1
|
Sudo S, Kita N, Tomita N, Takaoka T, Okazaki D, Niwa M, Torii A, Takano S, Oguri M, Matsuura A, Ukai M, Niimi A, Hiwatashi A. Effects of target coverage on local recurrence in stereotactic body radiotherapy for early-stage lung squamous cell carcinoma. Jpn J Radiol 2025:10.1007/s11604-025-01749-x. [PMID: 39985642 DOI: 10.1007/s11604-025-01749-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 01/30/2025] [Indexed: 02/24/2025]
Abstract
BACKGROUND AND PURPOSE This study investigated effects of target coverage on local recurrence (LR) in stereotactic body radiotherapy (SBRT) for early-stage lung squamous cell carcinoma (SCC). MATERIALS AND METHODS Patients with clinical stage IA1-IIA lung SCC treated with SBRT were included in the analysis. Doses of 48-52 Gy were prescribed to the isocenter of the planning target volume according to the tumor diameter. The primary endpoint was LR. To examine the independent effects of dosimetric factors on LR after adjustment for clinical factors, Fine-Gray model with death as a competing risk was used for evaluation. RESULTS Among all 59 patients analyzed, the median follow-up was 42 months. The 3-year LR rate was 24.0%. Univariate analysis of clinical factors showed that biologically effective dose calculated with an α/β value of 10 (BED10) was associated with LR (p = 0.033). After adjustment for clinical factors, internal target volume (ITV) Dmean was associated with LR (p = 0.049). Subgroup analysis was performed for each prescribed dose group. The results of Fine-Gray model and receiver operating characteristic curve analysis showed that ITV Dmean > 100% of the prescribed dose was the best indicator of preventing LR. CONCLUSIONS ITV coverage may be particularly important in SBRT for early-stage lung SCC.
Collapse
Affiliation(s)
- Shuou Sudo
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-Cho, Mizuho-Ku, Nagoya, Aichi, 467-8601, Japan
| | - Nozomi Kita
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-Cho, Mizuho-Ku, Nagoya, Aichi, 467-8601, Japan.
| | - Natsuo Tomita
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-Cho, Mizuho-Ku, Nagoya, Aichi, 467-8601, Japan
| | - Taiki Takaoka
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-Cho, Mizuho-Ku, Nagoya, Aichi, 467-8601, Japan
| | - Dai Okazaki
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-Cho, Mizuho-Ku, Nagoya, Aichi, 467-8601, Japan
| | - Masanari Niwa
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-Cho, Mizuho-Ku, Nagoya, Aichi, 467-8601, Japan
| | - Akira Torii
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-Cho, Mizuho-Ku, Nagoya, Aichi, 467-8601, Japan
| | - Seiya Takano
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-Cho, Mizuho-Ku, Nagoya, Aichi, 467-8601, Japan
| | - Masanosuke Oguri
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-Cho, Mizuho-Ku, Nagoya, Aichi, 467-8601, Japan
| | - Akane Matsuura
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-Cho, Mizuho-Ku, Nagoya, Aichi, 467-8601, Japan
| | - Machiko Ukai
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-Cho, Mizuho-Ku, Nagoya, Aichi, 467-8601, Japan
| | - Akio Niimi
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-Cho, Mizuho-Ku, Nagoya, Aichi, 467-8601, Japan
| | - Akio Hiwatashi
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-Cho, Mizuho-Ku, Nagoya, Aichi, 467-8601, Japan
| |
Collapse
|
2
|
Shi L, Zhao J, Wei Z, Wu H, Sheng M. Radiomics in distinguishing between lung adenocarcinoma and lung squamous cell carcinoma: a systematic review and meta-analysis. Front Oncol 2024; 14:1381217. [PMID: 39381037 PMCID: PMC11458374 DOI: 10.3389/fonc.2024.1381217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 09/05/2024] [Indexed: 10/10/2024] Open
Abstract
Objectives The aim of this study was to systematically review the studies on radiomics models in distinguishing between lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC) and evaluate the classification performance of radiomics models using images from various imaging techniques. Materials and methods PubMed, Embase and Web of Science Core Collection were utilized to search for radiomics studies that differentiate between LUAD and LUSC. The assessment of the quality of studies included utilized the improved Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) and Radiomics Quality Score (RQS). Meta-analysis was conducted to assess the classification performance of radiomics models using various imaging techniques. Results The qualitative analysis included 40 studies, while the quantitative synthesis included 21 studies. Median RQS for 40 studies was 12 (range -5~19). Sixteen studies were deemed to have a low risk of bias and low concerns regarding applicability. The radiomics model based on CT images had a pooled sensitivity of 0.78 (95%CI: 0.71~0.83), specificity of 0.85 (95%CI:0.73~0.92), and the area under summary receiver operating characteristic curve (SROC-AUC) of 0.86 (95%CI:0.82~0.89). As for PET images, the pooled sensitivity was 0.80 (95%CI: 0.61~0.91), specificity was 0.77 (95%CI: 0.60~0.88), and the SROC-AUC was 0.85 (95%CI: 0.82~0.88). PET/CT images had a pooled sensitivity of 0.87 (95%CI: 0.72~0.94), specificity of 0.88 (95%CI: 0.80~0.93), and an SROC-AUC of 0.93 (95%CI: 0.91~0.95). MRI images had a pooled sensitivity of 0.73 (95%CI: 0.61~0.82), specificity of 0.80 (95%CI: 0.65~0.90), and an SROC-AUC of 0.79 (95%CI: 0.75~0.82). Conclusion Radiomics models demonstrate potential in distinguishing between LUAD and LUSC. Nevertheless, it is crucial to conduct a well-designed and powered prospective radiomics studies to establish their credibility in clinical application. Systematic review registration https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=412851, identifier CRD42023412851.
Collapse
Affiliation(s)
- Lili Shi
- Medical School, Nantong University, Nantong, China
| | - Jinli Zhao
- Department of Radiology, Affiliated Hospital of Nantong University, Nantong, China
| | - Zhichao Wei
- Medical School, Nantong University, Nantong, China
| | - Huiqun Wu
- Medical School, Nantong University, Nantong, China
| | - Meihong Sheng
- Department of Radiology, The Second Affiliated Hospital of Nantong University and Nantong First People’s Hospital, Nantong, China
| |
Collapse
|
3
|
Puiu A, Gómez Tapia C, Weiss MER, Singh V, Kamen A, Siebert M. Prediction uncertainty estimates elucidate the limitation of current NSCLC subtype classification in representing mutational heterogeneity. Sci Rep 2024; 14:6779. [PMID: 38514696 PMCID: PMC10958018 DOI: 10.1038/s41598-024-57057-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/13/2024] [Indexed: 03/23/2024] Open
Abstract
The heterogeneous pathogenesis and treatment response of non-small cell lung cancer (NSCLC) has led clinical treatment decisions to be guided by NSCLC subtypes, with lung adenocarcinoma and lung squamous cell carcinoma being the most common subtypes. While histology-based subtyping remains challenging, NSCLC subtypes were found to be distinct at the transcriptomic level. However, unlike genomic alterations, gene expression is generally not assessed in clinical routine. Since subtyping of NSCLC has remained elusive using mutational data, we aimed at developing a neural network model that simultaneously learns from adenocarcinoma and squamous cell carcinoma samples of other tissue types and is regularized using a neural network model trained from gene expression data. While substructures of the expression-based manifold were captured in the mutation-based manifold, NSCLC classification accuracy did not significantly improve. However, performance was increased when rejecting inconclusive samples using an ensemble-based approach capturing prediction uncertainty. Importantly, SHAP analysis of misclassified samples identified co-occurring mutations indicative of both NSCLC subtypes, questioning the current NSCLC subtype classification to adequately represent inherent mutational heterogeneity. Since our model captures mutational patterns linked to clinical heterogeneity, we anticipate it to be suited as foundational model of genomic data for clinically relevant prognostic or predictive downstream tasks.
Collapse
Affiliation(s)
- Andrei Puiu
- Advanta, Siemens SRL, Brasov, 500007, Romania
- Automation and Information Technology, Transilvania University of Brasov, Brasov, 500174, Romania
| | - Carlos Gómez Tapia
- Digital Technology and Innovation, Siemens Healthineers, Erlangen, 91052, Germany
| | - Maximilian E R Weiss
- Digital Technology and Innovation, Siemens Healthineers, Erlangen, 91052, Germany
| | - Vivek Singh
- Digital Technology and Innovation, Siemens Healthineers, Princeton, 08540, USA
| | - Ali Kamen
- Digital Technology and Innovation, Siemens Healthineers, Princeton, 08540, USA
| | - Matthias Siebert
- Digital Technology and Innovation, Siemens Healthineers, Erlangen, 91052, Germany.
| |
Collapse
|
4
|
Schrand TV, Iovoli AJ, Almeida ND, Yu H, Malik N, Farrugia M, Singh AK. Differences between Survival Rates and Patterns of Failure of Patients with Lung Adenocarcinoma and Squamous Cell Carcinoma Who Received Single-Fraction Stereotactic Body Radiotherapy. Cancers (Basel) 2024; 16:755. [PMID: 38398146 PMCID: PMC10886818 DOI: 10.3390/cancers16040755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
We investigated the survival and patterns of failure in adenocarcinoma (ADC) and squamous cell carcinoma (SCC) in early stage non-small cell lung cancer (NSCLC) treated with single-fraction stereotactic body radiation therapy (SF-SBRT) of 27-34 Gray. A single-institution retrospective review of patients with biopsy-proven early stage ADC or SCC undergoing definitive SF-SBRT between September 2008 and February 2023 was performed. The primary outcomes were overall survival (OS) and disease-free survival (DFS). The secondary outcomes included local failure (LF), nodal failure (NF), and distant failure (DF). Of 292 eligible patients 174 had adenocarcinoma and 118 had squamous cell carcinoma. There was no significant change in any outcome except distant failure. Patients with ADC were significantly more likely to experience distant failure than patients with SCC (p = 0.0081). In conclusion, while SF-SBRT produced similar LF, NF, DFS, and OS, the higher rate of distant failure in ADC patients suggests that ongoing trials of SBRT and systemic therapy combinations should report their outcomes by histology.
Collapse
Affiliation(s)
- Tyler V. Schrand
- Department of Radiation Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (T.V.S.); (A.J.I.); (N.D.A.); (N.M.); (M.F.)
- Department of Chemistry, Bowling Green State University, Bowling Green, OH 43403, USA
| | - Austin J. Iovoli
- Department of Radiation Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (T.V.S.); (A.J.I.); (N.D.A.); (N.M.); (M.F.)
| | - Neil D. Almeida
- Department of Radiation Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (T.V.S.); (A.J.I.); (N.D.A.); (N.M.); (M.F.)
| | - Han Yu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA;
| | - Nadia Malik
- Department of Radiation Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (T.V.S.); (A.J.I.); (N.D.A.); (N.M.); (M.F.)
| | - Mark Farrugia
- Department of Radiation Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (T.V.S.); (A.J.I.); (N.D.A.); (N.M.); (M.F.)
| | - Anurag K. Singh
- Department of Radiation Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (T.V.S.); (A.J.I.); (N.D.A.); (N.M.); (M.F.)
| |
Collapse
|
5
|
Kita N, Tomita N, Takaoka T, Matsuura A, Okazaki D, Niwa M, Torii A, Takano S, Mekata Y, Niimi A, Hiwatashi A. Symptomatic radiation-induced rib fractures after stereotactic body radiotherapy for early-stage non-small cell lung cancer. Clin Transl Radiat Oncol 2023; 43:100683. [PMID: 37790583 PMCID: PMC10543765 DOI: 10.1016/j.ctro.2023.100683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 09/21/2023] [Indexed: 10/05/2023] Open
Abstract
Background and purpose The present study investigated the relationships between the risk of radiation-induced rib fractures (RIRF) and clinical and dosimetric factors in stereotactic body radiotherapy (SBRT) for early-stage non-small cell lung cancer (NSCLC). We also examined dosimetric parameters associated with symptomatic or asymptomatic RIRF and the dosimetric threshold for symptomatic RIRF. Materials and methods We reviewed 244 cases of early-stage NSCLC treated with SBRT. Gray's test and the Fine-Gray model were performed to examine the relationships between clinical and dosimetric factors and grade ≥ 2 (i.e., symptomatic) RIRF. The effects of each dose parameter on grade ≥ 1 and ≥ 2 RIRF were assessed with the Fine-Gray model. The t-test was used to compare each dose parameter between the grade 1 and grade ≥ 2 groups. Optimal thresholds were tested using receiver operating characteristic (ROC) curves. Results With a median follow-up period of 48 months, the 4-year cumulative incidence of grade ≥ 1 and grade ≥ 2 RIRF were 26.4 % and 8.0 %, respectively. Regarding clinical factors, only age was associated with the development of grade ≥ 2 RIRF (p = 0.024). Among dosimetric parameters, only V40Gy significantly differed between the grade 1 and grade ≥ 2 groups (p = 0.015). The ROC curve analysis of grade ≥ 2 RIRF showed that the optimal diagnostic thresholds for D3cc, D4cc, D5cc, and V40Gy were 45.86 Gy (area under the curve [AUC], 0.706), 39.02 Gy (AUC, 0.705), 41.62 Gy (AUC, 0.702), and 3.83 cc (AUC, 0.730), respectively. These results showed that V40Gy ≤ 3.83 cc was the best indicator of grade ≥ 2 RIRF. The 4-year incidence of grade ≥ 2 RIRF in the V40Gy ≤ 3.83 cc vs. > 3.83 cc groups was 1.8 % vs. 14.2 % (p = 0.001). Conclusion The present results recommend V40Gy ≤ 3.83 cc as the threshold for grade ≥ 2 RIRF in SBRT.
Collapse
Affiliation(s)
- Nozomi Kita
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8601, Japan
| | - Natsuo Tomita
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8601, Japan
| | - Taiki Takaoka
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8601, Japan
| | - Akane Matsuura
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8601, Japan
| | - Dai Okazaki
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8601, Japan
| | - Masanari Niwa
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8601, Japan
| | - Akira Torii
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8601, Japan
| | - Seiya Takano
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8601, Japan
| | - Yuji Mekata
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8601, Japan
| | - Akio Niimi
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8601, Japan
| | - Akio Hiwatashi
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8601, Japan
| |
Collapse
|
6
|
Kita N, Tomita N, Takaoka T, Okazaki D, Niwa M, Torii A, Takano S, Mekata Y, Niimi A, Hiwatashi A. Clinical and dosimetric factors for symptomatic radiation pneumonitis after stereotactic body radiotherapy for early-stage non-small cell lung cancer. Clin Transl Radiat Oncol 2023; 41:100648. [PMID: 37346273 PMCID: PMC10279771 DOI: 10.1016/j.ctro.2023.100648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 05/30/2023] [Indexed: 06/23/2023] Open
Abstract
Background and purpose The present study attempted to identify risk factors for symptomatic radiation pneumonitis (RP) after stereotactic body radiotherapy (SBRT) in patients with early-stage non-small cell lung cancer (NSCLC). Materials and methods We reviewed 244 patients with early-stage NSCLC treated with SBRT. The primary endpoint was the incidence of grade ≥2 RP. Gray's test was performed to examine the relationship between clinical risk factors and grade ≥2 RP, and the Fine-Gray model was used for a multivariate analysis. The effects of each dose parameter on grade ≥2 RP were evaluated with the Fine-Gray model and optimal thresholds were tested using receiver operating characteristic (ROC) curves. Results With a median follow-up period of 48 months, the 4-year cumulative incidence of grade ≥2 RP was 15.3%. Gray's test revealed that tumor size, a central tumor, interstitial pneumonia, and the biologically effective dose correlated with RP. In the multivariate analysis, a central tumor and interstitial pneumonia remained significant factors (p < 0.001, p = 0.002). Among dose parameters, the total lung volume (%) receiving at least 8 Gy (V8), V10, V20, and the mean lung dose correlated with RP (p = 0.012, 0.011, 0.022, and 0.014, respectively). The results of the Fine-Gray model and ROC curve analyses showed that V10 >16.7% was the best indicator of symptomatic RP among dose parameters. Conclusion The present results suggest that a central tumor and interstitial pneumonia are independent risk factors for symptomatic RP and lung V10 ≤16.7% is recommended as the threshold in SBRT.
Collapse
Affiliation(s)
- Nozomi Kita
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8601, Japan
| | - Natsuo Tomita
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8601, Japan
| | - Taiki Takaoka
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8601, Japan
| | - Dai Okazaki
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8601, Japan
| | - Masanari Niwa
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8601, Japan
| | - Akira Torii
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8601, Japan
| | - Seiya Takano
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8601, Japan
| | - Yuji Mekata
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8601, Japan
| | - Akio Niimi
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8601, Japan
| | - Akio Hiwatashi
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8601, Japan
| |
Collapse
|