1
|
Chauhan NK, Singh K, Kumar A, Mishra A, Gupta SK, Mahajan S, Kadry S, Kim J. A hybrid learning network with progressive resizing and PCA for diagnosis of cervical cancer on WSI slides. Sci Rep 2025; 15:12801. [PMID: 40229435 PMCID: PMC11997219 DOI: 10.1038/s41598-025-97719-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/07/2025] [Indexed: 04/16/2025] Open
Abstract
Current artificial intelligence (AI) trends are revolutionizing medical image processing, greatly improving cervical cancer diagnosis. Machine learning (ML) algorithms can discover patterns and anomalies in medical images, whereas deep learning (DL) methods, specifically convolutional neural networks (CNNs), are extremely accurate at identifying malignant lesions. Deep models that have been pre-trained and tailored through transfer learning and fine-tuning become faster and more effective, even when data is scarce. This paper implements a state-of-the-art Hybrid Learning Network that combines the Progressive Resizing approach and Principal Component Analysis (PCA) for enhanced cervical cancer diagnostics of whole slide images (WSI) slides. ResNet-152 and VGG-16, two fine-tuned DL models, are employed together with transfer learning to train on augmented and progressively resized training data with dimensions of 224 × 224, 512 × 512, and 1024 × 1024 pixels for enhanced feature extraction. Principal component analysis (PCA) is subsequently employed to process the combined features extracted from two DL models and reduce the dimensional space of the feature set. Furthermore, two ML methods, Support Vector Machine (SVM) and Random Forest (RF) models, are trained on this reduced feature set, and their predictions are integrated using a majority voting approach for evaluating the final classification results, thereby enhancing overall accuracy and reliability. The accuracy of the suggested framework on SIPaKMeD data is 99.29% for two-class classification and 98.47% for five-class classification. Furthermore, it achieves 100% accuracy for four-class categorization on the LBC dataset.
Collapse
Affiliation(s)
- Nitin Kumar Chauhan
- Department of ECE, Indore Institute of Science & Technology, Indore, 453331, India
| | - Krishna Singh
- DSEU Okhla Campus-I, Formerly G. B. Pant Engineering College, New Delhi, 110020, India
| | - Amit Kumar
- Department of Electronics Engineering, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | - Ashutosh Mishra
- Department of Electrical and Electronics Engineering, Birla Institute of Technology and Science (BITS), Pilani Dubai Campus, 345055, Dubai International Academic City, Dubai, United Arab Emirates
| | - Sachin Kumar Gupta
- Department of Electronics and Communication Engineering, Central University of Jammu, Samba, Jammu, 181143, India
| | - Shubham Mahajan
- Amity School of Engineering & Technology, Amity University, Haryana, India.
| | - Seifedine Kadry
- Department of Computer Science and Mathematics, Lebanese American University, Beirut, Lebanon
- Noroff University College, Kristiansand, Norway
| | - Jungeun Kim
- Department of Computer Engineering, Inha University, Incheon, Republic of Korea.
| |
Collapse
|
2
|
Faisal HM, Aqib M, Rehman SU, Mahmood K, Obregon SA, Iglesias RC, Ashraf I. Detection of cotton crops diseases using customized deep learning model. Sci Rep 2025; 15:10766. [PMID: 40155421 PMCID: PMC11953249 DOI: 10.1038/s41598-025-94636-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 03/17/2025] [Indexed: 04/01/2025] Open
Abstract
The agricultural industry is experiencing revolutionary changes through the latest advances in artificial intelligence and deep learning-based technologies. These powerful tools are being used for a variety of tasks including crop yield estimation, crop maturity assessment, and disease detection. The cotton crop is an essential source of revenue for many countries highlighting the need to protect it from deadly diseases that can drastically reduce yields. Early and accurate disease detection is quite crucial for preventing economic losses in the agricultural sector. Thanks to deep learning algorithms, researchers have developed innovative disease detection approaches that can help safeguard the cotton crop and promote economic growth. This study presents dissimilar state-of-the-art deep learning models for disease recognition including VGG16, DenseNet, EfficientNet, InceptionV3, MobileNet, NasNet, and ResNet models. For this purpose, real cotton disease data is collected from fields and preprocessed using different well-known techniques before using as input to deep learning models. Experimental analysis reveals that the ResNet152 model outperforms all other deep learning models, making it a practical and efficient approach for cotton disease recognition. By harnessing the power of deep learning and artificial intelligence, we can help protect the cotton crop and ensure a prosperous future for the agricultural sector.
Collapse
Affiliation(s)
- Hafiz Muhammad Faisal
- University Institute of Information Technology (UIIT), PMAS-Arid Agriculture University Rawalpindi, Rawalpindi, 46300, Pakistan
| | - Muhammad Aqib
- University Institute of Information Technology (UIIT), PMAS-Arid Agriculture University Rawalpindi, Rawalpindi, 46300, Pakistan
| | - Saif Ur Rehman
- University Institute of Information Technology (UIIT), PMAS-Arid Agriculture University Rawalpindi, Rawalpindi, 46300, Pakistan.
| | - Khalid Mahmood
- Institute of Computational Intelligence, Faculty of Computing, Gomal University, D.I. Khan, 29220, Pakistan
| | - Silvia Aparicio Obregon
- Universidad Europea del Atlántico, Isabel Torres 21, Santander, 39011, Spain
- Universidad Internacional Iberoamericana, Campeche, 24560, Mexico
- Universidad Internacional Iberoamericana Arecibo, Puerto Rico, 00613, USA
| | - Rubén Calderón Iglesias
- Universidad Europea del Atlántico, Isabel Torres 21, Santander, 39011, Spain
- Universidade Internacional do Cuanza, Cuito, Bie, Angola
- Universidad de La Romana, La Romana, Dominican Republic
| | - Imran Ashraf
- Department of Information and Communication Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
| |
Collapse
|
3
|
Kapalaga G, Kivunike FN, Kerfua S, Jjingo D, Biryomumaisho S, Rutaisire J, Ssajjakambwe P, Mugerwa S, Abbey S, Aaron MH, Kiwala Y. Enhancing random forest predictive performance for foot and mouth disease outbreaks in Uganda: a calibrated uncertainty prediction approach for varying distributions. Front Artif Intell 2024; 7:1455331. [PMID: 39554990 PMCID: PMC11564173 DOI: 10.3389/frai.2024.1455331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 08/30/2024] [Indexed: 11/19/2024] Open
Abstract
Foot-and-mouth disease poses a significant threat to both domestic and wild cloven-hoofed animals, leading to severe economic losses and jeopardizing food security. While machine learning models have become essential for predicting foot-and-mouth disease outbreaks, their effectiveness is often compromised by distribution shifts between training and target datasets, especially in non-stationary environments. Despite the critical impact of these shifts, their implications in foot-and-mouth disease outbreak prediction have been largely overlooked. This study introduces the Calibrated Uncertainty Prediction approach, designed to enhance the performance of Random Forest models in predicting foot-and-mouth disease outbreaks across varying distributions. The Calibrated Uncertainty Prediction approach effectively addresses distribution shifts by calibrating uncertain instances for pseudo-label annotation, allowing the active learner to generalize more effectively to the target domain. By utilizing a probabilistic calibration model, Calibrated Uncertainty Prediction pseudo-annotates the most informative instances, refining the active learner iteratively and minimizing the need for human annotation and outperforming existing methods known to mitigate distribution shifts. This reduces costs, saves time, and lessens the dependence on domain experts while achieving outstanding predictive performance. The results demonstrate that Calibrated Uncertainty Prediction significantly enhances predictive performance in non-stationary environments, achieving an accuracy of 98.5%, Area Under the Curve of 0.842, recall of 0.743, precision of 0.855, and an F1 score of 0.791. These findings underscore Calibrated Uncertainty Prediction's ability to overcome the vulnerabilities of existing ML models, offering a robust solution for foot-and-mouth disease outbreak prediction and contributing to the broader field of predictive modeling in infectious disease management.
Collapse
Affiliation(s)
- Geofrey Kapalaga
- Department of Information Technology, College of Computing and Information Sciences, Makerere University, Kampala, Uganda
| | - Florence N Kivunike
- Department of Information Technology, College of Computing and Information Sciences, Makerere University, Kampala, Uganda
| | - Susan Kerfua
- Department of Vaccinology, National Livestock Resources Research Institute, Kampala, Uganda
| | - Daudi Jjingo
- African Center of Excellence in Bioinformatics (ACE-B), Makerere University, Kampala, Uganda
- Department of Computer Science, College of Computing and Information sciences, Makerere University, Kampala, Uganda
| | - Savino Biryomumaisho
- College of Veterinary Medicine, Animal Resources and Bio-security, Makerere University, Kampala, Uganda
| | - Justus Rutaisire
- Department of Vaccinology, National Livestock Resources Research Institute, Kampala, Uganda
| | - Paul Ssajjakambwe
- Department of Vaccinology, National Livestock Resources Research Institute, Kampala, Uganda
| | - Swidiq Mugerwa
- Department of Vaccinology, National Livestock Resources Research Institute, Kampala, Uganda
| | - Seguya Abbey
- Department of Vaccinology, National Livestock Resources Research Institute, Kampala, Uganda
| | - Mulindwa H Aaron
- Department of Vaccinology, National Livestock Resources Research Institute, Kampala, Uganda
| | - Yusuf Kiwala
- College of Business and Management Science, Makerere University, Kampala, Uganda
| |
Collapse
|
4
|
Adelson RP, Garikipati A, Zhou Y, Ciobanu M, Tawara K, Barnes G, Singh NP, Mao Q, Das R. Machine Learning Approach with Harmonized Multinational Datasets for Enhanced Prediction of Hypothyroidism in Patients with Type 2 Diabetes. Diagnostics (Basel) 2024; 14:1152. [PMID: 38893680 PMCID: PMC11172278 DOI: 10.3390/diagnostics14111152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/24/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Type 2 diabetes (T2D) is a global health concern with increasing prevalence. Comorbid hypothyroidism (HT) exacerbates kidney, cardiac, neurological and other complications of T2D; these risks can be mitigated pharmacologically upon detecting HT. The current HT standard of care (SOC) screening in T2D is infrequent, delaying HT diagnosis and treatment. We present a first-to-date machine learning algorithm (MLA) clinical decision tool to classify patients as low vs. high risk for developing HT comorbid with T2D; the MLA was developed using readily available patient data from harmonized multinational datasets. The MLA was trained on data from NIH All of US (AoU) and UK Biobank (UKBB) (Combined dataset) and achieved a high negative predictive value (NPV) of 0.989 and an AUROC of 0.762 in the Combined dataset, exceeding AUROCs for the models trained on AoU or UKBB alone (0.666 and 0.622, respectively), indicating that increasing dataset diversity for MLA training improves performance. This high-NPV automated tool can supplement SOC screening and rule out T2D patients with low HT risk, allowing for the prioritization of lab-based testing for at-risk patients. Conversely, an MLA output that designates a patient to be at risk of developing HT allows for tailored clinical management and thereby promotes improved patient outcomes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Qingqing Mao
- Montera, Inc. dba Forta, 548 Market St, PMB 89605, San Francisco, CA 94104-5401, USA; (R.P.A.); (A.G.); (Y.Z.); (M.C.); (K.T.); (G.B.); (N.P.S.); (R.D.)
| | | |
Collapse
|
5
|
Chang CC, Lin CY, Liu YS, Chen YY, Huang WL, Lai WW, Yen YT, Ma MC, Tseng YL. Therapeutic Decision Making in Prevascular Mediastinal Tumors Using CT Radiomics and Clinical Features: Upfront Surgery or Pretreatment Needle Biopsy? Cancers (Basel) 2024; 16:773. [PMID: 38398164 PMCID: PMC10886806 DOI: 10.3390/cancers16040773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
The study aimed to develop machine learning (ML) classification models for differentiating patients who needed direct surgery from patients who needed core needle biopsy among patients with prevascular mediastinal tumor (PMT). Patients with PMT who received a contrast-enhanced computed tomography (CECT) scan and initial management for PMT between January 2010 and December 2020 were included in this retrospective study. Fourteen ML algorithms were used to construct candidate classification models via the voting ensemble approach, based on preoperative clinical data and radiomic features extracted from the CECT. The classification accuracy of clinical diagnosis was 86.1%. The first ensemble learning model was built by randomly choosing seven ML models from a set of fourteen ML models and had a classification accuracy of 88.0% (95% CI = 85.8 to 90.3%). The second ensemble learning model was the combination of five ML models, including NeuralNetFastAI, NeuralNetTorch, RandomForest with Entropy, RandomForest with Gini, and XGBoost, and had a classification accuracy of 90.4% (95% CI = 87.9 to 93.0%), which significantly outperformed clinical diagnosis (p < 0.05). Due to the superior performance, the voting ensemble learning clinical-radiomic classification model may be used as a clinical decision support system to facilitate the selection of the initial management of PMT.
Collapse
Affiliation(s)
- Chao-Chun Chang
- Division of Thoracic Surgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704302, Taiwan; (C.-C.C.); (Y.-Y.C.); (W.-L.H.); (W.-W.L.); (Y.-L.T.)
| | - Chia-Ying Lin
- Department of Medical Imaging, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704302, Taiwan; (C.-Y.L.); (Y.-S.L.)
| | - Yi-Sheng Liu
- Department of Medical Imaging, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704302, Taiwan; (C.-Y.L.); (Y.-S.L.)
| | - Ying-Yuan Chen
- Division of Thoracic Surgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704302, Taiwan; (C.-C.C.); (Y.-Y.C.); (W.-L.H.); (W.-W.L.); (Y.-L.T.)
| | - Wei-Li Huang
- Division of Thoracic Surgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704302, Taiwan; (C.-C.C.); (Y.-Y.C.); (W.-L.H.); (W.-W.L.); (Y.-L.T.)
| | - Wu-Wei Lai
- Division of Thoracic Surgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704302, Taiwan; (C.-C.C.); (Y.-Y.C.); (W.-L.H.); (W.-W.L.); (Y.-L.T.)
- Division of Thoracic Surgery, Department of Surgery, An-Nan Hospital, China Medical University, Tainan 70965, Taiwan
| | - Yi-Ting Yen
- Division of Thoracic Surgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704302, Taiwan; (C.-C.C.); (Y.-Y.C.); (W.-L.H.); (W.-W.L.); (Y.-L.T.)
- Division of Trauma and Acute Care Surgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704302, Taiwan
| | - Mi-Chia Ma
- Department of Statistics and Institute of Data Science, National Cheng Kung University, Tainan 701401, Taiwan
| | - Yau-Lin Tseng
- Division of Thoracic Surgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704302, Taiwan; (C.-C.C.); (Y.-Y.C.); (W.-L.H.); (W.-W.L.); (Y.-L.T.)
| |
Collapse
|
6
|
Munshi RM. Novel ensemble learning approach with SVM-imputed ADASYN features for enhanced cervical cancer prediction. PLoS One 2024; 19:e0296107. [PMID: 38198475 PMCID: PMC10781159 DOI: 10.1371/journal.pone.0296107] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/06/2023] [Indexed: 01/12/2024] Open
Abstract
Cervical cancer remains a leading cause of female mortality, particularly in developing regions, underscoring the critical need for early detection and intervention guided by skilled medical professionals. While Pap smear images serve as valuable diagnostic tools, many available datasets for automated cervical cancer detection contain missing data, posing challenges for machine learning models' efficacy. To address these hurdles, this study presents an automated system adept at managing missing information using ADASYN characteristics, resulting in exceptional accuracy. The proposed methodology integrates a voting classifier model harnessing the predictive capacity of three distinct machine learning models. It further incorporates SVM Imputer and ADASYN up-sampled features to mitigate missing value concerns, while leveraging CNN-generated features to augment the model's capabilities. Notably, this model achieves remarkable performance metrics, boasting a 99.99% accuracy, precision, recall, and F1 score. A comprehensive comparative analysis evaluates the proposed model against various machine learning algorithms across four scenarios: original dataset usage, SVM imputation, ADASYN feature utilization, and CNN-generated features. Results indicate the superior efficacy of the proposed model over existing state-of-the-art techniques. This research not only introduces a novel approach but also offers actionable suggestions for refining automated cervical cancer detection systems. Its impact extends to benefiting medical practitioners by enabling earlier detection and improved patient care. Furthermore, the study's findings have substantial societal implications, potentially reducing the burden of cervical cancer through enhanced diagnostic accuracy and timely intervention.
Collapse
Affiliation(s)
- Raafat M. Munshi
- Department of Medical Laboratory Technology (MLT), Faculty of Applied Medical Sciences, King Abdulaziz University, Rabigh, Saudi Arabia
| |
Collapse
|