1
|
Engelhardt M, Kortüm KM, Goldschmidt H, Merz M. Functional cure and long-term survival in multiple myeloma: how to challenge the previously impossible. Haematologica 2024; 109:2420-2435. [PMID: 38356448 PMCID: PMC11290544 DOI: 10.3324/haematol.2023.283058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 02/06/2024] [Indexed: 02/16/2024] Open
Abstract
Multiple myeloma (MM) is a heterogeneous disease with survival ranging from months to decades. The goal of 'cure' remains elusive for most patients, but has been shown to be possible, with durable remission and a transition to a plateau phase (analogous to monoclonal gammopathy of uncertain significance/smoldering myeloma). In this review, two representative cases set the stage to illustrate how this might be possible and what still needs to be determined to achieve functional disease control over a prolonged period. Several developments have emerged, such as improved diagnostics including the definitions and use of SLiM-CRAB criteria and measurable residual disease (MRD) with whole-genome/single-cell sequencing as well as other correlates to better understand disease biology. These advances enable earlier detection, more accurate risk stratification and improved personalized treatment strategies by facilitating analysis of genetic alterations and clonal heterogeneity. Whole-genome sequencing may also identify driver mutations and modes of resistance to immunotherapies as well as other targeted therapies. Today, induction with a CD38 antibody, proteasome inhibitor, immunomodulatory drug, and dexamethasone, potentially followed by autologous stem cell transplantation and lenalidomide maintenance, can be considered standard of care for transplant-eligible (TE) patients with newly diagnosed MM (NDMM). That prolonged disease control and functional cure can be achieved in non-transplant-eligible (NTE) patients is currently emerging as a distinct possibility: data from phase III trials that incorporate a CD38 antibody into the treatment of NTE NDMM patients demonstrate impressive MRD negativity rates that appear sustained over several years. While the long-term durability of chimeric antigen receptor T cells, bi-specific antibodies and other immunotherapies are being evaluated, several clinical trials are now investigating their role in frontline treatment for TE and NTE patients. These trials will address whether chimeric antigen receptor T-cell therapy will replace autologous stem cell transplantation and whether such immunotherapies will represent a truly curative option. We conclude that while cure remains elusive, the concept of operational or functional cure provides a new benchmark to strive for and is an emerging area of active and potentially achievable clinical research for MM.
Collapse
Affiliation(s)
- Monika Engelhardt
- Department of Medicine I Hematology and Oncology, Medical Center University of Freiburg, Faculty of Medicine, Comprehensive Cancer Center Freiburg (CCCF).
| | - K Martin Kortüm
- Department of Medicine II, University Hospital of Würzburg, Würzburg
| | - Hartmut Goldschmidt
- University Hospital Heidelberg and the National Center for Tumor Diseases, Heidelberg
| | - Maximilian Merz
- Department of Hematology, Cell therapy and Hemostaseology, University Hospital Leipzig, Leipzig.
| |
Collapse
|
2
|
Testa U, Pelosi E, Castelli G, Leone G. Recent Advances in The Definition of the Molecular Alterations Occurring in Multiple Myeloma. Mediterr J Hematol Infect Dis 2024; 16:e2024062. [PMID: 38984097 PMCID: PMC11232684 DOI: 10.4084/mjhid.2024.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 06/19/2024] [Indexed: 07/11/2024] Open
Abstract
Multiple myeloma (MM) is a disorder of the monoclonal plasma cells and is the second most common hematologic malignancy. MM initiation and progression are dependent upon complex genomic abnormalities. The current pathogenic model of MM includes two types of primary events, represented by chromosome translocations or chromosome number alterations resulting in hyperdiploidy. These primary molecular events are observed both in MM and in monoclonal gammopathy, its premalignant precursor. Subsequent genetic events allow the progression of monoclonal gammopathy to MM and, together with primary events, contribute to the genetic complexity and heterogeneity of MM. Newer therapies have considerably improved patient outcomes; however, MM remains an incurable disease and most patients experience multiple relapses. The dramatic progresses achieved in the analysis of the heterogeneous molecular features of different MM patients allowed a comprehensive molecular classification of MM and the definition of an individualized prognostic model to predict an individual MM patient's response to different therapeutic options. Despite these progresses, prognostic models fail to identify a significant proportion of patients destined to early relapse. Treatment strategies are increasingly. Based on disease biology, trials are enriched for high-risk MMs, whose careful definition and categorization requires DNA sequencing studies.
Collapse
Affiliation(s)
- Ugo Testa
- Istituto Superiore di Sanità, Roma, Italy
| | | | | | - Giuseppe Leone
- Department of Radiological and Hematological Sciences, Catholic University, Rome, Italy
| |
Collapse
|
3
|
Morè S, Corvatta L, Manieri VM, Morsia E, Offidani M. The Challenging Approach to Multiple Myeloma: From Disease Diagnosis and Monitoring to Complications Management. Cancers (Basel) 2024; 16:2263. [PMID: 38927968 PMCID: PMC11202048 DOI: 10.3390/cancers16122263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/12/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
The outcome of multiple myeloma (MM) has significantly improved in the last few decades due to several factors such as new biological discoveries allowing to better stratify disease risk, development of more effective therapies and better management of side effects related to them. However, handling all these aspects requires an interdisciplinary approach involving multiple knowledge and collaboration of different specialists. The hematologist, faced with a patient with MM, must not only choose a treatment according to patient and disease characteristics but must also know when therapy needs to be started and how to monitor it during and after treatment. Moreover, he must deal not only with organ issues related to MM such as bone disease, renal failure or neurological disease but also with adverse events, often very serious, related to novel therapies, particularly new generation immunotherapies such as CAR T cell therapy and bispecific antibodies. In this review, we provide an overview on the newer MM diagnostic and monitoring strategies and on the main side effects of MM therapies, focusing on adverse events occurring during treatment with CAR T cells and bispecific antibodies.
Collapse
Affiliation(s)
- Sonia Morè
- Clinica di Ematologia Azienda Ospedaliero, Universitaria delle Marche, 60126 Ancona, Italy; (S.M.); (V.M.M.); (E.M.)
| | - Laura Corvatta
- U.O.C. Medicina, Ospedale Profili, 60044 Fabriano, Italy;
| | - Valentina Maria Manieri
- Clinica di Ematologia Azienda Ospedaliero, Universitaria delle Marche, 60126 Ancona, Italy; (S.M.); (V.M.M.); (E.M.)
| | - Erika Morsia
- Clinica di Ematologia Azienda Ospedaliero, Universitaria delle Marche, 60126 Ancona, Italy; (S.M.); (V.M.M.); (E.M.)
| | - Massimo Offidani
- Clinica di Ematologia Azienda Ospedaliero, Universitaria delle Marche, 60126 Ancona, Italy; (S.M.); (V.M.M.); (E.M.)
| |
Collapse
|
4
|
Quivoron C, Michot JM, Danu A, Lecourt H, Saada V, Saleh K, Vergé V, Cotteret S, Bernard OA, Ribrag V. Sensitivity, specificity, and accuracy of molecular profiling on circulating cell-free DNA in refractory or relapsed multiple myeloma patients, results of MM-EP1 study. Leuk Lymphoma 2024; 65:789-799. [PMID: 38433500 DOI: 10.1080/10428194.2024.2320258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/13/2024] [Indexed: 03/05/2024]
Abstract
As a promising alternative to bone marrow aspiration (BMA), mutational profiling on blood-derived circulating cell-free tumor DNA (cfDNA) is a harmless and simple technique to monitor molecular response and treatment resistance of patients with refractory/relapsed multiple myeloma (R/R MM). We evaluated the sensitivity and specificity of cfDNA compared to BMA CD138 positive myeloma plasma cells (PCs) in a series of 45 R/R MM patients using the 29-gene targeted panel (AmpliSeq) NGS. KRAS, NRAS, FAM46C, DIS3, and TP53 were the most frequently mutated genes. The average sensitivity and specificity of cfDNA detection were 65% and 97%, respectively. The concordance per gene between the two samples was good to excellent according to Cohen's κ coefficients interpretation. An increased number of mutations detected in cfDNA were associated with a decreased overall survival. In conclusion, we demonstrated cfDNA NGS analysis feasibility and accuracy in R/R MM patients who may benefit from early phase clinical trial.
Collapse
Affiliation(s)
- C Quivoron
- Translational Hematology Laboratory, AMMICa, INSERM US23/CNRS UAR3655, Gustave Roussy Cancer Campus, Villejuif, France
- INSERM U1170, Université Paris-Saclay, Gustave Roussy Cancer Campus, Villejuif, France
| | - J-M Michot
- INSERM U1170, Université Paris-Saclay, Gustave Roussy Cancer Campus, Villejuif, France
- Drug Development Department: Département d'Innovation Thérapeutique et d'Essais Précoces (DITEP), Gustave Roussy, Villejuif, France
| | - A Danu
- Hematology Department, Gustave Roussy, Villejuif, France
| | - H Lecourt
- Translational Hematology Laboratory, AMMICa, INSERM US23/CNRS UAR3655, Gustave Roussy Cancer Campus, Villejuif, France
| | - V Saada
- Department of Medical Biology and Pathology, Gustave Roussy, Villejuif, France
| | - K Saleh
- Hematology Department, Gustave Roussy, Villejuif, France
| | - V Vergé
- Department of Medical Biology and Pathology, Gustave Roussy, Villejuif, France
| | - S Cotteret
- Department of Medical Biology and Pathology, Gustave Roussy, Villejuif, France
| | - O A Bernard
- INSERM U1170, Université Paris-Saclay, Gustave Roussy Cancer Campus, Villejuif, France
| | - V Ribrag
- Translational Hematology Laboratory, AMMICa, INSERM US23/CNRS UAR3655, Gustave Roussy Cancer Campus, Villejuif, France
- INSERM U1170, Université Paris-Saclay, Gustave Roussy Cancer Campus, Villejuif, France
- Drug Development Department: Département d'Innovation Thérapeutique et d'Essais Précoces (DITEP), Gustave Roussy, Villejuif, France
- Hematology Department, Gustave Roussy, Villejuif, France
| |
Collapse
|