1
|
Zhang J, Li G, Wu R, Shi L, Tian C, Jiang H, Che H, Jiang Y, Jin Z, Yu R, Liu X, Zhang X. The m6A RNA demethylase FTO promotes radioresistance and stemness maintenance of glioma stem cells. Cell Signal 2025; 132:111782. [PMID: 40185350 DOI: 10.1016/j.cellsig.2025.111782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 03/09/2025] [Accepted: 03/30/2025] [Indexed: 04/07/2025]
Abstract
Glioblastoma (GBM) was the most common and deadliest malignant brain tumor in adults, with a poor prognosis. Effective targeted drugs are still lacking, and the presence of glioblastoma stem cells (GSC) is a major factor contributing to radiotherapy resistance. Screening for targeted drugs that can sensitize GBM to radiotherapy is crucial. FTO is considered an attractive potential target for tumor therapy, as it mediates m6A demethylation to regulate the stability of target genes. In this study, we evaluated the role of FTO inhibition in promoting the sensitivity of GSC cells to radiotherapy through tumor sphere formation assays, cell apoptosis assays, and in situ GSC tumor models. We preliminarily explored the molecular mechanisms by transcriptome sequencing and m6A methylation sequencing to investigate how inhibiting FTO increases radiotherapy sensitivity. The results showed that downregulation of FTO expression or FTO inhibitor FB23-2 combined with radiotherapy significantly inhibited GSC cell proliferation and self-renewal and increased apoptosis. FB23-2 combined with radiotherapy effectively inhibited intracranial tumor growth in mice and prolonged the survival of tumor-bearing mice. Furthermore, FTO inhibition sustained the increase of γH2AX expression induced by radiotherapy while decreasing Rad51 expression. Importantly, we found that inhibiting FTO could increase m6A methylation modification of VEGFA, thereby downregulating both mRNA and protein expression of VEGFA. Our findings provide a new therapeutic strategy for enhancing GBM radiotherapy sensitivity and lay the theoretical and experimental groundwork for clinical trials targeting FTO.
Collapse
Affiliation(s)
- Junhao Zhang
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of Neurosurgery, Xinxiang Central Hospital, Xinxiang 453003, Henan, China
| | - Guoxi Li
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Runqiu Wu
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Lin Shi
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of General Surgery, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Cong Tian
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Hongyan Jiang
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Hongyu Che
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yongang Jiang
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zhiyong Jin
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Rutong Yu
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Xuejiao Liu
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Xu Zhang
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
| |
Collapse
|
2
|
Kampers LFC, Metselaar DS, Vinci M, Scirocchi F, Veldhuijzen van Zanten S, Eyrich M, Biassoni V, Hulleman E, Karremann M, Stücker W, Van Gool SW. The Complexity of Malignant Glioma Treatment. Cancers (Basel) 2025; 17:879. [PMID: 40075726 PMCID: PMC11899524 DOI: 10.3390/cancers17050879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/24/2025] [Accepted: 02/28/2025] [Indexed: 03/14/2025] Open
Abstract
Malignant glioma is a highly aggressive, therapeutically non-responsive, and deadly disease with a unique tumor microenvironment (TME). Of the 14 currently recognized and described cancer hallmarks, five are especially implicated in malignant glioma and targetable with repurposed drugs: cancer stem-like cells, in general, and glioma stem-like cells in particular (GSCs), vascularization and hypoxia, metabolic reprogramming, tumor-promoting inflammation and sustained proliferative signaling. Each hallmark drives malignant glioma development, both individually and through interactions with other hallmarks, in which the TME plays a critical role. To combat the aggressive malignant glioma spatio-temporal heterogeneity driven by TME interactions, and to overcome its therapeutic challenges, a combined treatment strategy including anticancer therapies, repurposed drugs and multimodal immunotherapy should be the aim for future treatment approaches.
Collapse
Affiliation(s)
| | - Dennis S. Metselaar
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (D.S.M.); (S.V.v.Z.); (E.H.)
- Hopp Children’s Cancer Center Heidelberg (KiTZ), 69120 Heidelberg, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- German Consortium (DKTK), 69120 Heidelberg, Germany
| | - Maria Vinci
- Bambino Gesu’ Children’s Hospital-IRCCS, 00165 Rome, RM, Italy; (M.V.); (F.S.)
| | - Fabio Scirocchi
- Bambino Gesu’ Children’s Hospital-IRCCS, 00165 Rome, RM, Italy; (M.V.); (F.S.)
| | - Sophie Veldhuijzen van Zanten
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (D.S.M.); (S.V.v.Z.); (E.H.)
- Department of Radiology & Nuclear Medicine, Erasmus MC—University Medical Centre Rotterdam, 3015 GD Rotterdam, The Netherlands
- Brain Tumour Centre, Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands
| | | | - Veronica Biassoni
- Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milano, MI, Italy;
| | - Esther Hulleman
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (D.S.M.); (S.V.v.Z.); (E.H.)
| | | | - Wilfried Stücker
- Immun-Onkologisches Zentrum Köln, 50674 Köln, Germany; (L.F.C.K.); (W.S.)
| | | |
Collapse
|
3
|
Sandhanam K, Tamilanban T, Bhattacharjee B, Manasa K. Exploring miRNA therapies and gut microbiome-enhanced CAR-T cells: advancing frontiers in glioblastoma stem cell targeting. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:2169-2207. [PMID: 39382681 DOI: 10.1007/s00210-024-03479-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 09/20/2024] [Indexed: 10/10/2024]
Abstract
Glioblastoma multiforme (GBM) presents a formidable challenge in oncology due to its aggressive nature and resistance to conventional treatments. Recent advancements propose a novel therapeutic strategy combining microRNA-based therapies, chimeric antigen receptor-T (CAR-T) cells, and gut microbiome modulation to target GBM stem cells and transform cancer treatment. MicroRNA therapies show promise in regulating key signalling pathways implicated in GBM progression, offering the potential to disrupt GBM stem cell renewal. CAR-T cell therapy, initially successful in blood cancers, is being adapted to target GBM by genetically engineering T cells to recognise and eliminate GBM stem cell-specific antigens. Despite early successes, challenges like the immunosuppressive tumour microenvironment persist. Additionally, recent research has uncovered a link between the gut microbiome and GBM, suggesting that gut dysbiosis can influence systemic inflammation and immune responses. Novel strategies to modulate the gut microbiome are emerging, enhancing the efficacy of microRNA therapies and CAR-T cell treatments. This combined approach highlights the synergistic potential of these innovative therapies in GBM treatment, aiming to eradicate primary tumours and prevent recurrence, thereby improving patient prognosis and quality of life. Ongoing research and clinical trials are crucial to fully exploit this promising frontier in GBM therapy, offering hope to patients grappling with this devastating disease.
Collapse
Affiliation(s)
- K Sandhanam
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Chengalpattu, 603203, Tamil Nadu, India
| | - T Tamilanban
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Chengalpattu, 603203, Tamil Nadu, India.
| | - Bedanta Bhattacharjee
- Department of Pharmacology, Girijananda Chowdhury University-Tezpur Campus, 784501, Assam, India
| | - K Manasa
- Department of Pharmacology, MNR College of Pharmacy, Sangareddy, 502294, Telangana, India
| |
Collapse
|
4
|
Yadav VK, Sharma S, Maurya S, Singh RK, Saini J, Jain P, Patir R, Ahlawat S, Das S, Vaishya S, Agarwal S, Singh A, Gupta RK. Presence of Fragmented Intratumoral Thrombosed Microvasculature in the Necrotic and Peri-Necrotic Regions on SWI Differentiates IDH Wild-Type Glioblastoma From IDH Mutant Grade 4 Astrocytoma. J Magn Reson Imaging 2025. [PMID: 39781627 DOI: 10.1002/jmri.29695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/13/2024] [Accepted: 12/14/2024] [Indexed: 01/12/2025] Open
Abstract
BACKGROUND Isocitrate dehydrogenase (IDH) wild-type (IDHwt) glioblastomas (GB) are more aggressive and have a poorer prognosis than IDH mutant (IDHmt) tumors, emphasizing the need for accurate preoperative differentiation. However, a distinct imaging biomarker for differentiation mostly lacking. Intratumoral thrombosis has been reported as a histopathological biomarker for GB. PURPOSE To evaluate the fragmented intratumoral thrombosed microvasculature (FTV) signs on susceptibility-weighted imaging (SWI) for distinguishing IDHwt and IDHmt tumors. STUDY TYPE Retrospective. SUBJECTS Ninety-seven treatment-naïve patients with histopathologically confirmed IDHwt GB (54 males, 26 females) and IDHmt grade 4 astrocytoma (13 males, 4 females). FIELD STRENGTH/SEQUENCE 3-T, SWI, fluid-attenuated-inversion-recovery (FLAIR), T1-weighted, T2-weighted, PD-weighted, post-contrast T1-weighted and dynamic-contrast-enhanced (DCE)-MRI. ASSESSMENT SWI data were evaluated by three experienced neuroradiologists (S.S., 11 years; J.S., 15 years; R.K.G., 40 years of experience), who assessed FTV presence in necrotic and peri-necrotic regions. FTV was identified as intratumoral susceptibility signal having minimal or no interslice connections. Quantitative DCE-MRI parameters were derived using first-pass-analysis and extended Tofts model. FLAIR abnormal, contrast-enhancing, and necrotic regions were segmented using in-house developed U-Net architecture. STATISTICAL TESTS Fleiss' Kappa, Cohen's Kappa, Shapiro-Wilk test, t tests or Mann-Whitney U test, receiver-operating characteristic (ROC) analysis, confusion matrix. A P-value <0.05 was considered statistically significant. RESULTS Fleiss' kappa test provided 91% inter-rater agreement, and Cohen's kappa provided intrarater agreement ranged from 81% to 97%. The raters' accuracy in distinguishing IDHwt from IDHmt ranged from 92% to 94%. Some of the quantitative DCE-MRI parameters (CBV, Ve, and Ktrans) provided statistically significant differences in differentiating IDHwt and IDHmt. Ktrans demonstrated 80.3% sensitivity and 81.2% specificity, with ROC analysis showing an AUC of 0.77. DATA CONCLUSION FTV signs in necrotic and peri-necrotic regions on SWI demonstrated a high accuracy in distinguishing IDHwt from IDHmt. Qualitative assessment of FTV signs showed almost perfect inter-rater and intrarater agreement. Quantitative DCE-MRI metrics also showed statistically significant differentiation of IDHwt and IDHmt. PLAIN LANGUAGE SUMMARY This study demonstrates that preoperative imaging, particularly the visualization of the fragmented thrombosed vasculature (FTV) sign on susceptibility-weighted imaging (SWI), effectively differentiates isocitrate dehydrogenase (IDH) wild-type (IDHwt) glioblastoma (GB) from IDH mutant (IDHmt) grade 4 astrocytomas. Over 90% of IDHwt GB patients displayed the FTV sign, a specific imaging biomarker absent in IDHmt cases. Perfusion parameters such as cerebral blood volume, Ve, and Ktrans were elevated in IDHwt gliomas, reflecting distinct vascular profiles. SWI offers a noninvasive and accurate diagnostic method, overcoming limitations of histopathology. Despite limitations like unequal sample sizes and retrospective analysis, this study underscores the clinical potential of SWI in improving glioma characterization and aiding treatment planning. LEVEL OF EVIDENCE 4 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Virendra Kumar Yadav
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - Shalini Sharma
- Department of Radiology, Fortis Memorial Research Institute, Gurugram, India
| | - Satyajit Maurya
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - Rakesh K Singh
- Department of Radiology, Fortis Memorial Research Institute, Gurugram, India
| | - Jitendra Saini
- Department of the Neuroimaging and Interventional Radiology, NIMHANS, Bengaluru, India
| | - Preeti Jain
- Department of Pathology, Agilus-Fortis Memorial Research Institute, Gurugram, India
| | - Rana Patir
- Department of Neurosurgery, Fortis Memorial Research Institute, Gurugram, India
| | - Sunita Ahlawat
- Department of Pathology, Agilus-Fortis Memorial Research Institute, Gurugram, India
| | - Sumanta Das
- Department of the Neuroimaging and Interventional Radiology, NIMHANS, Bengaluru, India
| | - Sandeep Vaishya
- Department of Neurosurgery, Fortis Memorial Research Institute, Gurugram, India
| | - Sumeet Agarwal
- Department of Electrical Engineering, Indian Institute of Technology Delhi, New Delhi, India
- Yardi School of Artificial Intelligence, Indian Institute of Technology Delhi, New Delhi, India
| | - Anup Singh
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi, India
- Yardi School of Artificial Intelligence, Indian Institute of Technology Delhi, New Delhi, India
| | - Rakesh K Gupta
- Department of Radiology, Fortis Memorial Research Institute, Gurugram, India
| |
Collapse
|
5
|
Mengistu BA, Tsegaw T, Demessie Y, Getnet K, Bitew AB, Kinde MZ, Beirhun AM, Mebratu AS, Mekasha YT, Feleke MG, Fenta MD. Comprehensive review of drug resistance in mammalian cancer stem cells: implications for cancer therapy. Cancer Cell Int 2024; 24:406. [PMID: 39695669 DOI: 10.1186/s12935-024-03558-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 11/04/2024] [Indexed: 12/20/2024] Open
Abstract
Cancer remains a significant global challenge, and despite the numerous strategies developed to advance cancer therapy, an effective cure for metastatic cancer remains elusive. A major hurdle in treatment success is the ability of cancer cells, particularly cancer stem cells (CSCs), to resist therapy. These CSCs possess unique abilities, including self-renewal, differentiation, and repair, which drive tumor progression and chemotherapy resistance. The resilience of CSCs is linked to certain signaling pathways. Tumors with pathway-dependent CSCs often develop genetic resistance, whereas those with pathway-independent CSCs undergo epigenetic changes that affect gene regulation. CSCs can evade cytotoxic drugs, radiation, and apoptosis by increasing drug efflux transporter activity and activating survival mechanisms. Future research should prioritize the identification of new biomarkers and signaling molecules to better understand drug resistance. The use of cutting-edge approaches, such as bioinformatics, genomics, proteomics, and nanotechnology, offers potential solutions to this challenge. Key strategies include developing targeted therapies, employing nanocarriers for precise drug delivery, and focusing on CSC-targeted pathways such as the Wnt, Notch, and Hedgehog pathways. Additionally, investigating multitarget inhibitors, immunotherapy, and nanodrug delivery systems is critical for overcoming drug resistance in cancer cells.
Collapse
Affiliation(s)
- Bemrew Admassu Mengistu
- Department of Biomedical Sciences, College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia.
| | - Tirunesh Tsegaw
- Department of Biomedical Sciences, College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia
| | - Yitayew Demessie
- Department of Biomedical Sciences, College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia
| | - Kalkidan Getnet
- Department of Veterinary Epidemiology and Public Health, College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia
| | - Abebe Belete Bitew
- Department of Veterinary Epidemiology and Public Health, College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia
| | - Mebrie Zemene Kinde
- Department of Biomedical Sciences, College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia
| | - Asnakew Mulaw Beirhun
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia
| | - Atsede Solomon Mebratu
- Department of Veterinary Pharmacy, College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia
| | - Yesuneh Tefera Mekasha
- Department of Veterinary Pharmacy, College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia
| | - Melaku Getahun Feleke
- Department of Veterinary Pharmacy, College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia
| | - Melkie Dagnaw Fenta
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine and Animal Science, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
6
|
Bou-Gharios J, Noël G, Burckel H. The neglected burden of chronic hypoxia on the resistance of glioblastoma multiforme to first-line therapies. BMC Biol 2024; 22:278. [PMID: 39609830 PMCID: PMC11603919 DOI: 10.1186/s12915-024-02075-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 11/21/2024] [Indexed: 11/30/2024] Open
Abstract
Glioblastoma multiforme (GBM) is the most common adult primary brain tumor. The standard of care involves maximal surgery followed by radiotherapy and concomitant chemotherapy with temozolomide (TMZ), in addition to adjuvant TMZ. However, the recurrence rate of GBM within 1-2 years post-diagnosis is still elevated and has been attributed to the accumulation of multiple factors including the heterogeneity of GBM, genomic instability, angiogenesis, and chronic tumor hypoxia. Tumor hypoxia activates downstream signaling pathways involved in the adaptation of GBM to the newly oxygen-deprived environment, thereby contributing to the resistance and recurrence phenomena, despite the multimodal therapeutic approach used to eradicate the tumor. Therefore, in this review, we will focus on the development and implication of chronic or limited-diffusion hypoxia in tumor persistence through genetic and epigenetic modifications. Then, we will detail the hypoxia-induced activation of vital biological pathways and mechanisms that contribute to GBM resistance. Finally, we will discuss a proteomics-based approach to encourage the implication of personalized GBM treatments based on a hypoxia signature.
Collapse
Affiliation(s)
- Jolie Bou-Gharios
- Institut de Cancérologie Strasbourg Europe (ICANS), Radiobiology Laboratory, 3 Rue de La Porte de L'Hôpital, Strasbourg, 67000, France
- Laboratory of Engineering, Informatics and Imaging (ICube), UMR 7357, Integrative Multimodal Imaging in Healthcare (IMIS), University of Strasbourg, 4 Rue Kirschleger, Strasbourg, 67000, France
| | - Georges Noël
- Institut de Cancérologie Strasbourg Europe (ICANS), Radiobiology Laboratory, 3 Rue de La Porte de L'Hôpital, Strasbourg, 67000, France
- Laboratory of Engineering, Informatics and Imaging (ICube), UMR 7357, Integrative Multimodal Imaging in Healthcare (IMIS), University of Strasbourg, 4 Rue Kirschleger, Strasbourg, 67000, France
- Institut de Cancérologie Strasbourg Europe (ICANS), Department of Radiation Oncology, UNICANCER, 17 Rue Albert Calmette, Strasbourg, 67200, France
| | - Hélène Burckel
- Institut de Cancérologie Strasbourg Europe (ICANS), Radiobiology Laboratory, 3 Rue de La Porte de L'Hôpital, Strasbourg, 67000, France.
- Laboratory of Engineering, Informatics and Imaging (ICube), UMR 7357, Integrative Multimodal Imaging in Healthcare (IMIS), University of Strasbourg, 4 Rue Kirschleger, Strasbourg, 67000, France.
| |
Collapse
|
7
|
Trevisi G, Mangiola A. Editorial for Special Issue "Brain Tumor Microenvironment". Cancers (Basel) 2024; 16:3864. [PMID: 39594818 PMCID: PMC11592977 DOI: 10.3390/cancers16223864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
The tumor microenvironment (TME) is a complex interplay of cells, extracellular matrix, and signaling molecules that significantly influences tumor growth, invasion, and resistance to therapy [...].
Collapse
Affiliation(s)
- Gianluca Trevisi
- Department of Neurosciences, Imaging and Clinical Sciences, G. D’Annunzio University Chieti-Pescara, 66100 Chieti, Italy
- Neurosurgical Unit, Ospedale Spirito Santo, 65122 Pescara, Italy
| | - Annunziato Mangiola
- Department of Neurosciences, Imaging and Clinical Sciences, G. D’Annunzio University Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
8
|
Alberti G, Amico MD, Caruso Bavisotto C, Rappa F, Marino Gammazza A, Bucchieri F, Cappello F, Scalia F, Szychlinska MA. Speeding up Glioblastoma Cancer Research: Highlighting the Zebrafish Xenograft Model. Int J Mol Sci 2024; 25:5394. [PMID: 38791432 PMCID: PMC11121320 DOI: 10.3390/ijms25105394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/07/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
Glioblastoma multiforme (GBM) is a very aggressive and lethal primary brain cancer in adults. The multifaceted nature of GBM pathogenesis, rising from complex interactions between cells and the tumor microenvironment (TME), has posed great treatment challenges. Despite significant scientific efforts, the prognosis for GBM remains very poor, even after intensive treatment with surgery, radiation, and chemotherapy. Efficient GBM management still requires the invention of innovative treatment strategies. There is a strong necessity to complete cancer in vitro studies and in vivo studies to properly evaluate the mechanisms of tumor progression within the complex TME. In recent years, the animal models used to study GBM tumors have evolved, achieving highly invasive GBM models able to provide key information on the molecular mechanisms of GBM onset. At present, the most commonly used animal models in GBM research are represented by mammalian models, such as mouse and canine ones. However, the latter present several limitations, such as high cost and time-consuming management, making them inappropriate for large-scale anticancer drug evaluation. In recent years, the zebrafish (Danio rerio) model has emerged as a valuable tool for studying GBM. It has shown great promise in preclinical studies due to numerous advantages, such as its small size, its ability to generate a large cohort of genetically identical offspring, and its rapid development, permitting more time- and cost-effective management and high-throughput drug screening when compared to mammalian models. Moreover, due to its transparent nature in early developmental stages and genetic and anatomical similarities with humans, it allows for translatable brain cancer research and related genetic screening and drug discovery. For this reason, the aim of the present review is to highlight the potential of relevant transgenic and xenograft zebrafish models and to compare them to the traditionally used animal models in GBM research.
Collapse
Affiliation(s)
- Giusi Alberti
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (G.A.); (M.D.A.); (C.C.B.); (F.R.); (A.M.G.); (F.B.); (F.C.); (F.S.)
| | - Maria Denise Amico
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (G.A.); (M.D.A.); (C.C.B.); (F.R.); (A.M.G.); (F.B.); (F.C.); (F.S.)
| | - Celeste Caruso Bavisotto
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (G.A.); (M.D.A.); (C.C.B.); (F.R.); (A.M.G.); (F.B.); (F.C.); (F.S.)
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| | - Francesca Rappa
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (G.A.); (M.D.A.); (C.C.B.); (F.R.); (A.M.G.); (F.B.); (F.C.); (F.S.)
- The Institute of Translational Pharmacology, National Research Council of Italy (CNR), 90146 Palermo, Italy
| | - Antonella Marino Gammazza
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (G.A.); (M.D.A.); (C.C.B.); (F.R.); (A.M.G.); (F.B.); (F.C.); (F.S.)
| | - Fabio Bucchieri
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (G.A.); (M.D.A.); (C.C.B.); (F.R.); (A.M.G.); (F.B.); (F.C.); (F.S.)
| | - Francesco Cappello
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (G.A.); (M.D.A.); (C.C.B.); (F.R.); (A.M.G.); (F.B.); (F.C.); (F.S.)
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| | - Federica Scalia
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (G.A.); (M.D.A.); (C.C.B.); (F.R.); (A.M.G.); (F.B.); (F.C.); (F.S.)
| | - Marta Anna Szychlinska
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, 90127 Palermo, Italy
| |
Collapse
|
9
|
Obrador E, Moreno-Murciano P, Oriol-Caballo M, López-Blanch R, Pineda B, Gutiérrez-Arroyo JL, Loras A, Gonzalez-Bonet LG, Martinez-Cadenas C, Estrela JM, Marqués-Torrejón MÁ. Glioblastoma Therapy: Past, Present and Future. Int J Mol Sci 2024; 25:2529. [PMID: 38473776 PMCID: PMC10931797 DOI: 10.3390/ijms25052529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/10/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
Glioblastoma (GB) stands out as the most prevalent and lethal form of brain cancer. Although great efforts have been made by clinicians and researchers, no significant improvement in survival has been achieved since the Stupp protocol became the standard of care (SOC) in 2005. Despite multimodality treatments, recurrence is almost universal with survival rates under 2 years after diagnosis. Here, we discuss the recent progress in our understanding of GB pathophysiology, in particular, the importance of glioma stem cells (GSCs), the tumor microenvironment conditions, and epigenetic mechanisms involved in GB growth, aggressiveness and recurrence. The discussion on therapeutic strategies first covers the SOC treatment and targeted therapies that have been shown to interfere with different signaling pathways (pRB/CDK4/RB1/P16ink4, TP53/MDM2/P14arf, PI3k/Akt-PTEN, RAS/RAF/MEK, PARP) involved in GB tumorigenesis, pathophysiology, and treatment resistance acquisition. Below, we analyze several immunotherapeutic approaches (i.e., checkpoint inhibitors, vaccines, CAR-modified NK or T cells, oncolytic virotherapy) that have been used in an attempt to enhance the immune response against GB, and thereby avoid recidivism or increase survival of GB patients. Finally, we present treatment attempts made using nanotherapies (nanometric structures having active anti-GB agents such as antibodies, chemotherapeutic/anti-angiogenic drugs or sensitizers, radionuclides, and molecules that target GB cellular receptors or open the blood-brain barrier) and non-ionizing energies (laser interstitial thermal therapy, high/low intensity focused ultrasounds, photodynamic/sonodynamic therapies and electroporation). The aim of this review is to discuss the advances and limitations of the current therapies and to present novel approaches that are under development or following clinical trials.
Collapse
Affiliation(s)
- Elena Obrador
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
| | - Paz Moreno-Murciano
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
| | - María Oriol-Caballo
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
| | - Rafael López-Blanch
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
| | - Begoña Pineda
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
| | - Julia Lara Gutiérrez-Arroyo
- Department of Medicine, Jaume I University of Castellon, 12071 Castellon, Spain; (J.L.G.-A.); (A.L.); (C.M.-C.)
| | - Alba Loras
- Department of Medicine, Jaume I University of Castellon, 12071 Castellon, Spain; (J.L.G.-A.); (A.L.); (C.M.-C.)
| | - Luis G. Gonzalez-Bonet
- Department of Neurosurgery, Castellon General University Hospital, 12004 Castellon, Spain;
| | - Conrado Martinez-Cadenas
- Department of Medicine, Jaume I University of Castellon, 12071 Castellon, Spain; (J.L.G.-A.); (A.L.); (C.M.-C.)
| | - José M. Estrela
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
- Department of Physiology, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Spain
| | | |
Collapse
|
10
|
Pucci G, Minafra L, Bravatà V, Calvaruso M, Turturici G, Cammarata FP, Savoca G, Abbate B, Russo G, Cavalieri V, Forte GI. Glut-3 Gene Knockdown as a Potential Strategy to Overcome Glioblastoma Radioresistance. Int J Mol Sci 2024; 25:2079. [PMID: 38396757 PMCID: PMC10889562 DOI: 10.3390/ijms25042079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
The hypoxic pattern of glioblastoma (GBM) is known to be a primary cause of radioresistance. Our study explored the possibility of using gene knockdown of key factors involved in the molecular response to hypoxia, to overcome GBM radioresistance. We used the U87 cell line subjected to chemical hypoxia generated by CoCl2 and exposed to 2 Gy of X-rays, as single or combined treatments, and evaluated gene expression changes of biomarkers involved in the Warburg effect, cell cycle control, and survival to identify the best molecular targets to be knocked-down, among those directly activated by the HIF-1α transcription factor. By this approach, glut-3 and pdk-1 genes were chosen, and the effects of their morpholino-induced gene silencing were evaluated by exploring the proliferative rates and the molecular modifications of the above-mentioned biomarkers. We found that, after combined treatments, glut-3 gene knockdown induced a greater decrease in cell proliferation, compared to pdk-1 gene knockdown and strong upregulation of glut-1 and ldha, as a sign of cell response to restore the anaerobic glycolysis pathway. Overall, glut-3 gene knockdown offered a better chance of controlling the anaerobic use of pyruvate and a better proliferation rate reduction, suggesting it is a suitable silencing target to overcome radioresistance.
Collapse
Affiliation(s)
- Gaia Pucci
- Institute of Molecular Bioimaging and Physiology (IBFM)-National Research Council (CNR), Cefalù Secondary Site, C/da Pietrapollastra-Pisciotto, 90015 Cefalù, Italy; (G.P.); (V.B.); (M.C.); (F.P.C.); (G.R.); (G.I.F.)
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STeBiCeF), University of Palermo, Viale delle Scienze Bld.17, 90128 Palermo, Italy;
| | - Luigi Minafra
- Institute of Molecular Bioimaging and Physiology (IBFM)-National Research Council (CNR), Cefalù Secondary Site, C/da Pietrapollastra-Pisciotto, 90015 Cefalù, Italy; (G.P.); (V.B.); (M.C.); (F.P.C.); (G.R.); (G.I.F.)
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STeBiCeF), University of Palermo, Viale delle Scienze Bld.17, 90128 Palermo, Italy;
| | - Valentina Bravatà
- Institute of Molecular Bioimaging and Physiology (IBFM)-National Research Council (CNR), Cefalù Secondary Site, C/da Pietrapollastra-Pisciotto, 90015 Cefalù, Italy; (G.P.); (V.B.); (M.C.); (F.P.C.); (G.R.); (G.I.F.)
| | - Marco Calvaruso
- Institute of Molecular Bioimaging and Physiology (IBFM)-National Research Council (CNR), Cefalù Secondary Site, C/da Pietrapollastra-Pisciotto, 90015 Cefalù, Italy; (G.P.); (V.B.); (M.C.); (F.P.C.); (G.R.); (G.I.F.)
| | - Giuseppina Turturici
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STeBiCeF), University of Palermo, Viale delle Scienze Bld.17, 90128 Palermo, Italy;
| | - Francesco P. Cammarata
- Institute of Molecular Bioimaging and Physiology (IBFM)-National Research Council (CNR), Cefalù Secondary Site, C/da Pietrapollastra-Pisciotto, 90015 Cefalù, Italy; (G.P.); (V.B.); (M.C.); (F.P.C.); (G.R.); (G.I.F.)
| | - Gaetano Savoca
- Radiation Oncology, ARNAS-Civico Hospital, 90100 Palermo, Italy; (G.S.); (B.A.)
| | - Boris Abbate
- Radiation Oncology, ARNAS-Civico Hospital, 90100 Palermo, Italy; (G.S.); (B.A.)
| | - Giorgio Russo
- Institute of Molecular Bioimaging and Physiology (IBFM)-National Research Council (CNR), Cefalù Secondary Site, C/da Pietrapollastra-Pisciotto, 90015 Cefalù, Italy; (G.P.); (V.B.); (M.C.); (F.P.C.); (G.R.); (G.I.F.)
| | - Vincenzo Cavalieri
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STeBiCeF), University of Palermo, Viale delle Scienze Bld.17, 90128 Palermo, Italy;
| | - Giusi I. Forte
- Institute of Molecular Bioimaging and Physiology (IBFM)-National Research Council (CNR), Cefalù Secondary Site, C/da Pietrapollastra-Pisciotto, 90015 Cefalù, Italy; (G.P.); (V.B.); (M.C.); (F.P.C.); (G.R.); (G.I.F.)
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STeBiCeF), University of Palermo, Viale delle Scienze Bld.17, 90128 Palermo, Italy;
| |
Collapse
|
11
|
Ahmed YB, Ababneh OE, Al-Khalili AA, Serhan A, Hatamleh Z, Ghammaz O, Alkhaldi M, Alomari S. Identification of Hypoxia Prognostic Signature in Glioblastoma Multiforme Based on Bulk and Single-Cell RNA-Seq. Cancers (Basel) 2024; 16:633. [PMID: 38339384 PMCID: PMC10854729 DOI: 10.3390/cancers16030633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/23/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024] Open
Abstract
Glioblastoma (GBM) represents a profoundly aggressive and heterogeneous brain neoplasm linked to a bleak prognosis. Hypoxia, a common feature in GBM, has been linked to tumor progression and therapy resistance. In this study, we aimed to identify hypoxia-related differentially expressed genes (DEGs) and construct a prognostic signature for GBM patients using multi-omics analysis. Patient cohorts were collected from publicly available databases, including the Gene Expression Omnibus (GEO), the Chinese Glioma Genome Atlas (CGGA), and The Cancer Genome Atlas-Glioblastoma Multiforme (TCGA-GBM), to facilitate a comprehensive analysis. Hypoxia-related genes (HRGs) were obtained from the Molecular Signatures Database (MSigDB). Differential expression analysis revealed 41 hypoxia-related DEGs in GBM patients. A consensus clustering approach, utilizing these DEGs' expression patterns, identified four distinct clusters, with cluster 1 showing significantly better overall survival. Machine learning techniques, including univariate Cox regression and LASSO regression, delineated a prognostic signature comprising six genes (ANXA1, CALD1, CP, IGFBP2, IGFBP5, and LOX). Multivariate Cox regression analysis substantiated the prognostic significance of a set of three optimal signature genes (CP, IGFBP2, and LOX). Using the hypoxia-related prognostic signature, patients were classified into high- and low-risk categories. Survival analysis demonstrated that the high-risk group exhibited inferior overall survival rates in comparison to the low-risk group. The prognostic signature showed good predictive performance, as indicated by the area under the curve (AUC) values for one-, three-, and five-year overall survival. Furthermore, functional enrichment analysis of the DEGs identified biological processes and pathways associated with hypoxia, providing insights into the underlying mechanisms of GBM. Delving into the tumor immune microenvironment, our analysis revealed correlations relating the hypoxia-related prognostic signature to the infiltration of immune cells in GBM. Overall, our study highlights the potential of a hypoxia-related prognostic signature as a valuable resource for forecasting the survival outcome of GBM patients. The multi-omics approach integrating bulk sequencing, single-cell analysis, and immune microenvironment assessment enhances our understanding of the intricate biology characterizing GBM, thereby potentially informing the tailored design of therapeutic interventions.
Collapse
Affiliation(s)
- Yaman B. Ahmed
- School of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA;
- Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan; (O.E.A.); (A.A.A.-K.); (A.S.); (Z.H.); (O.G.); (M.A.)
| | - Obada E. Ababneh
- Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan; (O.E.A.); (A.A.A.-K.); (A.S.); (Z.H.); (O.G.); (M.A.)
| | - Anas A. Al-Khalili
- Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan; (O.E.A.); (A.A.A.-K.); (A.S.); (Z.H.); (O.G.); (M.A.)
| | - Abdullah Serhan
- Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan; (O.E.A.); (A.A.A.-K.); (A.S.); (Z.H.); (O.G.); (M.A.)
| | - Zaid Hatamleh
- Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan; (O.E.A.); (A.A.A.-K.); (A.S.); (Z.H.); (O.G.); (M.A.)
| | - Owais Ghammaz
- Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan; (O.E.A.); (A.A.A.-K.); (A.S.); (Z.H.); (O.G.); (M.A.)
| | - Mohammad Alkhaldi
- Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan; (O.E.A.); (A.A.A.-K.); (A.S.); (Z.H.); (O.G.); (M.A.)
| | - Safwan Alomari
- Department of Neurosurgery, School of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA
| |
Collapse
|
12
|
Bakshi HA, Mkhael M, Faruck HL, Khan AU, Aljabali AAA, Mishra V, El-Tanani M, Charbe NB, Tambuwala MM. Cellular signaling in the hypoxic cancer microenvironment: Implications for drug resistance and therapeutic targeting. Cell Signal 2024; 113:110911. [PMID: 37805102 DOI: 10.1016/j.cellsig.2023.110911] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/18/2023] [Accepted: 10/02/2023] [Indexed: 10/09/2023]
Abstract
The rewiring of cellular metabolism is a defining characteristic of cancer, as tumor cells adapt to acquire essential nutrients from a nutrient-poor environment to sustain their viability and biomass. While hypoxia has been identified as a major factor depriving cancer cells of nutrients, recent studies have revealed that cancer cells distant from supporting blood vessels also face nutrient limitations. To overcome this challenge, hypoxic cancer cells, which heavily rely on glucose as an energy source, employ alternative pathways such as glycogen metabolism and reductive carboxylation of glutamine to meet their energy requirements for survival. Our preliminary studies, alongside others in the field, have shown that under glucose-deficient conditions, hypoxic cells can utilize mannose and maltose as alternative energy sources. This review aims to comprehensively examine the hypoxic cancer microenvironment, its association with drug resistance, and potential therapeutic strategies for targeting this unique niche. Furthermore, we will critically evaluate the current literature on hypoxic cancer microenvironments and explore state-of-the-art techniques used to analyze alternate carbohydrates, specifically mannose and maltose, in complex biological fluids. We will also propose the most effective analytical methods for quantifying mannose and maltose in such biological samples. By gaining a deeper understanding of the hypoxic cancer cell microenvironment and its role in drug resistance, novel therapeutic approaches can be developed to exploit this knowledge.
Collapse
Affiliation(s)
- Hamid A Bakshi
- Laboratory of Cancer Therapy Resistance and Drug Target Discovery, The Hormel Institute, University of Minnesota, Austin MN55912, USA; School of Pharmacy and Pharmaceutical Sciences, Ulster University, BT521SA, UK.
| | - Michella Mkhael
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, BT521SA, UK
| | - Hakkim L Faruck
- Laboratory of Cell Signaling and Tumorigenesis, The Hormel Institute, University of Minnesota, Austin MN55912, USA
| | - Asad Ullah Khan
- Laboratory of Molecular Biology of Chronic Diseases, The Hormel Institute, University of Minnesota, Austin MN55912, USA
| | - Alaa A A Aljabali
- Faculty of Pharmacy, Department of Pharmaceutical Sciences, Yarmouk University Irbid, Jordan
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Mohamed El-Tanani
- RAK Medical and Health Sciences University, Ras al Khaimah, United Arab Emirates
| | - Nitin B Charbe
- Center for Pharmacometrics & Systems Pharmacology, Department of Pharmaceutics (Lake Nona), University of Florida, Orlando, FL, USA
| | - Murtaza M Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln LN6 7TS, UK.
| |
Collapse
|
13
|
Teran Pumar OY, Lathia JD, Watson DC, Bayik D. 'Slicing' glioblastoma drivers with the Swiss cheese model. Trends Cancer 2024; 10:15-27. [PMID: 37625928 PMCID: PMC10840711 DOI: 10.1016/j.trecan.2023.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023]
Abstract
The Swiss cheese model is used to assess risks and explain accidents in a variety of industries. This model can be applied to dissect the homeostatic mechanisms whose cumulative dysregulation contributes to disease states, including cancer. Using glioblastoma (GBM) as an exemplar, we discuss how specific protumorigenic mechanisms collectively drive disease by affecting genomic integrity, epigenetic regulation, metabolic homeostasis, and antitumor immunity. We further highlight how host factors, such as hormonal differences and aging, impact this process, and the interplay between these 'system failures' that enable tumor progression and foster therapeutic resistance. Finally, we examine therapies that consider the interactions between these elements, which may comprise more effective approaches given the multifaceted protumorigenic mechanisms that drive GBM.
Collapse
Affiliation(s)
- Oriana Y Teran Pumar
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136, USA; Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Justin D Lathia
- Case Comprehensive Cancer Center, Cleveland, OH 44195, USA; Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Dionysios C Watson
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136, USA; Medical Oncology Division, Miller School of Medicine, University of Miami, FL 33136, USA.
| | - Defne Bayik
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136, USA; Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA.
| |
Collapse
|
14
|
Yao L, Wang Q, Ma W. Navigating the Immune Maze: Pioneering Strategies for Unshackling Cancer Immunotherapy Resistance. Cancers (Basel) 2023; 15:5857. [PMID: 38136402 PMCID: PMC10742031 DOI: 10.3390/cancers15245857] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/08/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Cancer immunotherapy has ushered in a transformative era in oncology, offering unprecedented promise and opportunities. Despite its remarkable breakthroughs, the field continues to grapple with the persistent challenge of treatment resistance. This resistance not only undermines the widespread efficacy of these pioneering treatments, but also underscores the pressing need for further research. Our exploration into the intricate realm of cancer immunotherapy resistance reveals various mechanisms at play, from primary and secondary resistance to the significant impact of genetic and epigenetic factors, as well as the crucial role of the tumor microenvironment (TME). Furthermore, we stress the importance of devising innovative strategies to counteract this resistance, such as employing combination therapies, tailoring immune checkpoints, and implementing real-time monitoring. By championing these state-of-the-art methods, we anticipate a paradigm that blends personalized healthcare with improved treatment options and is firmly committed to patient welfare. Through a comprehensive and multifaceted approach, we strive to tackle the challenges of resistance, aspiring to elevate cancer immunotherapy as a beacon of hope for patients around the world.
Collapse
Affiliation(s)
- Liqin Yao
- Key Laboratory for Translational Medicine, The First Affiliated Hospital, Huzhou University, Huzhou 313000, China
| | - Qingqing Wang
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China;
| | - Wenxue Ma
- Department of Medicine, Moores Cancer Center, Sanford Stem Cell Institute, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
15
|
Trevisi G, Mangiola A. Current Knowledge about the Peritumoral Microenvironment in Glioblastoma. Cancers (Basel) 2023; 15:5460. [PMID: 38001721 PMCID: PMC10670229 DOI: 10.3390/cancers15225460] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/31/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
Glioblastoma is a deadly disease, with a mean overall survival of less than 2 years from diagnosis. Recurrence after gross total surgical resection and adjuvant chemo-radiotherapy almost invariably occurs within the so-called peritumoral brain zone (PBZ). The aim of this narrative review is to summarize the most relevant findings about the biological characteristics of the PBZ currently available in the medical literature. The PBZ presents several peculiar biological characteristics. The cellular landscape of this area is different from that of healthy brain tissue and is characterized by a mixture of cell types, including tumor cells (seen in about 30% of cases), angiogenesis-related endothelial cells, reactive astrocytes, glioma-associated microglia/macrophages (GAMs) with anti-inflammatory polarization, tumor-infiltrating lymphocytes (TILs) with an "exhausted" phenotype, and glioma-associated stromal cells (GASCs). From a genomic and transcriptomic point of view, compared with the tumor core and healthy brain tissue, the PBZ presents a "half-way" pattern with upregulation of genes related to angiogenesis, the extracellular matrix, and cellular senescence and with stemness features and downregulation in tumor suppressor genes. This review illustrates that the PBZ is a transition zone with a pre-malignant microenvironment that constitutes the base for GBM progression/recurrence. Understanding of the PBZ could be relevant to developing more effective treatments to prevent GBM development and recurrence.
Collapse
Affiliation(s)
- Gianluca Trevisi
- Department of Neurosciences, Imaging and Clinical Sciences, G. D’Annunzio University Chieti-Pescara, 66100 Chieti, Italy;
- Neurosurgical Unit, Ospedale Spirito Santo, 65122 Pescara, Italy
| | - Annunziato Mangiola
- Department of Neurosciences, Imaging and Clinical Sciences, G. D’Annunzio University Chieti-Pescara, 66100 Chieti, Italy;
| |
Collapse
|