1
|
Tarantino S, Bianco A, Cascione M, Carlà A, Fiamà L, Di Corato R, Giotta L, Pellegrino P, Caricato AP, Rinaldi R, De Matteis V. Revolutionizing radiotherapy: gold nanoparticles with polyphenol coating as novel enhancers in breast cancer cells-an in vitro study. DISCOVER NANO 2025; 20:10. [PMID: 39812897 PMCID: PMC11735827 DOI: 10.1186/s11671-025-04186-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 01/08/2025] [Indexed: 01/16/2025]
Abstract
Breast cancer is the most common cancer among women, with over 1 million new cases and around 400,000 deaths annually worldwide. This makes it a significant and costly global health challenge. Standard treatments like chemotherapy and radiotherapy, often used after mastectomy, show varying effectiveness based on the cancer subtype. Combining these treatments can improve outcomes, though radiotherapy faces limitations such as radiation resistance and low selectivity for malignant cells. Nanotechnologies, especially metallic nanoparticles (NPs), hold promise for enhancing radiotherapy. Gold nanoparticles (AuNPs) are particularly notable due to their high atomic number, which enhances radiation damage through the photoelectric effect. Studies shown that AuNPs can act as effective radiosensitizers, improving tumor damage during radiotherapy increasing the local radiation dose delivered. Traditional AuNPs synthesis methods involve harmful chemicals and extreme conditions, posing health risks. Green synthesis methods using plant extracts offer a safer and more environmentally friendly alternative. This study investigates the synthesis of AuNPs using Laurus nobilis leaf extract and their potential as radiosensitizers in breast carcinoma cell lines (MCF-7). These cells were exposed to varying doses of X-ray irradiation, and the study assessed cell viability, morphological changes and DNA damage. The results showed that green-synthesized AuNPs significantly enhanced the therapeutic effects of radiotherapy at lower radiation doses, indicating their potential as a valuable addition to breast cancer treatment.
Collapse
Affiliation(s)
- Simona Tarantino
- Department of Mathematics and Physics "Ennio De Giorgi", University of Salento, Via Arnesano, 73100, Lecce, LE, Italy
| | - Annalisa Bianco
- Department of Mathematics and Physics "Ennio De Giorgi", University of Salento, Via Arnesano, 73100, Lecce, LE, Italy
| | - Mariafrancesca Cascione
- Department of Mathematics and Physics "Ennio De Giorgi", University of Salento, Via Arnesano, 73100, Lecce, LE, Italy
- Institute for Microelectronics and Microsystems (IMM), CNR, Via Monteroni, 73100, Lecce, Italy
| | - Alessandra Carlà
- Oncological Center, "Vito Fazzi" Hospital of Lecce, Piazza Filippo Muratore 1, 73100, Lecce, Italy
| | - Lia Fiamà
- Oncological Center, "Vito Fazzi" Hospital of Lecce, Piazza Filippo Muratore 1, 73100, Lecce, Italy
| | - Riccardo Di Corato
- Institute for Microelectronics and Microsystems (IMM), CNR, Via Monteroni, 73100, Lecce, Italy
- Center for Biomolecular Nanotechnologies, Istituto Italiano Di Tecnologia (IIT), 73010, Arnesano, Italy
| | - Livia Giotta
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via per Monteroni, 73100, Lecce, Italy
| | - Paolo Pellegrino
- Institute for Microelectronics and Microsystems (IMM), CNR, Via Monteroni, 73100, Lecce, Italy
| | - Anna Paola Caricato
- Department of Mathematics and Physics "Ennio De Giorgi", University of Salento, Via Arnesano, 73100, Lecce, LE, Italy
| | - Rosaria Rinaldi
- Department of Mathematics and Physics "Ennio De Giorgi", University of Salento, Via Arnesano, 73100, Lecce, LE, Italy
- Institute for Microelectronics and Microsystems (IMM), CNR, Via Monteroni, 73100, Lecce, Italy
| | - Valeria De Matteis
- Department of Mathematics and Physics "Ennio De Giorgi", University of Salento, Via Arnesano, 73100, Lecce, LE, Italy.
- Institute for Microelectronics and Microsystems (IMM), CNR, Via Monteroni, 73100, Lecce, Italy.
| |
Collapse
|
2
|
Park HY, Yu JH. Mitigation effect of hesperidin on X-ray radiation-induced intestinal barrier dysfunction in Caco-2 cell monolayers. Food Chem Toxicol 2024; 186:114549. [PMID: 38442786 DOI: 10.1016/j.fct.2024.114549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/18/2024] [Accepted: 02/25/2024] [Indexed: 03/07/2024]
Abstract
The tight junctions (TJs) and barrier function of the intestinal epithelium are highly sensitive to radiation. However, polyphenols can be used to reverse the effects of radiation. Here, we investigated the effects of hesperidin (hesperetin-7-rhamnoglucoside) on X-ray-induced intestinal barrier dysfunction in human epithelial Caco-2 monolayers. To examine whether hesperidin mitigated the effects of X-ray exposure (2 Gy), cell survival was evaluated and intestinal barrier function was assessed by measuring the transepithelial flux, apparent permeability coefficient (Papp), and barrier integrity. Hesperidin improved the survival of Caco-2 cell monolayers and attenuated X-ray exposure-induced intestinal barrier dysfunction. For fluorescein transport experiments, transepithelial flux and Papp of fluorescein in control group were significantly elevated by X-ray, but were restored to near control by 10 μM hesperidin pretreatment. Further, X-ray exposure decreased the barrier integrity and TJ interruption by reducing TJ-related proteins occludin and claudin-4, whereas cell monolayers pretreated with hesperidin before X-ray exposure were reinstated to control level. It was concluded that hesperidin treatment before X-ray exposure alleviated X-ray-induced intestinal barrier dysfunction through regulation of TJ-related proteins. These results indicate that hesperidin prevents and mitigates X-ray-induced intestinal barrier dysfunction.
Collapse
Affiliation(s)
- Ha-Young Park
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, 56212, Republic of Korea.
| | - Jin-Hee Yu
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, 56212, Republic of Korea
| |
Collapse
|
3
|
Prades-Sagarra E, Laarakker F, Dissy J, Lieuwes NG, Biemans R, Dubail M, Fouillade C, Yaromina A, Dubois LJ. Caffeic Acid Phenethyl Ester (CAPE), a natural polyphenol to increase the therapeutic window for lung adenocarcinomas. Radiother Oncol 2024; 190:110021. [PMID: 38000688 DOI: 10.1016/j.radonc.2023.110021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/16/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023]
Abstract
BACKGROUND AND PURPOSE Lung cancers are highly resistant to radiotherapy, necessitating the use of high doses, which leads to radiation toxicities such as radiation pneumonitis and fibrosis. Caffeic Acid Phenethyl Ester (CAPE) has been suggested to have anti-proliferative and pro-apoptotic effects in tumour cells, while radioprotective anti-inflammatory and anti-oxidant effects in the normal tissue. We investigated the radiosensitizing and radioprotective effects of CAPE in lung cancer cell lines and normal tissue in vitro and ex vivo, respectively. MATERIALS AND METHODS The cytotoxic and radiosensitizing effects of CAPE in lung cancer were investigated using viability and clonogenic survival assays. The radioprotective effects of CAPE were assessed in vitro and ex vivo using precision cut lung slices (PCLS). Potential underlying molecular mechanisms of CAPE focusing on cell cycle, cell metabolism, mitochondrial function and pro-inflammatory markers were investigated. RESULTS Treatment with CAPE decreased cell viability in a dose-dependent manner (IC50 57.6 ± 16.6 μM). Clonogenic survival assays showed significant radiosensitization by CAPE in lung adenocarcinoma lines (p < 0.05), while no differences were found in non-adenocarcinoma lines (p ≥ 0.13). Cell cycle analysis showed an increased S-phase (p < 0.05) after incubation with CAPE in the majority of cell lines. Metabolic profiling showed that CAPE shifted cellular respiration towards glycolysis (p < 0.01), together with mitochondrial membrane depolarization (p < 0.01). CAPE induced a decrease in NF-κB activity in adenocarcinomas and decreased pro-inflammatory gene expression in PCLS. CONCLUSION The combination of CAPE and radiotherapy may be a potentially effective approach to increase the therapeutic window in lung cancer patients.
Collapse
Affiliation(s)
- E Prades-Sagarra
- The M-Lab, Department of Precision Medicine, GROW - School for Oncology and Reproduction, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - F Laarakker
- The M-Lab, Department of Precision Medicine, GROW - School for Oncology and Reproduction, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - J Dissy
- The M-Lab, Department of Precision Medicine, GROW - School for Oncology and Reproduction, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - N G Lieuwes
- The M-Lab, Department of Precision Medicine, GROW - School for Oncology and Reproduction, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - R Biemans
- The M-Lab, Department of Precision Medicine, GROW - School for Oncology and Reproduction, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - M Dubail
- Institut Curie, Inserm U1021-CNRS UMR 3347, University Paris-Saclay, PSL University, Centre Universitaire, 91405 Orsay Cedex, France
| | - C Fouillade
- Institut Curie, Inserm U1021-CNRS UMR 3347, University Paris-Saclay, PSL University, Centre Universitaire, 91405 Orsay Cedex, France
| | - A Yaromina
- The M-Lab, Department of Precision Medicine, GROW - School for Oncology and Reproduction, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - L J Dubois
- The M-Lab, Department of Precision Medicine, GROW - School for Oncology and Reproduction, Maastricht University, 6229 ER Maastricht, The Netherlands.
| |
Collapse
|