1
|
Kanu GA, Parambath JBM, Abu Odeh RO, Mohamed AA. Gold Nanoparticle-Mediated Gene Therapy. Cancers (Basel) 2022; 14:5366. [PMID: 36358785 PMCID: PMC9653658 DOI: 10.3390/cancers14215366] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 07/30/2023] Open
Abstract
Gold nanoparticles (AuNPs) have gained increasing attention as novel drug-delivery nanostructures for the treatment of cancers, infections, inflammations, and other diseases and disorders. They are versatile in design, synthesis, modification, and functionalization. This has many advantages in terms of gene editing and gene silencing, and their application in genetic illnesses. The development of several techniques such as CRISPR/Cas9, TALEN, and ZFNs has raised hopes for the treatment of genetic abnormalities, although more focused experimentation is still needed. AuNPs, however, have been much more effective in trending research on this subject. In this review, we highlight recently well-developed advancements that are relevant to cutting-edge gene therapies, namely gene editing and gene silencing in diseases caused by a single gene in humans by taking an edge of the unique properties of the AuNPs, which will be an important outlook for future research.
Collapse
Affiliation(s)
- Gayathri A. Kanu
- Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Javad B. M. Parambath
- Department of Chemistry, College of Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- Center for Advanced Materials Research, Research Institute of Sciences and Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Raed O. Abu Odeh
- Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Ahmed A. Mohamed
- Department of Chemistry, College of Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- Center for Advanced Materials Research, Research Institute of Sciences and Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates
| |
Collapse
|
3
|
Talactac MR, Yoshii K, Maeda H, Kusakisako K, Hernandez EP, Tsuji N, Fujisaki K, Galay RL, Tanaka T, Mochizuki M. Virucidal activity of Haemaphysalis longicornis longicin P4 peptide against tick-borne encephalitis virus surrogate Langat virus. Parasit Vectors 2016; 9:59. [PMID: 26830840 PMCID: PMC4736483 DOI: 10.1186/s13071-016-1344-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 01/26/2016] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Longicin is a defensin-like peptide, identified from the midgut epithelium of hard tick Haemaphysalis longicornis. Several studies have already shown the antimicrobial and parasiticidal activities of longicin peptide and one of its synthetic partial analogs, longicin P4. In this study, longicin peptides were tested for potential antiviral activity against Langat virus (LGTV), a tick-borne flavivirus. METHODS Longicin P1 and P4 peptides were chemically synthesized. Antiviral activity of the longicin peptides against LGTV was evaluated through in vitro virucidal assays, wherein the antiviral efficacy was determined by reduction in number of viral foci and virus yield. Additionally, longicin P4 was also tested for its activity against human adenovirus, a non-enveloped virus. Lastly, to assess the importance of longicin on the innate antiviral immunity of H. longicornis ticks, gene silencing through RNAi was performed. RESULTS Longicin P4 produced significant viral foci reduction and lower virus yield against LGTV, while longicin P1 failed to demonstrate the same results. Conversely, both longicin partial analogs (P1 and P4) did not show significant antiviral activity when tested on adenovirus. In addition, longicin-silenced ticks showed significantly higher virus titer after 7 days post-infection but a significantly lower titer was detected after an additional 14 days of observation as compared to the Luc dsRNA-injected ticks. Mortality in both groups did not show any significant difference. CONCLUSION Our results suggest that longicin P4 has in vitro antiviral activity against LGTV but not against a non-enveloped virus such as adenovirus. Likewise, though most cationic antimicrobial peptides like longicin act directly on target membranes, the exact mechanism of membrane targeting of longicin P4 in enveloped viruses, such as LGTV, requires further investigation. Lastly, while the in vitro virucidal capacity of longicin P4 was confirmed in this study, the role of the endogenous tick longicin in the antiviral defense of H. longicornis against LGTV still remains to be demonstrated.
Collapse
Affiliation(s)
- Melbourne Rio Talactac
- Department of Pathological and Preventive Veterinary Science, The United Graduate School of Veterinary Science, Yamaguchi University, Yoshida, Yamaguchi, 753-8515, Japan.
- Laboratory of Infectious Diseases, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0065, Japan.
- Department of Clinical and Population Health, College of Veterinary Medicine and Biomedical Sciences, Cavite State University, Cavite, 4122, Philippines.
| | - Kentaro Yoshii
- Laboratory of Public Health, Graduate School of Veterinary Medicine, Hokkaido University, Kita-ku kita-18 nishi-9, Sapporo, Hokkaido, 060-0818, Japan.
| | - Hiroki Maeda
- Department of Pathological and Preventive Veterinary Science, The United Graduate School of Veterinary Science, Yamaguchi University, Yoshida, Yamaguchi, 753-8515, Japan.
- Laboratory of Infectious Diseases, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0065, Japan.
| | - Kodai Kusakisako
- Department of Pathological and Preventive Veterinary Science, The United Graduate School of Veterinary Science, Yamaguchi University, Yoshida, Yamaguchi, 753-8515, Japan.
- Laboratory of Infectious Diseases, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0065, Japan.
| | - Emmanuel Pacia Hernandez
- Department of Pathological and Preventive Veterinary Science, The United Graduate School of Veterinary Science, Yamaguchi University, Yoshida, Yamaguchi, 753-8515, Japan.
| | - Naotoshi Tsuji
- Department of Parasitology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa, 252-0374, Japan.
| | - Kozo Fujisaki
- Zen-noh Institute of Animal Health, Ohja, Sakura, Chiba, 285-0043, Japan.
| | - Remil Linggatong Galay
- Department of Veterinary Paraclinical Sciences, College of Veterinary Medicine, University of the Philippines Los Baños, Los Baños, Laguna, 4031, Philippines.
| | - Tetsuya Tanaka
- Department of Pathological and Preventive Veterinary Science, The United Graduate School of Veterinary Science, Yamaguchi University, Yoshida, Yamaguchi, 753-8515, Japan.
- Laboratory of Infectious Diseases, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0065, Japan.
| | - Masami Mochizuki
- Department of Pathological and Preventive Veterinary Science, The United Graduate School of Veterinary Science, Yamaguchi University, Yoshida, Yamaguchi, 753-8515, Japan.
- Laboratory of Infectious Diseases, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0065, Japan.
| |
Collapse
|
4
|
Yamada Y, Tabata M, Yasuzaki Y, Nomura M, Shibata A, Ibayashi Y, Taniguchi Y, Sasaki S, Harashima H. A nanocarrier system for the delivery of nucleic acids targeted to a pancreatic beta cell line. Biomaterials 2014; 35:6430-8. [PMID: 24816283 DOI: 10.1016/j.biomaterials.2014.04.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 04/05/2014] [Indexed: 11/25/2022]
Abstract
Pancreatic β cells secrete insulin in response to glucose levels and thus are involved in controlling blood glucose levels. A line of pancreatic β cells "MIN6" has been used in studies related to the function of β cells and diabetes therapy. Regulating gene expression in MIN6 cells could accelerate these studies, but an efficient method for the transfection of nucleic acids targeted to MIN6 cells is required. We report here on a liposome-based carrier targeted to pancreatic β cells (Multifunctional envelope-type nano device for pancreatic β cells, β-MEND). We identified a lipid composition for use in preparing the β-MEND, which permits the particles to be efficiently internalized into MIN6, as evidenced by flow cytometry analyses. Intracellular observation by confocal laser scanning microscopy showed that the β-MEND efficiently delivered the oligo nucleic acids to the cytosol of MIN6 cells. Moreover, using a β-MEND encapsulating a 2'-O-Methyl RNA complementary to a microRNA that suppresses insulin secretion, the knockdown of the targeted microRNA and an up-regulation of insulin secretion were observed in MIN6. Thus, the β-MEND holds promise as an efficient system for delivering nucleic acids targeted to MIN6 and can contribute to research and therapy aimed at diabetes.
Collapse
Affiliation(s)
- Yuma Yamada
- Laboratory for Molecular Design of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Mai Tabata
- Laboratory for Molecular Design of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Yukari Yasuzaki
- Laboratory for Molecular Design of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Masatoshi Nomura
- Department of Endocrine and Metabolic Diseases/Diabetes Mellitus, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Atsushi Shibata
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yuta Ibayashi
- Department of Endocrine and Metabolic Diseases/Diabetes Mellitus, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yosuke Taniguchi
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Shigeki Sasaki
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Hideyoshi Harashima
- Laboratory for Molecular Design of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan.
| |
Collapse
|