hospital, Madrid, Spain
| | - Eitan Amir
- Division of Medical Oncology & Hematology, Department of Medicine, Princess Margaret Cancer Centre and University of Toronto, Toronto, ON, Canada
| | - Arnoud Templeton
- Department of Medical Oncology, St. Claraspital, Basel, Switzerland
| | - Alberto Ocana
- Centro de Investigación Biomédica en Red en Oncología (CIBERONC), Madrid, Spain
- START Madrid-Fundación Jiménez Díaz (FJD) Early Phase Program, Fundación Jiménez Díaz Hospital, Madrid, Spain
- Experimental Therapeutics Unit, Medical Oncology Department, Hospital Clínico San Carlos (HCSC), Instituto de Investigación Sanitaria (IdISSC), Madrid, Spain
| |
Collapse
|