1
|
Alvarez MRS, Holmes XA, Oloumi A, Grijaldo-Alvarez SJ, Schindler R, Zhou Q, Yadlapati A, Silsirivanit A, Lebrilla CB. Integration of RNAseq transcriptomics and N-glycomics reveal biosynthetic pathways and predict structure-specific N-glycan expression. Chem Sci 2025; 16:7155-7172. [PMID: 40191131 PMCID: PMC11970275 DOI: 10.1039/d5sc00467e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Accepted: 03/20/2025] [Indexed: 04/09/2025] Open
Abstract
The processes involved in protein N-glycosylation represent new therapeutic targets for diseases but their stepwise and overlapping biosynthetic processes make it challenging to identify the specific glycogenes involved. In this work, we aimed to elucidate the interactions between glycogene expression and N-glycan abundance by constructing supervised machine-learning models for each N-glycan composition. Regression models were trained to predict N-glycan abundance (response variable) from glycogene expression (predictors) using paired LC-MS/MS N-glycomic and 3'-TagSeq transcriptomic datasets from cells derived from multiple tissue origins and treatment conditions. The datasets include cells from several tissue origins - B cell, brain, colon, lung, muscle, prostate - encompassing nearly 400 N-glycan compounds and over 160 glycogenes filtered from an 18 000-gene transcriptome. Accurate models (validation R 2 > 0.8) predicted N-glycan abundance across cell types, including GLC01 (lung cancer), CCD19-Lu (lung fibroblast), and Tib-190 (B cell). Model importance scores ranked glycogene contributions to N-glycan predictions, revealing significant glycogene associations with specific N-glycan types. The predictions were consistent across input cell quantities, unlike LC-MS/MS glycomics which showed inconsistent results. This suggests that the models can reliably predict N-glycosylation even in samples with low cell amounts and by extension, single-cell samples. These findings can provide insights into cellular N-glycosylation machinery, offering potential therapeutic strategies for diseases linked to aberrant glycosylation, such as cancer, and neurodegenerative and autoimmune disorders.
Collapse
Affiliation(s)
| | - Xavier A Holmes
- Department of Chemistry, University of California, Davis Davis California USA
| | - Armin Oloumi
- Department of Chemistry, University of California, Davis Davis California USA
| | | | - Ryan Schindler
- Department of Chemistry, University of California, Davis Davis California USA
| | - Qingwen Zhou
- Department of Chemistry, University of California, Davis Davis California USA
| | - Anirudh Yadlapati
- Department of Chemistry, University of California, Davis Davis California USA
| | - Atit Silsirivanit
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University Khon Kaen Thailand
| | - Carlito B Lebrilla
- Department of Chemistry, University of California, Davis Davis California USA
- Department of Chemistry, Biochemistry, Molecular, Cellular and Developmental Biology Graduate Group, University of California, Davis Davis California USA
| |
Collapse
|
2
|
Khorami-Sarvestani S, Hanash SM, Fahrmann JF, León-Letelier RA, Katayama H. Glycosylation in cancer as a source of biomarkers. Expert Rev Proteomics 2024; 21:345-365. [PMID: 39376081 DOI: 10.1080/14789450.2024.2409224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/12/2024] [Accepted: 09/17/2024] [Indexed: 10/09/2024]
Abstract
INTRODUCTION Glycosylation, the process of glycan synthesis and attachment to target molecules, is a crucial and common post-translational modification (PTM) in mammalian cells. It affects the protein's hydrophilicity, charge, solubility, structure, localization, function, and protection from proteolysis. Aberrant glycosylation in proteins can reveal new detection and therapeutic Glyco-biomarkers, which help to improve accurate early diagnosis and personalized treatment. This review underscores the pivotal role of glycans and glycoproteins as a source of biomarkers in human diseases, particularly cancer. AREAS COVERED This review delves into the implications of glycosylation, shedding light on its intricate roles in cancer-related cellular processes influencing biomarkers. It is underpinned by a thorough examination of literature up to June 2024 in PubMed, Scopus, and Google Scholar; concentrating on the terms: (Glycosylation[Title/Abstract]) OR (Glycan[Title/Abstract]) OR (glycoproteomics[Title/Abstract]) OR (Proteoglycans[Title/Abstract]) OR (Glycomarkers[Title/Abstract]) AND (Cancer[Title/Abstract]) AND ((Diagno*[Title/Abstract]) OR (Progno*[Title/Abstract])). EXPERT OPINION Glyco-biomarkers enhance early cancer detection, allow early intervention, and improve patient prognoses. However, the abundance and complex dynamic glycan structure may make their scientific and clinical application difficult. This exploration of glycosylation signatures in cancer biomarkers can provide a detailed view of cancer etiology and instill hope in the potential of glycosylation to revolutionize cancer research.
Collapse
Affiliation(s)
- Sara Khorami-Sarvestani
- Department of Clinical Cancer Prevention, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Samir M Hanash
- Department of Clinical Cancer Prevention, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Johannes F Fahrmann
- Department of Clinical Cancer Prevention, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ricardo A León-Letelier
- Department of Clinical Cancer Prevention, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hiroyuki Katayama
- Department of Clinical Cancer Prevention, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
3
|
He M, Zhou X, Wang X. Glycosylation: mechanisms, biological functions and clinical implications. Signal Transduct Target Ther 2024; 9:194. [PMID: 39098853 PMCID: PMC11298558 DOI: 10.1038/s41392-024-01886-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 05/25/2024] [Accepted: 06/07/2024] [Indexed: 08/06/2024] Open
Abstract
Protein post-translational modification (PTM) is a covalent process that occurs in proteins during or after translation through the addition or removal of one or more functional groups, and has a profound effect on protein function. Glycosylation is one of the most common PTMs, in which polysaccharides are transferred to specific amino acid residues in proteins by glycosyltransferases. A growing body of evidence suggests that glycosylation is essential for the unfolding of various functional activities in organisms, such as playing a key role in the regulation of protein function, cell adhesion and immune escape. Aberrant glycosylation is also closely associated with the development of various diseases. Abnormal glycosylation patterns are closely linked to the emergence of various health conditions, including cancer, inflammation, autoimmune disorders, and several other diseases. However, the underlying composition and structure of the glycosylated residues have not been determined. It is imperative to fully understand the internal structure and differential expression of glycosylation, and to incorporate advanced detection technologies to keep the knowledge advancing. Investigations on the clinical applications of glycosylation focused on sensitive and promising biomarkers, development of more effective small molecule targeted drugs and emerging vaccines. These studies provide a new area for novel therapeutic strategies based on glycosylation.
Collapse
Affiliation(s)
- Mengyuan He
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China
| | - Xiangxiang Zhou
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, 251006, China.
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China.
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, 251006, China.
- Taishan Scholars Program of Shandong Province, Jinan, Shandong, 250021, China.
- Branch of National Clinical Research Center for Hematologic Diseases, Jinan, Shandong, 250021, China.
| |
Collapse
|
4
|
Santisteban Celis IC, Matoba N. Lectibodies as antivirals. Antiviral Res 2024; 227:105901. [PMID: 38734211 DOI: 10.1016/j.antiviral.2024.105901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/02/2024] [Accepted: 05/05/2024] [Indexed: 05/13/2024]
Abstract
Growing concerns regarding the emergence of highly transmissible viral diseases highlight the urgent need to expand the repertoire of antiviral therapeutics. For this reason, new strategies for neutralizing and inhibiting these viruses are necessary. A promising approach involves targeting the glycans present on the surfaces of enveloped viruses. Lectins, known for their ability to recognize specific carbohydrate molecules, offer the potential for glycan-targeted antiviral strategies. Indeed, numerous studies have reported the antiviral effects of various lectins of both endogenous and exogenous origins. However, many lectins in their natural forms, are not suitable for use as antiviral therapeutics due to toxicity, other unfavorable pharmacological effects, and/or unreliable manufacturing sources. Therefore, improvements are crucial for employing lectins as effective antiviral therapeutics. A novel approach to enhance lectins' suitability as pharmaceuticals could be the generation of recombinant lectin-Fc fusion proteins, termed "lectibodies." In this review, we discuss the scientific rationale behind lectin-based antiviral strategies and explore how lectibodies could facilitate the development of new antiviral therapeutics. We will also share our perspective on the potential of these molecules to transcend their potential use as antiviral agents.
Collapse
Affiliation(s)
- Ian Carlosalberto Santisteban Celis
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA; Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, University of Louisville School of Medicine, Louisville, KY, USA
| | - Nobuyuki Matoba
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA; Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, University of Louisville School of Medicine, Louisville, KY, USA; UofL Health - Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, USA.
| |
Collapse
|
5
|
Balbisi M, Sugár S, Turiák L. Protein glycosylation in lung cancer from a mass spectrometry perspective. MASS SPECTROMETRY REVIEWS 2024. [PMID: 38576136 DOI: 10.1002/mas.21882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/27/2024] [Accepted: 03/23/2024] [Indexed: 04/06/2024]
Abstract
Lung cancer is a severe disease for which better diagnostic and therapeutic approaches are urgently needed. Increasing evidence implies that aberrant protein glycosylation plays a crucial role in the pathogenesis and progression of lung cancer. Differences in glycosylation patterns have been previously observed between healthy and cancerous samples as well as between different lung cancer subtypes, which suggests untapped diagnostic potential. In addition, understanding the changes mediated by glycosylation may shed light on possible novel therapeutic targets and personalized treatment strategies for lung cancer patients. Mass spectrometry based glycomics and glycoproteomics have emerged as powerful tools for in-depth characterization of changes in protein glycosylation, providing valuable insights into the molecular basis of lung cancer. This paper reviews the literature on the analysis of protein glycosylation in lung cancer using mass spectrometry, which is dominated by manuscripts published over the past 5 years. Studies analyzing N-glycosylation, O-glycosylation, and glycosaminoglycan patterns in tissue, serum, plasma, and rare biological samples of lung cancer patients are highlighted. The current knowledge on the potential utility of glycan and glycoprotein biomarkers is also discussed.
Collapse
Affiliation(s)
- Mirjam Balbisi
- MTA-TTK Lendület (Momentum) Glycan Biomarker Research Group, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
- Semmelweis University Doctoral School, Budapest, Hungary
| | - Simon Sugár
- MTA-TTK Lendület (Momentum) Glycan Biomarker Research Group, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
| | - Lilla Turiák
- MTA-TTK Lendület (Momentum) Glycan Biomarker Research Group, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
| |
Collapse
|
6
|
Zhou T, Yang M, Xiong W, Zhu F, Li Q, Zhao L, Zhao Z. The value of intratumoral and peritumoral radiomics features in differentiating early-stage lung invasive adenocarcinoma (≤3 cm) subtypes. Transl Cancer Res 2024; 13:202-216. [PMID: 38410219 PMCID: PMC10894356 DOI: 10.21037/tcr-23-1324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/29/2023] [Indexed: 02/28/2024]
Abstract
Background The identification of different subtypes of early-stage lung invasive adenocarcinoma before surgery contributes to the precision treatment. Radiomics could be one of the effective and noninvasive identification methods. The value of peritumoral radiomics in predicting the subtypes of early-stage lung invasive adenocarcinoma perhaps clinically useful. Methods This retrospective study included 937 lung adenocarcinomas which were randomly divided into the training set (n=655) and testing set (n=282) with a ratio of 7:3. This study used the univariate and multivariate analysis to choose independent clinical predictors. Radiomics features were extracted from 18 regions of interest (1 intratumoral region and 17 peritumoral regions). Independent and conjoint prediction models were constructed based on radiomics and clinical features. The performance of the models was evaluated using receiver operating characteristic (ROC) curves, accuracy (ACC), sensitivity (SEN), and specificity (SPE). Significant differences between areas under the ROC (AUCs) were estimated using in the Delong test. Results Patient age, smoking history, carcinoembryonic antigen (CEA), lesion location, length, width and clinic behavior were the independent predictors of differentiating early-stage lung invasive adenocarcinoma (≤3 cm) subtypes. The highest AUC value among the 19 independent models was obtained for the PTV0~+3 radiomics model with 0.849 for the training set and 0.854 for the testing set. As the peritumoral distance increased, the predictive power of the models decreased. The radiomics-clinical conjoint model was statistically significantly different from the other models in the Delong test (P<0.05). Conclusions The intratumoral and peritumoral regions contained a wealth of clinical information. The diagnostic efficacy of intra-peritumoral radiomics combined clinical model was further improved, which was particularly important for preoperative staging and treatment decision-making.
Collapse
Affiliation(s)
- Tong Zhou
- School of Medicine, Shaoxing University, Shaoxing, China
| | - Minxia Yang
- Department of Radiology, Shaoxing People’s Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, China
| | - Wanrong Xiong
- School of Medicine, Shaoxing University, Shaoxing, China
| | - Fandong Zhu
- Department of Radiology, Shaoxing People’s Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, China
| | - Qianling Li
- Department of Radiology, Shaoxing People’s Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, China
| | - Li Zhao
- Department of Radiology, Shaoxing People’s Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, China
| | - Zhenhua Zhao
- Department of Radiology, Shaoxing People’s Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, China
| |
Collapse
|