1
|
Bai Z, Xu L, Ding Z, Cao Y, Wang Z, Yang W, Xu W, Li H. Artificial intelligence in magnetic resonance imaging for predicting lymph node metastasis in rectal cancer patients: a meta-analysis. Eur Radiol 2025:10.1007/s00330-025-11519-y. [PMID: 40220146 DOI: 10.1007/s00330-025-11519-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/09/2025] [Accepted: 02/18/2025] [Indexed: 04/14/2025]
Abstract
OBJECTIVE This meta-analysis aims to evaluate the diagnostic performance of magnetic resonance imaging (MRI)-based artificial intelligence (AI) in the preoperative detection of lymph node metastasis (LNM) in patients with rectal cancer and to compare it with the diagnostic performance of radiologists. METHODS A thorough literature search was conducted across PubMed, Embase, and Web of Science to identify relevant studies published up to September 2024. The selected studies focused on the diagnostic performance of MRI-based AI in detecting rectal cancer LNM. A bivariate random-effects model was employed to calculate pooled sensitivity and specificity, each reported with 95% confidence intervals (CIs). Study heterogeneity was assessed using the I2 statistic. Furthermore, the modified quality assessment of diagnostic accuracy studies-2 (QUADAS-2) tool was applied to assess the methodological quality of the selected studies. RESULTS Seventeen studies were included in this meta-analysis. The pooled sensitivity, specificity, and area under the curve (AUC) for MRI-based AI in detecting preoperative LNM in rectal cancer were 0.71 (95% CI: 0.66-0.74), 0.71 (95% CI: 0.67-0.75), and 0.77 (95% CI: 0.73-0.80), respectively. For radiologists, these values were 0.64 (95% CI: 0.49-0.77), 0.72 (95% CI: 0.62-0.80), and 0.74 (95% CI: 0.68-0.80). Both analyses showed no significant publication bias (p > 0.05). CONCLUSIONS MRI-based AI demonstrates diagnostic performance similar to that of radiologists. The high heterogeneity among studies limits the strength of these findings, and further research with external validation datasets is necessary to confirm the results and assess their practical clinical value. KEY POINTS Question How effective is MRI-based AI in detecting LNM in rectal cancer patients compared to traditional radiology methods? Findings The diagnostic performance of MRI-based AI is comparable to radiologists, with pooled sensitivity and specificity both at 0.71, indicating moderate accuracy. Clinical relevance Integrating MRI-based AI can enhance diagnostic efficiency in identifying LNM, especially in settings with limited access to skilled radiologists, but requires further validation.
Collapse
Affiliation(s)
- Zhiqiang Bai
- Department of General Surgery, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Lumin Xu
- Department of General Surgery, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Zujun Ding
- Department of Anorectal surgery, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Yi Cao
- Department of General Surgery, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Zepeng Wang
- Department of General Surgery, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Wenjie Yang
- Department of Neurosurgery, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Wei Xu
- Department of Neurosurgery, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Hang Li
- Department of General Surgery, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China.
| |
Collapse
|
2
|
Crisafulli G. Liquid Biopsy and Challenge of Assay Heterogeneity for Minimal Residual Disease Assessment in Colon Cancer Treatment. Genes (Basel) 2025; 16:71. [PMID: 39858618 PMCID: PMC11765229 DOI: 10.3390/genes16010071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
This review provides a comprehensive overview of the evolving role of minimal residual disease (MRD) for patients with Colon Cancer (CC). Currently, the standard of care for patients with non-metastatic CC is adjuvant chemotherapy (ACT) for all patients with stage III and high-risk stage II CC following surgical intervention. Despite a 5-20% improvement in long-term survival outcomes, this approach also results in a significant proportion of patients receiving ACT without any therapeutic benefit and being unnecessarily exposed to the risks of secondary side effects. This underscores an unmet clinical need for more precise stratification to distinguish patients who necessitate ACT from those who can be treated with surgery alone. By employing liquid biopsy, it is possible to discern MRD enabling the categorization of patients as MRD-positive or MRD-negative, potentially revolutionizing the management of ACT. This review aimed to examine the heterogeneity of methodologies currently available for MRD detection, encompassing the state-of-the-art technologies, their respective advantages, limitations, and the technological challenges and multi-omic approaches that can be utilized to enhance assay performance. Furthermore, a discussion was held regarding the clinical trials that employ an MRD assay focusing on the heterogeneity of the assays used. These differences in methodology, target selection, and performance risk producing inconsistent results that may not solely reflect biological/clinical differences but may be the consequence of the preferential use of particular products in studies conducted in different countries. Standardization and harmonization of MRD assays will be crucial to ensure the liquid revolution delivers reliable and clinically actionable outcomes for patients.
Collapse
|
3
|
Kwan ASH, Uwishema O, Mshaymesh S, Choudhary K, Salem FK, Sengar AS, Patel RP, Kazan Z, Wellington J. Advances in the diagnosis of colorectal cancer: the application of molecular biomarkers and imaging techniques: a literature review. Ann Med Surg (Lond) 2025; 87:192-203. [PMID: 40109625 PMCID: PMC11918703 DOI: 10.1097/ms9.0000000000002830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 11/22/2024] [Indexed: 03/22/2025] Open
Abstract
Background Following neoplasms of the lung and breast, colorectal cancer (CRC) is the third most frequent malignancy globally. Screening for CRC at the age of 50 years is strongly encouraged for prompt earlier diagnosis owing to prognoses being greatly correlated with time of detection and cancer staging. Aim This review aimed to elucidate the most recent advancements in the detection of CRC, with an emphasis on the latest innovations in diagnostic molecular biomarkers in conjunction with radiological imaging alongside stool-based tests for CRC screening. Methods A comprehensive review of the literature was performed, focusing on specific terms in different electronic databases, including that of PubMed/MEDLINE. Keywords pertaining to "colorectal cancer," "diagnosis," "screening," "imaging," and "biomarkers," among others, were employed in the search strategy. Articles screened and evaluated were deemed relevant to the study aim and were presented in the medium of the English language. Results There have been several innovations in the diagnostics and identification of CRC. These generally comprise molecular biomarkers, currently being studied for suitability in disease detection. Examples of these include genetic, epigenetic, and protein biomarkers. Concurrently, recent developments in CRC diagnostics highlight the advancements made in radiological imaging that offer precise insights on tumor biology in addition to morphological information. Combining these with statistical methodologies will increase the sensitivity and specificity of CRC diagnostics. However, putting these strategies into reality is hampered by several issues. Conclusion Progress in diagnostic technology alongside the identification of a few prognostic predictive molecular biomarkers suggested great promise for prompt detection and management of CRC. This clearly necessitates further efforts to learn more in this specific sector.
Collapse
Affiliation(s)
- Alicia Su Huey Kwan
- Department of Research and Education, Oli Health Magazine Organization, Research and Education, Kigali, Rwanda
- Department of Medicine for Older People, Southampton General Hospital, Southampton, United Kingdom
| | - Olivier Uwishema
- Department of Research and Education, Oli Health Magazine Organization, Research and Education, Kigali, Rwanda
| | - Sarah Mshaymesh
- Department of Research and Education, Oli Health Magazine Organization, Research and Education, Kigali, Rwanda
- Department of Natural Sciences, Faculty of Sciences, Haigazian University, Beirut, Lebanon
| | - Karan Choudhary
- Department of Research and Education, Oli Health Magazine Organization, Research and Education, Kigali, Rwanda
- Medical School, Department of General Medicine, MGM Medical College, Aurangabad, India
| | - Fatma K Salem
- Department of Research and Education, Oli Health Magazine Organization, Research and Education, Kigali, Rwanda
- Biochemistry Department, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Aman Singh Sengar
- Department of Research and Education, Oli Health Magazine Organization, Research and Education, Kigali, Rwanda
- Medical School, Department of General Medicine, Yerevan State Medical University after Mkhitar Heratsi, Yerevan, Armenia
| | - Raj Pravin Patel
- Department of Research and Education, Oli Health Magazine Organization, Research and Education, Kigali, Rwanda
- Department of General Surgery, Manohar Waman Desai General Hospital, Mumbai, India
| | - Zeinab Kazan
- Department of Research and Education, Oli Health Magazine Organization, Research and Education, Kigali, Rwanda
- Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - Jack Wellington
- Department of Research and Education, Oli Health Magazine Organization, Research and Education, Kigali, Rwanda
- Department of Neurosurgery, Leeds Teaching Hospitals NHS Foundation Trust, Leeds, United Kingdom
| |
Collapse
|
4
|
Pang C, Xu F, Lin Y, Han W, Zhang N, Zhao L. LC-MS/MS analysis reveals plasma protein signatures associated with lymph node metastasis in colorectal cancer. Front Immunol 2024; 15:1465374. [PMID: 39507532 PMCID: PMC11538601 DOI: 10.3389/fimmu.2024.1465374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/01/2024] [Indexed: 11/08/2024] Open
Abstract
Objectives Colorectal cancer (CRC) is a major global health concern, ranking as the third most common cancer and the fourth leading cause of cancer-related deaths worldwide. Currently, the diagnostic accuracy of Lymph node metastasis (LNM) is currently unsatisfactory. Therefore, there is an urgent need to develop a reliable tool that can accurately predict lymph node metastasis (LNM) in patients diagnosed with CRC. Methods We conducted an extensive proteomics investigation aimed at examining lymph node metastasis (LNM) in individuals diagnosed with colorectal cancer (CRC). In the discovery stage, employing a mass spectrometry-based proteomic approach, we analyzed a cohort of 60 colorectal cancer patients (NM=30, LNM=30), identifying distinct molecular profiles that differentiate patients with and without lymph node metastasis (LNM). Subsequently, we validated the protein classifier associated with lymph node metastasis. Results We elucidated a combinatorial predictive protein biomarker that can distinguish patients with and without lymph node metastasis by LC-MS/MS. The classifier achieved an area under the curve (AUC) of 0.892 (95% CI, 0.842-0.941), while in the testing cohort, it attained an AUC of 0.929 (95% CI, 0.824-1.000). Furthermore, the four protein markers demonstrated an AUC of 0.84 (95% CI, 0.783-0.890) in the validation cohort. Additionally, we categorized patients into three types based on immunophenotyping. Type 1 primarily consisted of patients with negative lymph node metastasis (NM), characterized by immune cells such as NK cells, CD4 T effector memory cells, and memory B cells. Type 2 mainly included patients with positive lymph node metastasis (LNM), characterized by immune cells such as mesangial cells, epithelial cells, and mononuclear cells. In Type 1, a prominent upregulation observed in immune inflammation, as well as in glucose and lipid metabolism. In Type 2, significant upregulation was evident in pathways such as pyrimidine metabolism and cell cycle regulation. The findings of this study suggest that immune mechanisms may exert a pivotal role in the process of lymph node metastasis in CRC. Conclusions Here, we present plasma protein signatures associated with lymph node metastasis in colorectal cancer (CRC). However, further validation across multiple centers is necessary to generalize these findings.
Collapse
Affiliation(s)
| | | | | | | | - Nianzhu Zhang
- Department of Laboratory Medicine, The Second Hospital of Dalian Medical
University, Dalian, Liaoning, China
| | - Lifen Zhao
- Department of Laboratory Medicine, The Second Hospital of Dalian Medical
University, Dalian, Liaoning, China
| |
Collapse
|
5
|
Sun D, Ma L, Liu Y, Bao C, Jia G, Wang T, Wang Y. 99mTc-FAPI-04 SPECT/CT outperforms contrast-enhanced CT in detecting metastasis in postoperative patients with colorectal cancer. Front Med (Lausanne) 2024; 11:1462870. [PMID: 39376651 PMCID: PMC11456442 DOI: 10.3389/fmed.2024.1462870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/03/2024] [Indexed: 10/09/2024] Open
Abstract
Purpose To compare the performance of 99mTc-FAPI-04 SPECT/CT and contrast-enhanced CT (CECT) in the detection of postoperative metastasis in patients with colorectal cancer (CRC). Methods The postoperative patients with CRC were consecutively recruited from January 2023 to June 2023, and the enrolled patients completed 99mTc-FAPI-04 SPECT/CT imaging and CECT examination within two weeks. Histopathological analysis and the follow-up results were used as the reference criteria. The location and number of metastatic sites and the detection accuracy between the two imaging methods were compared. The tumor-to-background ratio (TBR) of liver metastasis and lymph node metastasis in 99mTc-FAPI-04 SPECT/CT imaging were also calculated for comparison. Results In total, 19 postoperative CRC patients, including 15 patients with metastasis, were included in this study. In the patient-based analysis, 99mTc-FAPI-04 SPECT/CT showed a significantly higher sensitivity for the detection of metastasis than CECT (93.3% vs. 80.0%, p = 0.038), but both techniques had the same specificity (100%, 4/4). For the lesion-based analysis, the detection rates of metastatic sites were 92.2% (47/51) and 72.5% (37/51) for 99mTc-FAPI-04 SPECT/CT and CECT, respectively, and the difference between them was statistically significant. In the diagnosis of liver metastasis and lymph node metastasis, 99mTc-FAPI-04 SPECT/CT both exceeded CECT. Additionally, the TBR in lymph node metastasis was higher than that in liver metastasis. Conclusion The findings suggested that 99mTc-FAPI-04 SPECT/CT could detect metastasis more effectively than CECT, especially liver and lymph node metastases, in postoperative CRC patients.
Collapse
Affiliation(s)
- Donghua Sun
- Department of Nuclear Medicine, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Li Ma
- Department of Nuclear Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Yan Liu
- Department of Nuclear Medicine, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Caili Bao
- Department of Nuclear Medicine, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Guorong Jia
- Department of Nuclear Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Tao Wang
- Department of Nuclear Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Yingqiu Wang
- Department of Nuclear Medicine, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
6
|
Yang L, Wang B, Shi X, Li B, Xie J, Wang C. Application research of radiomics in colorectal cancer: A bibliometric study. Medicine (Baltimore) 2024; 103:e37827. [PMID: 38608072 PMCID: PMC11018182 DOI: 10.1097/md.0000000000037827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/15/2024] [Indexed: 04/14/2024] Open
Abstract
BACKGROUND Radiomics has shown great potential in the clinical field of colorectal cancer (CRC). However, few bibliometric studies have systematically analyzed existing research in this field. The purpose of this study is to understand the current research status and future development directions of CRC. METHODS Search the English documents on the application of radiomics in the field of CRC research included in the Web of Science Core Collection from its establishment to October 2023. VOSviewer and CiteSpace software were used to conduct bibliometric and visual analysis of online publications related to countries/regions, authors, journals, references, and keywords in this field. RESULTS A total of 735 relevant documents published from Web of Science Core Collection to October 2023 were retrieved, and a total of 419 documents were obtained based on the screening criteria, including 376 articles and 43 reviews. The number of publications is increasing year by year. Among them, China publishes the most relevant documents (n = 238), which is much higher than Italy (n = 69) and the United States (n = 63). Tian Jie is the author with the most publications and citations (n = 17, citations = 2128), GE Healthcare is the most productive institution (n = 26), Frontiers in Oncology is the journal with the most publications (n = 60), and European Radiology is the most cited journal (n = 776). Hot spots for the application of radiomics in CRC include magnetic resonance, neoadjuvant chemoradiotherapy, survival, texture analysis, and machine learning. These directions are the current hot spots for the application of radiomics research in CRC and may be the direction of continued development in the future. CONCLUSION Through bibliometric analysis, the application of radiomics in CRC has been increasing year by year. The application of radiomics improves the accuracy of preoperative diagnosis, prediction, and prognosis of CRC. The results of bibliometrics analysis provide a valuable reference for the research direction of radiomics. However, radiomics still faces many challenges in the future, such as the single nature of the data source which may affect the comprehensiveness of the results. Future studies can further expand the data sources and build a multicenter public database to more comprehensively reflect the research status and development trend of CRC radiomics.
Collapse
Affiliation(s)
- Lihong Yang
- Department of Radiology and Medical Imaging Research Institute, Huaihe Hospital of Henan University, Kaifeng, Henan, China
| | - Binjie Wang
- Department of Radiology and Medical Imaging Research Institute, Huaihe Hospital of Henan University, Kaifeng, Henan, China
| | - Xiaoying Shi
- Department of Radiology and Medical Imaging Research Institute, Huaihe Hospital of Henan University, Kaifeng, Henan, China
| | - Bairu Li
- Department of Radiology and Medical Imaging Research Institute, Huaihe Hospital of Henan University, Kaifeng, Henan, China
| | - Jiaqiang Xie
- Department of Breast and Thyroid Surgery, Huaihe Hospital of Henan University, Kaifeng, Henan, China
| | - Changfu Wang
- Department of Radiology and Medical Imaging Research Institute, Huaihe Hospital of Henan University, Kaifeng, Henan, China
| |
Collapse
|
7
|
Zirakchian Zadeh M. PET/CT in assessment of colorectal liver metastases: a comprehensive review with emphasis on 18F-FDG. Clin Exp Metastasis 2023; 40:465-491. [PMID: 37682423 DOI: 10.1007/s10585-023-10231-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/21/2023] [Indexed: 09/09/2023]
Abstract
Approximately 25% of those who are diagnosed with colorectal cancer will develop colorectal liver metastases (CRLM) as their illness advances. Despite major improvements in both diagnostic and treatment methods, the prognosis for patients with CRLM is still poor, with low survival rates. Accurate employment of imaging methods is critical in identifying the most effective treatment approach for CRLM. Different imaging modalities are used to evaluate CRLM, including positron emission tomography (PET)/computed tomography (CT). Among the PET radiotracers, fluoro-18-deoxyglucose (18F-FDG), a glucose analog, is commonly used as the primary radiotracer in assessment of CRLM. As the importance of 18F-FDG-PET/CT continues to grow in assessment of CRLM, developing a comprehensive understanding of this subject becomes imperative for healthcare professionals from diverse disciplines. The primary aim of this article is to offer a simplified and comprehensive explanation of PET/CT in the evaluation of CRLM, with a deliberate effort to minimize the use of technical nuclear medicine terminology. This approach intends to provide various healthcare professionals and researchers with a thorough understanding of the subject matter.
Collapse
Affiliation(s)
- Mahdi Zirakchian Zadeh
- Molecular Imaging and Therapy and Interventional Radiology Services, Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
| |
Collapse
|
8
|
Fülöp AC, Serac G, Gurzu S. Detection of Hepatic Metastasis in Colorectal Cancer: A Comparative Case Report of 18F-FDG PET-CT and Diffusion-Weighted MRI with a b Value of 1000. J Belg Soc Radiol 2023; 107:52. [PMID: 37457674 PMCID: PMC10348067 DOI: 10.5334/jbsr.3186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023] Open
Abstract
Detection of hepatic metastasis from colorectal cancer remains a clinical challenge. In this case report, we present a 66-year-old male patient with a rectal carcinoma who underwent 18F-FDG PET-CT for staging, which revealed one hepatic metastasis. Abdominal magnetic resonance imaging (MRI) with diffusion-weighted sequence with a b value of 1000 was performed, which identified a second metastasis of the liver. Teaching Point This case report illustrates that, in some patients, diffusion-weighted MRI with a b value of 1000 might be a more sensitive technique for detecting small hepatic metastases than 18F-FDG PET-CT.
Collapse
Affiliation(s)
- Andrei-Cristian Fülöp
- Department of Radiology and Imaging, George Emil Palade University of Medicine, Pharmacy, Science and Technology, Targu Mures, Romania
| | - Gabriel Serac
- Department of Surgery, George Emil Palade University of Medicine, Pharmacy, Science and Technology, Targu Mures, Romania
| | - Simona Gurzu
- Department of Pathology, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology, Targu Mures, Romania
| |
Collapse
|
9
|
Alhazmi W, Turki T. Applying Deep Transfer Learning to Assess the Impact of Imaging Modalities on Colon Cancer Detection. Diagnostics (Basel) 2023; 13:diagnostics13101721. [PMID: 37238207 DOI: 10.3390/diagnostics13101721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/04/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
The use of medical images for colon cancer detection is considered an important problem. As the performance of data-driven methods relies heavily on the images generated by a medical method, there is a need to inform research organizations about the effective imaging modalities, when coupled with deep learning (DL), for detecting colon cancer. Unlike previous studies, this study aims to comprehensively report the performance behavior for detecting colon cancer using various imaging modalities coupled with different DL models in the transfer learning (TL) setting to report the best overall imaging modality and DL model for detecting colon cancer. Therefore, we utilized three imaging modalities, namely computed tomography, colonoscopy, and histology, using five DL architectures, including VGG16, VGG19, ResNet152V2, MobileNetV2, and DenseNet201. Next, we assessed the DL models on the NVIDIA GeForce RTX 3080 Laptop GPU (16GB GDDR6 VRAM) using 5400 processed images divided equally between normal colons and colons with cancer for each of the imaging modalities used. Comparing the imaging modalities when applied to the five DL models presented in this study and twenty-six ensemble DL models, the experimental results show that the colonoscopy imaging modality, when coupled with the DenseNet201 model under the TL setting, outperforms all the other models by generating the highest average performance result of 99.1% (99.1%, 99.8%, and 99.1%) based on the accuracy results (AUC, precision, and F1, respectively).
Collapse
Affiliation(s)
- Wael Alhazmi
- Department of Computer Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Turki Turki
- Department of Computer Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
10
|
van 't Erve I, Medina JE, Leal A, Papp E, Phallen J, Adleff V, Chiao EJ, Arun AS, Bolhuis K, Simmons JK, Karandikar A, Valkenburg KC, Sausen M, Angiuoli SV, Scharpf RB, Punt CJA, Meijer GA, Velculescu VE, Fijneman RJA. Metastatic Colorectal Cancer Treatment Response Evaluation by Ultra-Deep Sequencing of Cell-Free DNA and Matched White Blood Cells. Clin Cancer Res 2023; 29:899-909. [PMID: 36534496 PMCID: PMC9975664 DOI: 10.1158/1078-0432.ccr-22-2538] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/26/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
PURPOSE Circulating tumor DNA (ctDNA) has the potential to guide therapy selection and monitor treatment response in patients with metastatic cancer. However, germline and clonal hematopoiesis-associated alterations can confound identification of tumor-specific mutations in cell-free DNA (cfDNA), often requiring additional sequencing of tumor tissue. The current study assessed whether ctDNA-based treatment response monitoring could be performed in a tumor tissue-independent manner by combining ultra-deep targeted sequencing analyses of cfDNA with patient-matched white blood cell (WBC)-derived DNA. EXPERIMENTAL DESIGN In total, 183 cfDNA and 49 WBC samples, along with 28 tissue samples, from 52 patients with metastatic colorectal cancer participating in the prospective phase III CAIRO5 clinical trial were analyzed using an ultra-deep targeted sequencing liquid biopsy assay. RESULTS The combined cfDNA and WBC analysis prevented false-positives due to germline or hematopoietic variants in 40% of patients. Patient-matched tumor tissue sequencing did not provide additional information. Longitudinal analyses of ctDNA were more predictive of overall survival than standard-of-care radiological response evaluation. ctDNA mutations related to primary or acquired resistance to panitumumab were identified in 42% of patients. CONCLUSIONS Accurate calling of ctDNA mutations for treatment response monitoring is feasible in a tumor tissue-independent manner by combined cfDNA and patient-matched WBC genomic DNA analysis. This tissue biopsy-independent approach simplifies sample logistics and facilitates the application of liquid biopsy ctDNA testing for evaluation of emerging therapy resistance, opening new avenues for early adaptation of treatment regimens.
Collapse
Affiliation(s)
- Iris van 't Erve
- Department of Pathology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Jamie E Medina
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Alessandro Leal
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Eniko Papp
- Personal Genome Diagnostics, Baltimore, Maryland
| | - Jillian Phallen
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Vilmos Adleff
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Elaine Jiayuee Chiao
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Adith S Arun
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Karen Bolhuis
- Department of Medical Oncology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | | | | | | | - Mark Sausen
- Personal Genome Diagnostics, Baltimore, Maryland
| | | | - Robert B Scharpf
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Cornelis J A Punt
- Department of Medical Oncology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands.,Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Gerrit A Meijer
- Department of Pathology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Victor E Velculescu
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Remond J A Fijneman
- Department of Pathology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| |
Collapse
|
11
|
Puccini A, Martelli V, Pastorino A, Sciallero S, Sobrero A. ctDNA to Guide Treatment of Colorectal Cancer: Ready for Standard of Care? Curr Treat Options Oncol 2023; 24:76-92. [PMID: 36656505 DOI: 10.1007/s11864-022-01048-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2022] [Indexed: 01/20/2023]
Abstract
OPINION STATEMENT Circulating tumor DNA (ctDNA) has already shown clinically relevant results in early-stage colon cancer patient management. Its prognostic value is by far much stronger than that of the available clinico-pathological biomarkers, therefore, has the potential to personalize the treatment after radical surgery through intensifying or de-intensifying the adjuvant therapy. Further developments and improvements should be pursued by (a) optimizing ctDNA assays and (b) validating its clinical utility in the different stages of this disease. Two main avenues of ctDNA testing are being pursued: tumor-informed vs tumor-agnostic assays. Two main clinical trial designs are under study: ctDNA-based strategy and ctDNA-by-treatment interaction. The former needs large sample sizes to address the main questions of the studies; thus, the target delta benefit may be the main challenge in these trial designs. The latter may be challenged by unavoidable contamination bias. To date, several clinical trials are ongoing worldwide. We believe that this large number of trials may provide an excellent common database for the demonstration of surrogacy of ctDNA for the classical 3-year disease-free survival endpoint. This would mark a huge methodological improvement to speed up new drug testing and development in the adjuvant treatment of this disease.
Collapse
Affiliation(s)
- Alberto Puccini
- Medical Oncology Unit 1, IRCCS Ospedale Policlinico San Martino, 16132, Genoa, Italy
- Department of Internal Medicine and Medical Specialties (DIMI), School of Medicine, University of Genoa, 16132, Genoa, Italy
| | - Valentino Martelli
- Medical Oncology Unit 1, IRCCS Ospedale Policlinico San Martino, 16132, Genoa, Italy
- Department of Internal Medicine and Medical Specialties (DIMI), School of Medicine, University of Genoa, 16132, Genoa, Italy
| | - Alessandro Pastorino
- Medical Oncology Unit 1, IRCCS Ospedale Policlinico San Martino, 16132, Genoa, Italy
| | - Stefania Sciallero
- Medical Oncology Unit 1, IRCCS Ospedale Policlinico San Martino, 16132, Genoa, Italy
| | - Alberto Sobrero
- Medical Oncology Unit 1, IRCCS Ospedale Policlinico San Martino, 16132, Genoa, Italy.
| |
Collapse
|
12
|
Jiang H, Huang F, Yang Y, Chen X, Shen M, Zhang C, Pan B, Wang B, Guo W. Postoperative circulating tumor DNA testing based on tumor naïve strategy after liver metastasis surgery in colorectal cancer patients. Front Oncol 2023; 13:1153685. [PMID: 37213289 PMCID: PMC10198283 DOI: 10.3389/fonc.2023.1153685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 04/11/2023] [Indexed: 05/23/2023] Open
Abstract
Objective There is still a lack of highly sensitive methods for monitoring recurrence of colorectal cancer patients after liver metastasis surgery. The aim of this study was to evaluate the prognostic value of tumor-naive ctDNA detection after resection of colorectal liver metastases (CRLM). Methods Patients with resectable CRLM were prospectively enrolled. Based on the tumor-naive strategy, NGS panels containing 15 colorectal cancer hotspot mutated genes were used to detect ctDNA 3-6 weeks after surgery. Results A total of 67 patients were included in the study, and the positive rate of postoperative ctDNA was 77.6% (52/67). Patients with positive ctDNA had a significantly higher risk of recurrence after surgery (HR 3.596, 95% CI 1.479 to 8.744, P = 0.005), and a higher proportion relapsed within 3 months after surgery (46.7% vs 3.8%). The C-index of postoperative ctDNA in predicting recurrence was higher than that of CRS and postoperative CEA. The nomogram combining CRS and postoperative ctDNA can improve the accuracy of recurrence prediction. Conclusion Tumor-naive ctDNA detection can detect molecular residual lesions in patients with colorectal cancer after liver metastasis, and its prognostic value is superior to conventional clinical factors.
Collapse
Affiliation(s)
- Huiqin Jiang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Fei Huang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yihui Yang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xinning Chen
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Minna Shen
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chunyan Zhang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Laboratory Medicine, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen, China
| | - Baishen Pan
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Laboratory Medicine, Wusong Branch, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Beili Wang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Laboratory Medicine, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen, China
- Department of Laboratory Medicine, Wusong Branch, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wei Guo
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Laboratory Medicine, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen, China
- Department of Laboratory Medicine, Wusong Branch, Zhongshan Hospital, Fudan University, Shanghai, China
- Branch of National Clinical Research Center for Laboratory Medicine, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
- *Correspondence: Wei Guo,
| |
Collapse
|
13
|
Benčurová K, Friske J, Anderla M, Mayrhofer M, Wanek T, Nics L, Egger G, Helbich TH, Hacker M, Haug A, Mitterhauser M, Balber T. CAM-Xenograft Model Provides Preclinical Evidence for the Applicability of [ 68Ga]Ga-Pentixafor in CRC Imaging. Cancers (Basel) 2022; 14:cancers14225549. [PMID: 36428644 PMCID: PMC9688097 DOI: 10.3390/cancers14225549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/24/2022] [Accepted: 11/02/2022] [Indexed: 11/16/2022] Open
Abstract
Colorectal cancer is one of the leading causes of cancer-related deaths worldwide. Increased expression of CXCR4 has been associated with liver metastasis, disease progression, and shortened survival. Using in vitro cell binding studies and the in ovo model, we aimed to investigate the potential of [68Ga]Ga-Pentixafor, a radiotracer specifically targeting human CXCR4, for CRC imaging. Specific membrane binding and internalisation of [68Ga]Ga-Pentixafor was shown for HT29 cells, but not for HCT116 cells. Accordingly, [68Ga]Ga-Pentixafor accumulated specifically in CAM-xenografts derived from HT29 cells, but not in HCT116 xenografts, as determined by µPET/MRI. The CAM-grown xenografts were histologically characterised, demonstrating vascularisation of the graft, preserved expression of human CXCR4, and viability of the tumour cells within the grafts. In vivo viability was further confirmed by µPET/MRI measurements using 2-[18F]FDG as a surrogate for glucose metabolism. [68Ga]Ga-Pentixafor µPET/MRI scans showed distinct radiotracer accumulation in the chick embryonal heart, liver, and kidneys, whereas 2-[18F]FDG uptake was predominantly found in the kidneys and joints of the chick embryos. Our findings suggest that [68Ga]Ga-Pentixafor is an interesting novel radiotracer for CRC imaging that is worth further investigation. Moreover, this study further supports the suitability of the CAM-xenograft model for the initial preclinical evaluation of targeted radiopharmaceuticals.
Collapse
Affiliation(s)
- Katarína Benčurová
- Ludwig Boltzmann Institute Applied Diagnostics, 1090 Vienna, Austria
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Joachim Friske
- Division of Molecular and Structural Preclinical Imaging, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Maximilian Anderla
- Ludwig Boltzmann Institute Applied Diagnostics, 1090 Vienna, Austria
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
- Department for Inorganic Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Manuela Mayrhofer
- School of Medical Engineering and Applied Social Sciences, University of Applied Sciences Upper Austria, 4020 Linz, Austria
- QIMP Team, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, 1090 Vienna, Austria
| | - Thomas Wanek
- Division of Molecular and Structural Preclinical Imaging, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Lukas Nics
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Gerda Egger
- Ludwig Boltzmann Institute Applied Diagnostics, 1090 Vienna, Austria
- Department of Pathology, Medical University of Vienna, 1090 Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
| | - Thomas H. Helbich
- Division of Molecular and Structural Preclinical Imaging, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Marcus Hacker
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Alexander Haug
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
- Christian Doppler Laboratory Applied Metabolomics, 1090 Vienna, Austria
| | - Markus Mitterhauser
- Ludwig Boltzmann Institute Applied Diagnostics, 1090 Vienna, Austria
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
- Department for Inorganic Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
- Correspondence:
| | - Theresa Balber
- Ludwig Boltzmann Institute Applied Diagnostics, 1090 Vienna, Austria
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
14
|
Agirlar Trabzonlu T, Modak M, Horowitz JM. MR Imaging of Mimics of Adnexal Pathology. Magn Reson Imaging Clin N Am 2022; 31:137-148. [DOI: 10.1016/j.mric.2022.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
15
|
Zhang Z, Yi X, Pei Q, Fu Y, Li B, Liu H, Han Z, Chen C, Pang P, Lin H, Gong G, Yin H, Zai H, Chen BT. CT radiomics identifying non-responders to neoadjuvant chemoradiotherapy among patients with locally advanced rectal cancer. Cancer Med 2022; 12:2463-2473. [PMID: 35912919 PMCID: PMC9939108 DOI: 10.1002/cam4.5086] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/05/2022] [Accepted: 05/07/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND AND PURPOSE Early detection of non-response to neoadjuvant chemoradiotherapy (nCRT) for locally advanced colorectal cancer (LARC) remains challenging. We aimed to assess whether pretreatment radiotherapy planning computed tomography (CT) radiomics could distinguish the patients with no response or no downstaging after nCRT from those with response and downstaging after nCRT. MATERIALS AND METHODS Patients with LARC who were treated with nCRT were retrospectively enrolled between March 2009 and March 2019. Traditional radiological characteristics were analyzed by visual inspection and radiomic features were analyzed through computational methods from the pretreatment radiotherapy planning CT images. Differentiation models were constructed using radiomic methods and clinicopathological characteristics for predicting non-response to nCRT. Model performance was assessed for classification efficiency, calibration, discrimination, and clinical application. RESULTS This study enrolled a total of 215 patients, including 151 patients in the training cohort (50 non-responders and 101 responders) and 64 patients in the validation cohort (21 non-responders and 43 responders). For predicting non-response, the model constructed with an ensemble machine learning method had higher performance with area under the curve (AUC) values of 0.92 and 0.89 as compared to the model constructed with the logistic regression method (AUC: 0.72 and 0.71 for the training and validation cohorts, respectively). Both decision curve and calibration curve analyses confirmed that the ensemble machine learning model had higher prediction performance. CONCLUSION Pretreatment CT radiomics achieved satisfying performance in predicting non-response to nCRT and could be helpful to assist in treatment planning for patients with LARC.
Collapse
Affiliation(s)
- Zinan Zhang
- Department of Radiology (Xiangya Hospital)Central South UniversityChangshaHunanP.R. China,Department of Gastroenterology (The Third Xiangya Hospital)Central South UniversityChangshaHunanP.R. China
| | - Xiaoping Yi
- Department of Radiology (Xiangya Hospital)Central South UniversityChangshaHunanP.R. China,National Engineering Research Center of Personalized Diagnostic and Therapeutic TechnologyXiangya HospitalChangshaHunanP.R. China,National Clinical Research Center for Geriatric Disorders (Xiangya Hospital)Central South UniversityChangshaHunanP.R. China,Hunan Key Laboratory of Skin Cancer and PsoriasisChangshaHunanP.R. China,Hunan Engineering Research Center of Skin Health and DiseaseChangshaHunanP.R. China
| | - Qian Pei
- Department of General Surgery (Xiangya Hospital)Central South UniversityChangshaHunanP.R. China
| | - Yan Fu
- Department of Radiology (Xiangya Hospital)Central South UniversityChangshaHunanP.R. China,National Engineering Research Center of Personalized Diagnostic and Therapeutic TechnologyXiangya HospitalChangshaHunanP.R. China
| | - Bin Li
- Department of Oncology (Xiangya Hospital)Central South UniversityChangshaHunanP.R. China
| | - Haipeng Liu
- Department of Radiology (Xiangya Hospital)Central South UniversityChangshaHunanP.R. China
| | - Zaide Han
- Department of Radiology (Xiangya Hospital)Central South UniversityChangshaHunanP.R. China
| | - Changyong Chen
- Department of Radiology (Xiangya Hospital)Central South UniversityChangshaHunanP.R. China
| | - Peipei Pang
- Department of Pharmaceuticals and DiagnosisGE HealthcareChangshaP.R. China
| | - Huashan Lin
- Department of Pharmaceuticals and DiagnosisGE HealthcareChangshaP.R. China
| | - Guanghui Gong
- Department of Pathology, Xiangya HospitalCentral South UniversityChangshaHunanP.R. China
| | - Hongling Yin
- Department of Pathology, Xiangya HospitalCentral South UniversityChangshaHunanP.R. China
| | - Hongyan Zai
- Department of General Surgery (Xiangya Hospital)Central South UniversityChangshaHunanP.R. China
| | - Bihong T. Chen
- Department of Diagnostic RadiologyCity of Hope National Medical CenterDuarteCaliforniaUSA
| |
Collapse
|
16
|
Mbanu P, Saunders MP, Mistry H, Mercer J, Malcomson L, Yousif S, Price G, Kochhar R, Renehan AG, van Herk M, Osorio EV. Clinical and radiomics prediction of complete response in rectal cancer pre-chemoradiotherapy. Phys Imaging Radiat Oncol 2022; 23:48-53. [PMID: 35800297 PMCID: PMC9253904 DOI: 10.1016/j.phro.2022.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 06/18/2022] [Accepted: 06/20/2022] [Indexed: 11/11/2022] Open
Abstract
Background and purpose Patients with rectal cancer could avoid major surgery if they achieve clinical complete response (cCR) post neoadjuvant treatment. Therefore, prediction of treatment outcomes before treatment has become necessary to select the best neo-adjuvant treatment option. This study investigates clinical and radiomics variables' ability to predict cCR in patients pre chemoradiotherapy. Materials and methods Using the OnCoRe database, we recruited a matched cohort of 304 patients (152 with cCR; 152 without cCR) deriving training (N = 200) and validation (N = 104) sets. We collected pre-treatment MR (magnetic resonance) images, demographics and blood parameters (haemoglobin, neutrophil, lymphocyte, alkaline phosphate and albumin). We segmented the gross tumour volume on T2 Weighted MR Images and extracted 1430 stable radiomics features per patient. We used principal component analysis (PCA) and receiver operating characteristic area under the curve (ROC AUC) to reduce dimensionality and evaluate the models produced. Results Using Logistic regression analysis, PCA-derived combined model (radiomics plus clinical variables) gave a ROC AUC of 0.76 (95% CI: 0.69-0.83) in the training set and 0.68 (95% CI 0.57-0.79) in the validation set. The clinical only model achieved an AUC of 0.73 (95% CI 0.66-0.80) and 0.62 (95% CI 0.51-0.74) in the training and validation set, respectively. The radiomics model had an AUC of 0.68 (95% CI 0.61-0.75) and 0.66 (95% CI 0.56-0.77) in the training and validation sets. Conclusion The predictive characteristics of both clinical and radiomics variables for clinical complete response remain modest but radiomics predictability is improved with addition of clinical variables.
Collapse
Affiliation(s)
- Peter Mbanu
- Department of Clinical Oncology, Christie Hospital NHS Foundation Trust, Manchester, United Kingdom
| | - Mark P. Saunders
- Department of Clinical Oncology, Christie Hospital NHS Foundation Trust, Manchester, United Kingdom
| | - Hitesh Mistry
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
- Division of Pharmacy, University of Manchester, Manchester, United Kingdom
| | - Joe Mercer
- Department of Radiological Oncology, Christie Hospital NHS Foundation Trust, Manchester, United Kingdom
| | - Lee Malcomson
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
- Colorectal and Peritoneal Oncology Centre, Christie Hospital NHS Foundation Trust, Manchester, United Kingdom
| | - Saif Yousif
- Department of Clinical Oncology, Lancashire Teaching Hospital, Preston, United Kingdom
| | - Gareth Price
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Rohit Kochhar
- Department of Radiological Oncology, Christie Hospital NHS Foundation Trust, Manchester, United Kingdom
| | - Andrew G. Renehan
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
- Colorectal and Peritoneal Oncology Centre, Christie Hospital NHS Foundation Trust, Manchester, United Kingdom
| | - Marcel van Herk
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Eliana Vasquez Osorio
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
17
|
Predicting Colorectal Cancer Using Residual Deep Learning with Nursing Care. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:7996195. [PMID: 35291423 PMCID: PMC8898865 DOI: 10.1155/2022/7996195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/02/2021] [Accepted: 02/03/2022] [Indexed: 02/02/2023]
Abstract
Presently, colorectal cancer is the second most dangerous cancer; around 13% of people have been affected; and it requires an effective image analysis and earlier cancer prediction (IAECP) system for reducing the mortality rate. Here, the IAECP system uses MRI radio imaging for predicting colorectal cancer. During this process, high- and low-level features are required to examine cancer in an earlier stage. Due to the limitation of the conventional feature extraction process, both features are difficult to extract from cancer suffered locations. Hence, a deep learning system (DLS) is used to examine the entire bowel MRI image to identify the cancer-affected location, feature extraction, and feature training process. Furthermore, the DLS-based IAECP system helps improve the overall colorectal cancer identification accuracy for further process. The derived bowel features are trained by applying the residual convolution network, which minimizes the error between predicted and actual values. Finally, the test query images are compared with the trained image by applying the sum, which is more absolute to the cross-correlation template feature matching (SACC) algorithm. The experimental process is performed using 100,000 histological data sets, which is considered a publicly available data set. Moreover, the introduced method does not use generic features, whereas the deep learning features help improve the overall IAECP prediction rate (99.8%) ratio as predicted at lab-scale analysis.
Collapse
|
18
|
A Liquid Biopsy-Based Approach for Monitoring Treatment Response in Post-Operative Colorectal Cancer Patients. Int J Mol Sci 2022; 23:ijms23073774. [PMID: 35409133 PMCID: PMC8998310 DOI: 10.3390/ijms23073774] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 02/06/2023] Open
Abstract
Monitoring the therapeutic response of colorectal cancer (CRC) patients is crucial to determine treatment strategies; therefore, we constructed a liquid biopsy-based approach for tracking tumor dynamics in non-metastatic (nmCRC) and metastatic (mCRC) patients (n = 55). Serial blood collections were performed during chemotherapy for measuring the amount and the global methylation pattern of cell-free DNA (cfDNA), the promoter methylation of SFRP2 and SDC2 genes, and the plasma homocysteine level. The average cfDNA amount was higher (p < 0.05) in nmCRC patients with recurrent cancer (30.4 ± 17.6 ng) and mCRC patients with progressive disease (PD) (44.3 ± 34.5 ng) compared to individuals with remission (13.2 ± 10.0 ng) or stable disease (12.5 ± 3.4 ng). More than 10% elevation of cfDNA from first to last sample collection was detected in all recurrent cases and 92% of PD patients, while a decrease was observed in most patients with remission. Global methylation level changes indicated a decline (75.5 ± 3.4% vs. 68.2 ± 8.4%), while the promoter methylation of SFRP2 and SDC2 and homocysteine level (10.9 ± 3.4 µmol/L vs. 13.7 ± 4.3 µmol/L) presented an increase in PD patients. In contrast, we found exact opposite changes in remission cases. Our study offers a more precise blood-based approach to monitor the treatment response to different chemotherapies than the currently used markers.
Collapse
|
19
|
The Value of 18F-FDG-PET-CT Imaging in Treatment Evaluation of Colorectal Liver Metastases: A Systematic Review. Diagnostics (Basel) 2022; 12:diagnostics12030715. [PMID: 35328267 PMCID: PMC8947194 DOI: 10.3390/diagnostics12030715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/04/2022] [Accepted: 03/05/2022] [Indexed: 02/01/2023] Open
Abstract
(1) Background: Up to 50% of patients with colorectal cancer either have synchronous colorectal liver metastases (CRLM) or develop CRLM over the course of their disease. Surgery and thermal ablation are the most common local treatment options of choice. Despite development and improvement in local treatment options, (local) recurrence remains a significant clinical problem. Many different imaging modalities can be used in the follow-up after treatment of CRLM, lacking evidence-based international consensus on the modality of choice. In this systematic review, we evaluated 18F-FDG-PET-CT performance after surgical resection, thermal ablation, radioembolization, and neoadjuvant and palliative chemotherapy based on current published literature. (2) Methods: A systematic literature search was performed on the PubMed database. (3) Results: A total of 31 original articles were included in the analysis. Only one suitable study was found describing the role of 18F-FDG-PET-CT after surgery, which makes it hard to draw a firm conclusion. 18F-FDG-PET-CT showed to be of additional value in the follow-up after thermal ablation, palliative chemotherapy, and radioembolization. 18F-FDG-PET-CT was found to be a poor to moderate predictor of pathologic response after neoadjuvant chemotherapy. (4) Conclusions: 18F-FDG-PET-CT is superior to conventional morphological imaging modalities in the early detection of residual disease after thermal ablation and in the treatment evaluation and prediction of prognosis during palliative chemotherapy and after radioembolization, and 18F-FDG-PET-CT could be considered in selected cases after neoadjuvant chemotherapy and surgical resection.
Collapse
|
20
|
Dependence of Structural, Morphological and Magnetic Properties of Manganese Ferrite on Ni-Mn Substitution. Int J Mol Sci 2022; 23:ijms23063097. [PMID: 35328516 PMCID: PMC8949668 DOI: 10.3390/ijms23063097] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/01/2022] [Accepted: 03/11/2022] [Indexed: 02/01/2023] Open
Abstract
This paper presents the influence of Mn2+ substitution by Ni2+ on the structural, morphological and magnetic properties of Mn1−xNixFe2O4@SiO2 (x = 0, 0.25, 0.50, 0.75, 1.00) nanocomposites (NCs) obtained by a modified sol-gel method. The Fourier transform infrared spectra confirm the formation of a SiO2 matrix and ferrite, while the X-ray diffraction patterns show the presence of poorly crystalline ferrite at low annealing temperatures and highly crystalline mixed cubic spinel ferrite accompanied by secondary phases at high annealing temperatures. The lattice parameters gradually decrease, while the crystallite size, volume, and X-ray density of Mn1−xNixFe2O4@SiO2 NCs increase with increasing Ni content and follow Vegard’s law. The saturation magnetization, remanent magnetization, squareness, magnetic moment per formula unit, and anisotropy constant increase, while the coercivity decreases with increasing Ni content. These parameters are larger for the samples with the same chemical formula, annealed at higher temperatures. The NCs with high Ni content show superparamagnetic-like behavior, while the NCs with high Mn content display paramagnetic behavior.
Collapse
|
21
|
Yadav K, Cree I, Field A, Vielh P, Mehrotra R. Importance of Cytopathologic Diagnosis in Early Cancer Diagnosis in Resource-Constrained Countries. JCO Glob Oncol 2022; 8:e2100337. [PMID: 35213215 PMCID: PMC8887942 DOI: 10.1200/go.21.00337] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/22/2021] [Accepted: 01/13/2022] [Indexed: 12/15/2022] Open
Abstract
PURPOSE The rising cancer burden in low- and middle-income countries (LMICs) stresses already weak health care systems and poses unique challenges. In resource-constrained LMICs and in circumstances where most patients must pay out of pocket for diagnostic tests, these may not be available or affordable for many. Cytopathology provides a simple, inexpensive, standardized, and low-technology diagnostic procedure that is increasingly used as an effective tool to address the hurdles faced in cancer control programs in LMICs. This review explores the potential role of cytopathology in LMICs in reducing the cancer burden. METHODS This review studied the existing literature across the globe regarding the utilization of cytopathology as a diagnostic or screening tool for various types of malignancies as well as its advantages and disadvantages, depending on the local situation. RESULTS Apart from the usefulness of cytopathology, this review also sheds light on the barriers to using cytopathology in LMICs. Most recently, SARS-CoV-2 has produced several unique challenges for cytopathology. These are being met with innovative measures to combat the effects of the pandemic and ensure the safe delivery of essential cytopathology services. CONCLUSION The usefulness of cytopathologic techniques has been demonstrated via various studies, even during the recent pandemic. If cytology is to be used appropriately, the focus needs to be on integrating it into the national cancer screening and diagnostic programs as well as providing well-trained human resources.
Collapse
Affiliation(s)
- Kavita Yadav
- Centre of Social Medicine & Community Health, JNU, New Delhi, India
| | - Ian Cree
- WHO Classification of Tumours, International Agency for Research on Cancer (IARC), World Health Organization, Lyon, France
| | - Andrew Field
- Department of Anatomical Pathology, University of NSW and Notre Dame University Medical Schools, St Vincent's Hospital, Sydney, New South Wales, Australia
| | | | - Ravi Mehrotra
- Chip Foundation, Noida, India
- Rollins School of Public Health, Emory University, Atlanta, GA
| |
Collapse
|
22
|
Development of Preclinical Ultrasound Imaging Techniques to Identify and Image Sentinel Lymph Nodes in a Cancerous Animal Model. Cancers (Basel) 2022; 14:cancers14030561. [PMID: 35158829 PMCID: PMC8833694 DOI: 10.3390/cancers14030561] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 01/19/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Bowel cancer is the fourth most common cancer in the UK. Treatment is dominated by major surgery because current imaging modalities cannot accurately determine lymph node involvement or vascular invasion. Although potentially curative, surgery carries a high risk of short- and long-term morbidity, including stoma formation. Optimized pre-treatment imaging would decrease the number of bowel cancer patients requiring major surgery. Such imaging would also be equally applicable to other cancers where local resection could significantly improve patient quality of life without compromising long-term outcomes (e.g., melanoma, head and neck cancers, gastro-esophageal, bladder). In this study, we created two mouse models (tumor and control) and used the resolution of high-frequency ultrasound imaging and parameters calculated from dynamically contrast-enhanced ultrasound to predict the likelihood of draining lymph nodes to be involved in the disease. Abstract Lymph nodes (LNs) are believed to be the first organs targeted by colorectal cancer cells detached from a primary solid tumor because of their role in draining interstitial fluids. Better detection and assessment of these organs have the potential to help clinicians in stratification and designing optimal design of oncological treatments for each patient. Whilst highly valuable for the detection of primary tumors, CT and MRI remain limited for the characterization of LNs. B-mode ultrasound (US) and contrast-enhanced ultrasound (CEUS) can improve the detection of LNs and could provide critical complementary information to MRI and CT scans; however, the European Federation of Societies for Ultrasound in Medicine and Biology (EFSUMB) guidelines advise that further evidence is required before US or CEUS can be recommended for clinical use. Moreover, knowledge of the lymphatic system and LNs is relatively limited, especially in preclinical models. In this pilot study, we have created a mouse model of metastatic cancer and utilized 3D high-frequency ultrasound to assess the volume, shape, and absence of hilum, along with CEUS to assess the flow dynamics of tumor-free and tumor-bearing LNs in vivo. The aforementioned parameters were used to create a scoring system to predict the likelihood of a disease-involved LN before establishing post-mortem diagnosis with histopathology. Preliminary results suggest that a sum score of parameters may provide a more accurate diagnosis than the LN size, the single parameter currently used to predict the involvement of an LN in disease.
Collapse
|
23
|
Ottaiano A, Caraglia M. Bevacizumab-Induced Tumor Vasculature Normalization and Sequential Chemotherapy in Colorectal Cancer: An Interesting and Still Open Question. Front Oncol 2021; 11:751986. [PMID: 34631590 PMCID: PMC8497981 DOI: 10.3389/fonc.2021.751986] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/06/2021] [Indexed: 01/02/2023] Open
Affiliation(s)
| | - Michele Caraglia
- Department of Precision Medicine, University "L. Vanvitelli" of Naples, Naples, Italy
| |
Collapse
|
24
|
Hu J, Guo J, Pei Y, Hu P, Li M, Sack I, Li W. Rectal Tumor Stiffness Quantified by In Vivo Tomoelastography and Collagen Content Estimated by Histopathology Predict Tumor Aggressiveness. Front Oncol 2021; 11:701336. [PMID: 34485136 PMCID: PMC8415020 DOI: 10.3389/fonc.2021.701336] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/29/2021] [Indexed: 01/23/2023] Open
Abstract
PURPOSE To investigate the significance of collagen in predicting the aggressiveness of rectal tumors in patients, examined in vivo based on tomoelastography quantified stiffness and ex vivo by histologically measured collagen volume fraction (CVF). EXPERIMENTAL DESIGN 170 patients with suspected rectal cancer were prospectively enrolled and underwent preoperative magnetic resonance imaging (MRI) and rectal tomoelastography, a technique based on multifrequency magnetic resonance elastography. Histopathologic analysis identified eighty patients with rectal cancer who were divided into subgroups by tumor-node (TN) stage, prognostic stage, and risk level. Rectal tumor stiffness was correlated with histopathologic CVF. Area-under-the-curve (AUC) and contingency analysis were used to evaluate the performance of rectal stiffness in distinguishing tumor stages which was compared to standard clinical MRI. RESULTS In vivo tomoelastography revealed that rectal tumor stiffened significantly with increased TN stage (p<0.05). Tumors with poorly differentiated status, perineural and lymphovascular invasion also displayed higher stiffness than well-to-moderately differentiated, noninvasive tumors (all p<0.05). Similar to in vivo stiffness, CVF indicated an abnormally high collagen content in tumors with perineural invasion and poor differentiation status. CVF was also positively correlated with stiffness (p<0.05). Most importantly, both stiffness (AUROC: 0.82) and CVF (AUROC: 0.89) demonstrated very good diagnostic accuracy in detecting rectal tumors that have high risk for progressing to an aggressive state with poorer prognosis. CONCLUSION In human rectal carcinomas, overexpression of collagen is correlated with increased tissue stiffness and high risk for tumor advancing more aggressively. In vivo tomoelastography quantifies rectal tumor stiffness which improves the diagnostic performance of standard MRI in the assessment of lymph nodes metastasis. Therefore, in vivo stiffness mapping by tomoelastography can predict rectal tumor aggressiveness and add diagnostic value to MRI.
Collapse
Affiliation(s)
- Jiaxi Hu
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Jing Guo
- Department of Radiology, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Yigang Pei
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Ping Hu
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Mengsi Li
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Ingolf Sack
- Department of Radiology, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Wenzheng Li
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
25
|
Loupakis F, Sharma S, Derouazi M, Murgioni S, Biason P, Rizzato MD, Rasola C, Renner D, Shchegrova S, Koyen Malashevich A, Malhotra M, Sethi H, Zimmermann BG, Aleshin A, Moshkevich S, Billings PR, Sedgwick JD, Schirripa M, Munari G, Cillo U, Pilati P, Dei Tos AP, Zagonel V, Lonardi S, Fassan M. Detection of Molecular Residual Disease Using Personalized Circulating Tumor DNA Assay in Patients With Colorectal Cancer Undergoing Resection of Metastases. JCO Precis Oncol 2021; 5:PO.21.00101. [PMID: 34327297 PMCID: PMC8315303 DOI: 10.1200/po.21.00101] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/16/2021] [Accepted: 06/16/2021] [Indexed: 02/07/2023] Open
Abstract
PURPOSE More than 50% of patients with stage IV colorectal cancer (metastatic colorectal cancer [mCRC]) relapse postresection. The efficacy of postoperative systemic treatment is limited in this setting. Thus, these patients would greatly benefit from the use of a reliable prognostic biomarker, such as circulating tumor DNA (ctDNA) to identify minimal or molecular residual disease (MRD). PATIENTS AND METHODS We analyzed a cohort of 112 patients with mCRC who had undergone metastatic resection with curative intent as part of the PREDATOR clinical trial. The study evaluated the prognostic value of ctDNA, correlating MRD status postsurgery with clinical outcomes by using a personalized and tumor-informed ctDNA assay (bespoke multiple PCR, next-generation sequencing assay). Postresection, systemic therapy was given to 39.2% of the patients at the discretion of the treating physician. RESULTS Postsurgical, MRD positivity was observed in 54.4% (61 of 112) of patients, of which 96.7% (59 of 61) progressed at the time of data cutoff (hazard ratio [HR]: 5.8; 95% CI, 3.5 to 9.7; P < .001). MRD-positive status was also associated with an inferior overall survival: HR: 16.0; 95% CI, 3.9 to 68.0; P < .001. At the time of analyses, 96% (49 of 51) of patients were alive in the MRD-negative arm compared with 52.4% (32 of 61) in the MRD-positive arm. Patients who did not receive systemic therapy and were MRD-negative in the combined ctDNA analysis at two time points had an overall survival of 100%. In the multivariate analysis, ctDNA-based MRD status was the most significant prognostic factor associated with disease-free survival (HR: 5.78; 95% CI, 3.34 to 10.0; P < .001). CONCLUSION This study confirms that in mCRC undergoing resection of metastases, postoperative MRD analysis is a strong prognostic biomarker. It holds promises for being implemented in clinical decision making, informing clinical trial design, and further translational research.
Collapse
Affiliation(s)
- Fotios Loupakis
- Oncology Unit 1, Department Oncology, Veneto Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Padua, Veneto, Italy
| | | | - Madiha Derouazi
- Cancer Immunology and Immune Modulation, Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT
- AMAL Therapeutics, Genève, Switzerland
| | - Sabina Murgioni
- Oncology Unit 1, Department Oncology, Veneto Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Padua, Veneto, Italy
| | - Paola Biason
- Oncology Unit 1, Department Oncology, Veneto Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Padua, Veneto, Italy
| | - Mario Domenico Rizzato
- Oncology Unit 1, Department Oncology, Veneto Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Padua, Veneto, Italy
| | - Cosimo Rasola
- Oncology Unit 1, Department Oncology, Veneto Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Padua, Veneto, Italy
- Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
| | | | | | | | | | | | | | | | | | | | - Jonathon D. Sedgwick
- Cancer Immunology and Immune Modulation, Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT
| | - Marta Schirripa
- Oncology Unit 1, Department Oncology, Veneto Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Padua, Veneto, Italy
| | - Giada Munari
- Oncology Unit 1, Department Oncology, Veneto Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Padua, Veneto, Italy
| | - Umberto Cillo
- Hepatobiliary Surgery and Liver Transplant Unit, Department of Surgery, Oncology and Gastroenterology, University of Padua, Italy
| | - Pierluigi Pilati
- Unit of Surgical Oncology of the Digestive Tract, Veneto Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Padua, Italy
| | - Angelo Paolo Dei Tos
- Unit of Surgical Pathology, Department of Medicine (DIMED), University of Padua, Padua, Italy
| | - Vittorina Zagonel
- Oncology Unit 1, Department Oncology, Veneto Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Padua, Veneto, Italy
| | - Sara Lonardi
- Oncology Unit 3, Department of Oncology, Veneto Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Castelfranco Veneto, Veneto, Italy
- Early Phase Clinical Trial Unit, Department of Oncology, Veneto Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Padua, Veneto, Italy
| | - Matteo Fassan
- Unit of Surgical Pathology, Department of Medicine (DIMED), University of Padua, Padua, Italy
- Veneto Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Padua, Veneto, Italy
| |
Collapse
|
26
|
Bonde A, Daly S, Kirsten J, Kondapaneni S, Mellnick V, Menias CO, Katabathina VS. Human Gut Microbiota-associated Gastrointestinal Malignancies: A Comprehensive Review. Radiographics 2021; 41:1103-1122. [PMID: 33989072 DOI: 10.1148/rg.2021200168] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The human gastrointestinal tract houses trillions of microbes. The gut and various types of microorganisms, including bacteria, viruses, fungi, and archaea, form a complex ecosystem known as the gut microbiota, and the whole genome of the gut microbiota is referred to as the gut microbiome. The gut microbiota is essential for homeostasis and the overall well-being of a person and is increasingly considered an adjunct "virtual organ," with a complexity level comparable to that of the other organ systems. The gut microbiota plays an essential role in nutrition, local mucosal homeostasis, inflammation, and the mucosal immune system. An imbalanced state of the gut microbiota, known as dysbiosis, can predispose to development of various gastrointestinal malignancies through three speculated pathogenic mechanisms: (a) direct cytotoxic effects with damage to the host DNA, (b) disproportionate proinflammatory signaling inducing inflammation, and (c) activation of tumorigenic pathways or suppression of tumor-suppressing pathways. Several microorganisms, including Helicobacter pylori, Epstein-Barr virus, human papillomavirus, Mycoplasma species, Escherichia coli, and Streptococcus bovis, are associated with gastrointestinal malignancies such as esophageal adenocarcinoma, gastric adenocarcinoma, gastric mucosa-associated lymphoid tissue lymphoma, colorectal adenocarcinoma, and anal squamous cell carcinoma. Imaging plays a pivotal role in diagnosis and management of microbiota-associated gastrointestinal malignancies. Appropriate use of probiotics, fecal microbiota transplantation, and overall promotion of the healthy gut are ongoing areas of research for prevention and treatment of malignancies. Online supplemental material is available for this article. ©RSNA, 2021.
Collapse
Affiliation(s)
- Apurva Bonde
- From the Department of Radiology, University of Texas Health at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229 (A.B., S.D., J.K., V.S.K.); University of Texas at Austin, Austin, Tex (S.K.); Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (V.M.); and Department of Radiology, Mayo Clinic, Scottsdale, Ariz (C.O.M.)
| | - Sean Daly
- From the Department of Radiology, University of Texas Health at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229 (A.B., S.D., J.K., V.S.K.); University of Texas at Austin, Austin, Tex (S.K.); Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (V.M.); and Department of Radiology, Mayo Clinic, Scottsdale, Ariz (C.O.M.)
| | - Julia Kirsten
- From the Department of Radiology, University of Texas Health at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229 (A.B., S.D., J.K., V.S.K.); University of Texas at Austin, Austin, Tex (S.K.); Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (V.M.); and Department of Radiology, Mayo Clinic, Scottsdale, Ariz (C.O.M.)
| | - Sainath Kondapaneni
- From the Department of Radiology, University of Texas Health at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229 (A.B., S.D., J.K., V.S.K.); University of Texas at Austin, Austin, Tex (S.K.); Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (V.M.); and Department of Radiology, Mayo Clinic, Scottsdale, Ariz (C.O.M.)
| | - Vincent Mellnick
- From the Department of Radiology, University of Texas Health at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229 (A.B., S.D., J.K., V.S.K.); University of Texas at Austin, Austin, Tex (S.K.); Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (V.M.); and Department of Radiology, Mayo Clinic, Scottsdale, Ariz (C.O.M.)
| | - Christine O Menias
- From the Department of Radiology, University of Texas Health at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229 (A.B., S.D., J.K., V.S.K.); University of Texas at Austin, Austin, Tex (S.K.); Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (V.M.); and Department of Radiology, Mayo Clinic, Scottsdale, Ariz (C.O.M.)
| | - Venkata S Katabathina
- From the Department of Radiology, University of Texas Health at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229 (A.B., S.D., J.K., V.S.K.); University of Texas at Austin, Austin, Tex (S.K.); Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (V.M.); and Department of Radiology, Mayo Clinic, Scottsdale, Ariz (C.O.M.)
| |
Collapse
|
27
|
Koh DM, Ba-Ssalamah A, Brancatelli G, Fananapazir G, Fiel MI, Goshima S, Ju SH, Kartalis N, Kudo M, Lee JM, Murakami T, Seidensticker M, Sirlin CB, Tan CH, Wang J, Yoon JH, Zeng M, Zhou J, Taouli B. Consensus report from the 9 th International Forum for Liver Magnetic Resonance Imaging: applications of gadoxetic acid-enhanced imaging. Eur Radiol 2021; 31:5615-5628. [PMID: 33523304 PMCID: PMC8270799 DOI: 10.1007/s00330-020-07637-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/17/2020] [Accepted: 12/16/2020] [Indexed: 12/14/2022]
Abstract
Objectives The 9th International Forum for Liver Magnetic Resonance Imaging (MRI) was held in Singapore in September 2019, bringing together radiologists and allied specialists to discuss the latest developments in and formulate consensus statements for liver MRI, including the applications of gadoxetic acid–enhanced imaging. Methods As at previous Liver Forums, the meeting was held over 2 days. Presentations by the faculty on days 1 and 2 and breakout group discussions on day 1 were followed by delegate voting on consensus statements presented on day 2. Presentations and discussions centered on two main meeting themes relating to the use of gadoxetic acid–enhanced MRI in primary liver cancer and metastatic liver disease. Results and conclusions Gadoxetic acid–enhanced MRI offers the ability to monitor response to systemic therapy and to assist in pre-surgical/pre-interventional planning in liver metastases. In hepatocellular carcinoma, gadoxetic acid–enhanced MRI provides precise staging information for accurate treatment decision-making and follow-up post therapy. Gadoxetic acid–enhanced MRI also has potential, currently investigational, indications for the functional assessment of the liver and the biliary system. Additional voting sessions at the Liver Forum debated the role of multidisciplinary care in the management of patients with liver disease, evidence to support the use of abbreviated imaging protocols, and the importance of standardizing nomenclature in international guidelines in order to increase the sharing of scientific data and improve the communication between centers. Key Points • Gadoxetic acid–enhanced MRI is the preferred imaging method for pre-surgical or pre-interventional planning for liver metastases after systemic therapy. • Gadoxetic acid–enhanced MRI provides accurate staging of HCC before and after treatment with locoregional/biologic therapies. • Abbreviated protocols for gadoxetic acid–enhanced MRI offer potential time and cost savings, but more evidence is necessary. The use of gadoxetic acid–enhanced MRI for the assessment of liver and biliary function is under active investigation. Supplementary Information The online version contains supplementary material available at 10.1007/s00330-020-07637-4.
Collapse
Affiliation(s)
- Dow-Mu Koh
- Department of Diagnostic Radiology, Royal Marsden Hospital, Sutton, UK.
| | - Ahmed Ba-Ssalamah
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Giuseppe Brancatelli
- Dipartimento di Biomedicina, Neuroscienze e Diagnostica avanzata (BiND), University of Palermo, Palermo, Italy
| | | | - M Isabel Fiel
- Department of Pathology, Molecular and Cell Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Satoshi Goshima
- Department of Diagnostic Radiology & Nuclear Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Sheng-Hong Ju
- Department of Radiology, Zhongda Hospital, Southeast University, Nanjing, People's Republic of China
| | - Nikolaos Kartalis
- Department of Radiology Huddinge, Karolinska University Hospital, Stockholm, Sweden.,Division of Radiology, CLINTEC, Karolinska Institutet, Stockholm, Sweden
| | - Masatoshi Kudo
- Department of Hepatology and Gastroenterology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Jeong Min Lee
- Department of Radiology, College of Medicine, Seoul National University, Seoul, South Korea
| | - Takamichi Murakami
- Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Max Seidensticker
- Klinik und Poliklinik für Radiologie, Klinikum der Universität München, Munich, Germany
| | - Claude B Sirlin
- Department of Radiology, University of California San Diego, San Diego, CA, USA
| | - Cher Heng Tan
- Department of Diagnostic Radiology, Tan Tock Seng Hospital, Lee Kong Chian School of Medicine, Singapore, Singapore
| | - Jin Wang
- Department of Radiology, Third Affiliated Hospital of Sun Yat Sen University, Guangzhou, People's Republic of China
| | - Jeong Hee Yoon
- Department of Radiology, College of Medicine, Seoul National University, Seoul, South Korea
| | - Mengsu Zeng
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Jian Zhou
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Bachir Taouli
- Department of Diagnostic, Molecular, and Interventional Radiology, BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
28
|
Kumar P, Kumar V. Role of NMR Metabolomics and MR Imaging in Colon Cancer. COLON CANCER DIAGNOSIS AND THERAPY 2021:43-66. [DOI: 10.1007/978-3-030-63369-1_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
29
|
Kudou M, Kosuga T, Otsuji E. Artificial intelligence in gastrointestinal cancer: Recent advances and future perspectives. Artif Intell Gastroenterol 2020; 1:71-85. [DOI: 10.35712/aig.v1.i4.71] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 10/28/2020] [Accepted: 11/12/2020] [Indexed: 02/06/2023] Open
Abstract
Artificial intelligence (AI) using machine or deep learning algorithms is attracting increasing attention because of its more accurate image recognition ability and prediction performance than human-aid analyses. The application of AI models to gastrointestinal (GI) clinical oncology has been investigated for the past decade. AI has the capacity to automatically detect and diagnose GI tumors with similar diagnostic accuracy to expert clinicians. AI may also predict malignant potential, such as tumor histology, metastasis, patient survival, resistance to cancer treatments and the molecular biology of tumors, through image analyses of radiological or pathological imaging data using complex deep learning models beyond human cognition. The introduction of AI-assisted diagnostic systems into clinical settings is expected in the near future. However, limitations associated with the evaluation of GI tumors by AI models have yet to be resolved. Recent studies on AI-assisted diagnostic models of gastric and colorectal cancers in the endoscopic, pathological, and radiological fields were herein reviewed. The limitations and future perspectives for the application of AI systems in clinical settings have also been discussed. With the establishment of a multidisciplinary team containing AI experts in each medical institution and prospective studies, AI-assisted medical systems will become a promising tool for GI cancer.
Collapse
Affiliation(s)
- Michihiro Kudou
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
- Department of Surgery, Kyoto Okamoto Memorial Hospital, Kyoto 613-0034, Japan
| | - Toshiyuki Kosuga
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
- Department of Surgery, Saiseikai Shiga Hospital, Ritto 520-3046, Japan
| | - Eigo Otsuji
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| |
Collapse
|
30
|
Loupakis F, Antonuzzo L, Bachet JB, Kuan FC, Macarulla T, Pietrantonio F, Xu RH, Taniguchi H, Winder T, Yuki S, Zeng S, Bekaii-Saab T. Practical considerations in the use of regorafenib in metastatic colorectal cancer. Ther Adv Med Oncol 2020; 12:1758835920956862. [PMID: 33193826 PMCID: PMC7607787 DOI: 10.1177/1758835920956862] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 08/10/2020] [Indexed: 12/13/2022] Open
Abstract
Over the past 20 years, management of patients with metastatic colorectal cancer (mCRC) has improved considerably, leading to increased overall survival and more patients eligible for third- or later-line therapy. Currently, two oral therapies are recommended in the third-line treatment of mCRC, regorafenib and trifluridine/tipiracil. Selecting the most appropriate treatment in the third-line setting poses different challenges compared with treatment selection at earlier stages. Therefore, it is important for physicians to understand and differentiate between available treatment options and to communicate the benefits and challenges of these to patients. In this narrative review, practical information on regorafenib is provided to aid physicians in their decision-making and patient communications in daily practice. We discuss the importance of appropriate patient selection and adverse events management through close patient monitoring and dose adjustments to ensure patients stay on treatment for longer and receive as much benefit as possible. We also highlight key physician-patient communication points to facilitate shared decision-making.
Collapse
Affiliation(s)
- Fotios Loupakis
- Unit of Oncology 1, Department of Clinical and Experimental Oncology, Istituto Oncologico Veneto, IRCCS, Padua, Italy
| | - Lorenzo Antonuzzo
- Medical Oncology Unit, Azienda Ospedaliero Universitaria Careggi, Florence, Italy
| | - Jean-Baptiste Bachet
- Sorbonne Université, Service d’hépato-gastro-entérologie, Hôpital Pitié Salpêtrière – Paris 6, APHP, Paris, France
| | - Feng-Che Kuan
- Department of Hematology and Oncology, Chang-Gung Memorial Hospital, Chiayi, Taiwan
| | - Teresa Macarulla
- Medical Oncology Department, University Hospital of Vall d’Hebron, Barcelona, Spain
| | - Filippo Pietrantonio
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
- Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy
| | - Rui-Hua Xu
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Hiroya Taniguchi
- Department of GI Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Thomas Winder
- Department of Internal Medicine II, Hematology and Oncology, Academic Teaching Hospital Feldkirch, Feldkirch, Austria
- Swiss Tumor Molecular Institute, Zürich, Switzerland
| | - Satoshi Yuki
- Department of Gastroenterology and Hepatology, Hokkaido University Hospital, Sapporo, Japan
| | - Shan Zeng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Tanios Bekaii-Saab
- Department of Hematology and Medical Oncology, Mayo Clinic, Phoenix, AZ, USA
| |
Collapse
|
31
|
A Review of GC-Based Analysis of Non-Invasive Biomarkers of Colorectal Cancer and Related Pathways. J Clin Med 2020; 9:jcm9103191. [PMID: 33019642 PMCID: PMC7601558 DOI: 10.3390/jcm9103191] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/27/2020] [Accepted: 09/30/2020] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) is the third most commonly diagnosed cancer in the world. In Europe, it is the second most common cause of cancer-related deaths. With the advent of metabolomics approaches, studies regarding the investigation of metabolite profiles related to CRC have been conducted, aiming to serve as a tool for early diagnosis. In order to provide further information about the current status of this field of research, 21 studies were systematically reviewed, regarding their main findings and analytical aspects. A special focus was given to the employment of matrices obtained non-invasively and the use of gas chromatography as the analytical platform. The relationship between the reported volatile and non-volatile biomarkers and CRC-related metabolic alterations was also explored, demonstrating that many of these metabolites are connected with biochemical pathways proven to be involved in carcinogenesis. The most commonly reported CRC indicators were hydrocarbons, aldehydes, amino acids and short-chain fatty acids. These potential biomarkers can be associated with both human and bacterial pathways and the analysis based on such species has the potential to be applied in the clinical practice as a low-cost screening method.
Collapse
|
32
|
Vaidya A, Ayat N, Buford M, Wang H, Shankardass A, Zhao Y, Gilmore H, Wang Z, Lu ZR. Noninvasive assessment and therapeutic monitoring of drug-resistant colorectal cancer by MR molecular imaging of extradomain-B fibronectin. Theranostics 2020; 10:11127-11143. [PMID: 33042274 PMCID: PMC7532678 DOI: 10.7150/thno.47448] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 06/23/2020] [Indexed: 12/16/2022] Open
Abstract
Antineoplastic resistance represents a multifaceted challenge for cancer therapy and diagnostics. Extensive molecular heterogeneity, even within neoplasms of the same type, can elicit distinct outcomes of administering therapeutic pressures, frequently leading to the development of drug-resistant populations. Improved success of oncotherapies merits the exploration of precise molecular imaging technologies that can detect not only anatomical but also molecular changes in tumors and their microenvironment, early on in the treatment regimen. To this end, we developed magnetic resonance molecular imaging (MRMI) strategies to target the extracellular matrix oncoprotein, extradomain-B fibronectin (EDB-FN), for non-invasive assessment and therapeutic monitoring of drug-resistant colorectal cancer (CRC). Methods: Two drug-resistant CRC lines generated from parent DLD-1 and RKO cells by long-term treatment with 5'-FU and 5'-FU plus CB-839 respectively, were characterized for functional and gene expression changes using 3D culture, transwell invasion, qRT-PCR, and western blot assays. Contrast-enhanced MRMI of EDB-FN was performed in athymic nu/nu mice bearing subcutaneous tumor xenografts with 40 µmol/kg dose of macrocyclic ZD2-targeted contrast agent MT218 [ZD2-N3-Gd (HP-DO3A)] on a 3T MRS 3000 scanner. Immunohistochemistry was conducted on patient specimens and xenografts using anti-EDB-FN antibody G4. Results: Analyses of TCGA and GTEx databases revealed poor prognosis of colon cancer patients with higher levels of EDB-FN. Similarly, immunohistochemical staining of patient specimens showed increased EDB-FN expression in primary colon adenocarcinoma and hepatic metastases, but none in normal adjacent tissues. Drug-resistant DLD1-DR and RKO-DR cells were also found to demonstrate enhanced invasive potential and significantly elevated EDB-FN expression over their parent counterparts. MRMI of EDB-FN with 40 µmol/kg dose of MT218 (60% lower than the clinical dose) resulted in robust signal enhancement in the drug-resistant CRC xenografts with 84-120% increase in their contrast-to-noise ratios (CNRs) over the non-resistant counterparts. The feasibility of non-invasive therapeutic monitoring using MRMI of EDB-FN was also evaluated in drug-resistant DLD1-DR tumors treated with a pan-AKT inhibitor MK2206-HCl. The treated drug-resistant tumors failed to respond to therapy, which was accurately detected by MRMI with MT218, demonstrating higher signal enhancement and increased CNRs in the 4-week follow-up scans over the pre-treatment scans. Conclusions: EDB-FN is a promising molecular marker for assessing drug resistance. MRMI of EDB-FN with MT218 at a significantly reduced dose can facilitate effective non-invasive assessment and treatment response monitoring of drug-resistant CRC, highlighting its translational potential for active surveillance and management of CRC and other malignancies.
Collapse
Affiliation(s)
- Amita Vaidya
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Nadia Ayat
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Megan Buford
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Helen Wang
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Aman Shankardass
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Yiqing Zhao
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Hannah Gilmore
- Department of Pathology, University Hospitals of Cleveland, Cleveland, OH 44106, USA
| | - Zhenghe Wang
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Zheng-Rong Lu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
33
|
Zhao H, Richardson R, Talebloo N, Mukherjee P, Wang P, Moore A. uMUC1-Targeting Magnetic Resonance Imaging of Therapeutic Response in an Orthotropic Mouse Model of Colon Cancer. Mol Imaging Biol 2020; 21:852-860. [PMID: 30793239 DOI: 10.1007/s11307-019-01326-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE Noninvasive assessment of chemotherapeutic response in colon cancer would tremendously aid in therapeutic intervention of cancer patients and improve outcomes. The aim of the study was to evaluate the feasibility of a noninvasive assessment of chemotherapeutic response by magnetic resonance imaging utilizing underglycosylated mucin 1 (uMUC1) tumor antigen as a biomarker of therapeutic response in a colon cancer mouse model. PROCEDURES The study was performed by applying molecular imaging approach based on targeting uMUC1 with specific dual-modality imaging probe (MN-EPPT). The probe consisted of dextran-coated iron oxide nanoparticles conjugated to the near infrared fluorescent dye Cy5.5 and to a uMUC1-specific peptide (EPPT) and was used for magnetic resonance imaging (MRI) and fluorescence optical imaging. An orthotopic murine model of colon cancer expressing human uMUC1 peptide (MC38 MUC1) was created along with the control model devoid of the antigen (MC38 neo). Animals received chemotherapy with 5-fluorouracil (5-FU) followed by MN-EPPT-enhanced MR and optical imaging. RESULTS In vivo imaging of animals with uMUC1 expressing tumors after 5-FU therapy showed that the average deltaT2 was reduced by 7.27 ms (p = 0.045) compared with animals in control groups indicating lower accumulation of MN-EPPT caused by uMUC1 downregulation. In vivo optical imaging, biodistribution, and fluorescence microscopy confirmed the MRI findings. Interestingly, we found that the group of animals that did not respond to chemotherapy ("progressive disease" per RECIST) showed higher accumulation of MN-EPPT compared to the group of responders ("stable disease") consistent with proliferating tumor cells and increased antigen availability. CONCLUSIONS We believe that in application to over 50 % of human cancers expressing uMUC1, our results could provide insight into overall assessment of therapeutic response based on its expression as defined by non-invasive MN-EPPT-enhanced MRI.
Collapse
Affiliation(s)
- Hongwei Zhao
- Precision Health Program, Department of Radiology, College of Human Medicine, Michigan State University, 775 Woodlot Dr., Rm. 3.111, East Lansing, MI, 48823, USA.,Shanxi Medical University, Taiyuan, 030001, Shanxi, China.,Department of Gynecologic Oncology, Shanxi Provincial Cancer Hospital, Taiyuan, 030013, Shanxi, China
| | - Romani Richardson
- Precision Health Program, Department of Radiology, College of Human Medicine, Michigan State University, 775 Woodlot Dr., Rm. 3.111, East Lansing, MI, 48823, USA.,Hofstra University, Hempstead, NY, 11549, USA
| | - Nazanin Talebloo
- Precision Health Program, Department of Radiology, College of Human Medicine, Michigan State University, 775 Woodlot Dr., Rm. 3.111, East Lansing, MI, 48823, USA.,Department of Chemistry, College of Natural Science, Michigan State University, East Lansing, MI, 48824, USA
| | - Pinku Mukherjee
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, USA.,School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27514, USA
| | - Ping Wang
- Precision Health Program, Department of Radiology, College of Human Medicine, Michigan State University, 775 Woodlot Dr., Rm. 3.111, East Lansing, MI, 48823, USA
| | - Anna Moore
- Precision Health Program, Department of Radiology, College of Human Medicine, Michigan State University, 775 Woodlot Dr., Rm. 3.111, East Lansing, MI, 48823, USA.
| |
Collapse
|
34
|
Amorim BJ, Torrado-Carvajal A, Esfahani SA, Marcos SS, Vangel M, Stein D, Groshar D, Catalano OA. PET/MRI Radiomics in Rectal Cancer: a Pilot Study on the Correlation Between PET- and MRI-Derived Image Features with a Clinical Interpretation. Mol Imaging Biol 2020; 22:1438-1445. [PMID: 32270337 DOI: 10.1007/s11307-020-01484-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE The aim of this study was to explore possible correlations among different imaging features from 2-deoxy-2-[18F]fluoro-D-Glucose positron emission tomography/magnetic resonance imaging (PET/MRI) in rectal cancer (RC). PROCEDURES RC patients who underwent PET/MRI were enrolled. A region of interest (ROI) was drawn around each primary RC on PET/MRI images (PET, pelvic axial T2w, and apparent diffusion coefficient maps (ADC)). Multiple imaging features were assessed, and Pearson's correlation was used to explore possible correlations among them. RESULTS A total of 13 patients were included, mean age 56.1 years old, 6 females. A strong inverse correlation was observed between SUVpeak and ADCmean values, MTV and T2 sphericity, MTV and ADC sphericity, MTV and T2 entropy, and TLG and ADC sphericity. There was also strong direct correlation between PET entropy and ADC sphericity. CONCLUSIONS In conclusion, several clinically relevant correlations were observed between PET and MRI imaging features. These findings show how the use of both modalities provides complementary information.
Collapse
Affiliation(s)
- Barbara Juarez Amorim
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, White 270, Boston, MA, 02114, USA.,Athinoula A Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.,Division of Nuclear Medicine, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Angel Torrado-Carvajal
- Athinoula A Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.,Medical Image Analysis and Biometry Laboratory, Universidad Rey Juan Carlos, Madrid, Spain
| | - Shadi A Esfahani
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, White 270, Boston, MA, 02114, USA
| | - Sara S Marcos
- Division of Nuclear Medicine, Puerta de Hierro, University Hospital, Madrid, Spain
| | - Mark Vangel
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, White 270, Boston, MA, 02114, USA.,Athinoula A Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.,Biostatistics Center, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Dan Stein
- Department of Nuclear Medicine, Assuta Medical Centers, Tel Aviv, and Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - David Groshar
- Department of Nuclear Medicine, Assuta Medical Centers, Tel Aviv, and Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Onofrio A Catalano
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, White 270, Boston, MA, 02114, USA. .,Athinoula A Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA. .,Department of Radiology, University of Naples "Parthenope", Naples, Italy.
| |
Collapse
|
35
|
Li H, Wang X, Zhang L, Yi X, Qiao Y, Jin Q. Correlations between maximum standardized uptake value measured via 18F-fluorodeoxyglucose positron emission tomography/computed tomography and clinical variables and biochemical indicators in adult lymphoma. J Cancer Res Ther 2020; 15:1581-1588. [PMID: 31939441 DOI: 10.4103/jcrt.jcrt_671_18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Objectives The aim of the current study was to investigate whether the maximum standardized uptake value (SUVmax) measured by 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET)/computed tomography (CT) could discriminate between aggressive and indolent non-Hodgkin lymphomas (NHLs) and correlations between the SUVmax and clinical variables and serum biochemical indicators in adult lymphoma. Methods A total of 103 patients with lymphoma confirmed by biopsy, pretreatment 18F-FDG PET/CT scans, and a complete medical record were retrospectively enrolled in the study. Clinical variables that were evaluated included stage, pathological subtype, International Prognostic Index (IPI) score, and Ki-67 index, as well as serum biochemical indicators (e.g., lactate dehydrogenase [LDH] and erythrocyte sedimentation rate [ESR]) and metabolic parameters (e.g., SUVmax of the biopsy site on PET/CT). Correlations between SUVmax and clinical variables and serum biochemical indicators were investigated. Results Of the 103 patients, 84 had NHL and 19 had Hodgkin lymphoma. The area under the receiver operating characteristic curve for examining the accuracy of SUVmax with regard to distinguishing between aggressive and indolent NHLs was 0.94 (95% confidence interval: 0.89-0.99), suggesting that SUVmax was a useful predictor of diagnosis. A cutoff value of 8.5 yielded a sensitivity of 76.3% and specificity of 92.0%. The SUVmax mean ± standard deviation of NHL (9.8 ± 6.0, range: 1.8-28.1) was higher than that of HL (7.5 ± 2.8, range: 3.5-13.9) (P = 0.016), but there was no statistically significant difference in SUVmax between NHL and HL (P > 0.05). SUVmax of the biopsy site was strongly positively correlated with Ki-67 index (r = 0.813, P < 0.001) and moderately positively correlated with IPI score (r = 0.332, P = 0.002), but it was not significantly correlated with clinical stage, LDH, or ESR (P > 0.05). Conclusions 18F-FDG PET/CT may yield reliable measurements of tumor proliferation, and an SUVmax >8.5 may distinguish between aggressive and indolent NHLs. In adults with newly diagnosed lymphoma, SUVmax correlates with Ki-67 index and IPI score.
Collapse
Affiliation(s)
- Hongling Li
- Lanzhou University; Department of Oncology, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Xiaohuan Wang
- Department of Oncology, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Lingfang Zhang
- Department of Oncology, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Xuemei Yi
- Department of Oncology, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Yujie Qiao
- Department of Oncology, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Qianqian Jin
- Department of Oncology, Gansu Provincial Hospital, Lanzhou, Gansu, China
| |
Collapse
|
36
|
Nompumelelo Simelane NW, Kruger CA, Abrahamse H. Photodynamic diagnosis and photodynamic therapy of colorectal cancer in vitro and in vivo. RSC Adv 2020; 10:41560-41576. [PMID: 35516575 PMCID: PMC9058000 DOI: 10.1039/d0ra08617g] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 11/08/2020] [Indexed: 02/06/2023] Open
Abstract
This review highlights the various photo diagnostic and treatment methods utilized for CRC, over the last seven years.
Collapse
Affiliation(s)
| | - Cherie Ann Kruger
- Laser Research Centre
- Faculty of Health Sciences
- University of Johannesburg
- Johannesburg 2028
- South Africa
| | - Heidi Abrahamse
- Laser Research Centre
- Faculty of Health Sciences
- University of Johannesburg
- Johannesburg 2028
- South Africa
| |
Collapse
|
37
|
Kusumoto H, Tashiro K, Shimaoka S, Tsukasa K, Baba Y, Furukawa S, Furukawa J, Suenaga T, Kitazono M, Tanaka S, Niihara T, Hirotsu T, Uozumi T. Behavioural Response Alteration in Caenorhabditis elegans to Urine After Surgical Removal of Cancer: Nematode-NOSE (N-NOSE) for Postoperative Evaluation. BIOMARKERS IN CANCER 2019; 11:1179299X19896551. [PMID: 31903024 PMCID: PMC6931140 DOI: 10.1177/1179299x19896551] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 11/26/2019] [Indexed: 12/17/2022]
Abstract
The technique used for cancer monitoring is essential for effective cancer
therapy. Currently, several methods such as diagnostic imaging and biochemical
markers have been used for cancer monitoring, but these are invasive and show
low sensitivity. A previous study reported that Caenorhabditis
elegans sensitively discriminated patients with cancer from healthy
subjects, based on the smell of a urine sample. However, whether C.
elegans olfaction can detect the removal of cancerous tumours
remains unknown. This study was conducted to examine C. elegans
olfactory behaviour to urine samples collected from 78 patients before and after
surgery. The diagnostic ability of the technique termed Nematode-NOSE (N-NOSE)
was evaluated by receiver operating characteristic (ROC) analysis. The ROC curve
of N-NOSE was higher than those of classic tumour markers. Furthermore, we
examined the change in C. elegans olfactory behaviour following
exposure to preoperative and postoperative samples. The results suggest that a
reduction in attraction indicates the removal of the cancerous tumour. This
study may lead to the development of a noninvasive and highly sensitive tool for
evaluating postoperative cancer patients.
Collapse
Affiliation(s)
| | - Kotaro Tashiro
- Department of Gastroenterology, Nanpuh Hospital, Kagoshima, Japan
| | - Syunji Shimaoka
- Department of Gastroenterology, Nanpuh Hospital, Kagoshima, Japan
| | - Koichiro Tsukasa
- Department of Gastroenterology, Nanpuh Hospital, Kagoshima, Japan
| | - Yukiko Baba
- Department of Gastroenterology, Nanpuh Hospital, Kagoshima, Japan
| | - Saori Furukawa
- Department of Gastroenterology, Nanpuh Hospital, Kagoshima, Japan
| | | | - Toyokuni Suenaga
- Department of Gastrointestinal Surgery, Nanpuh Hospital, Kagoshima, Japan
| | - Masaki Kitazono
- Department of Gastrointestinal Surgery, Nanpuh Hospital, Kagoshima, Japan
| | - Sadao Tanaka
- Department of Diagnostic Pathology, Nanpuh Hospital, Kagoshima, Japan
| | - Toru Niihara
- Department of Gastroenterology, Nanpuh Hospital, Kagoshima, Japan
| | - Takaaki Hirotsu
- R&D Center, Hirotsu Bio Science Inc., Tokyo, Japan.,Department of Biology, Graduate School of Sciences, Kyushu University, Fukuoka, Japan.,School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| | | |
Collapse
|
38
|
Abstract
Medullary thyroid carcinoma (MTC), arising from the parafollicular C cells of the thyroid, accounts for 1–2% of thyroid cancers. MTC is frequently aggressive and metastasizes to cervical and mediastinal lymph nodes, lungs, liver, and bones. Although a number of new imaging modalities for directing the management of oncologic patients evolved over the last two decades, the clinical application of these novel techniques is limited in MTC. In this article, we review the biology and molecular aspects of MTC as an important background for the use of current imaging modalities and approaches for this tumor. We discuss the modern and currently available imaging techniques—advanced magnetic resonance imaging (MRI)-based techniques such as whole-body MRI, dynamic contrast-enhanced (DCE) technique, diffusion-weighted imaging (DWI), positron emission tomography/computed tomography (PET/CT) with 18F-FDOPA and 18F-FDG, and integrated positron emission tomography/magnetic resonance (PET/MR) hybrid imaging—for primary as well as metastatic MTC tumor, including its metastatic spread to lymph nodes and the most common sites of distant metastases: lungs, liver, and bones.
Collapse
|
39
|
Al-Najami I, Mahmoud Sheta H, Baatrup G. Differentiation between malignant and benign rectal tumors by dual-energy computed tomography - a feasibility study. Acta Oncol 2019; 58:S55-S59. [PMID: 30764692 DOI: 10.1080/0284186x.2019.1574404] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION To assess the performance of Dual Energy Computed Tomography (DECT) in the differentiation between benign and malignant tumors in the rectum. MATERIAL AND METHODS We enrolled 8 subjects with rectal tumors suspected to be an early rectal cancer during colonoscopy. All subjects underwent Computed Tomography (CT), Magnetic Resonance Imaging (MRI) and Endorectal Ultrasound (ERUS) for staging. Furthermore, all subjects underwent fast switching of tube voltage between 80 and 140 kVp DECT of the pelvis. The 8 subjects had histopathological verified benign adenomas after transanal endoscopic microsurgery resection (TEM). The 8 subjects were matched with 8 consecutively selected subjects with histopathologically verified malignant rectal tumors. The DECT images were analyzed to assess the difference between malignant and benign rectal tumors. All DECT images were reviewed by experienced radiologists. In each DECT scanning, we applied three regions of interest (ROIs) for the acquisition of the DECT unique quantitative parameters. The mean atomic mass (effective Z value), iodine concentration, dual energy ratio (DER) and dual-energy index (DEI) was determined in both groups. RESULTS The comparison of the 2 groups showed a significant difference in effective Z and a nonsignificant difference regarding iodine concentration, DER, and DEI in the two groups. CONCLUSION Dual-energy CT demonstrated a difference in the mean atomic mass in benign colorectal tumors in comparison to malignant colorectal tumors.
Collapse
Affiliation(s)
- Issam Al-Najami
- Department of Surgery, Odense University Hospital, Odense, Denmark
- Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Hussam Mahmoud Sheta
- Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Medical Research, OUH Svendborg Hospital, Svendborg, Denmark
| | - Gunnar Baatrup
- Department of Surgery, Odense University Hospital, Odense, Denmark
- Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
40
|
Desvaux E, Courteau A, Bellaye PS, Guillemin M, Drouet C, Walker P, Collin B, Decréau RA. Cherenkov luminescence imaging is a fast and relevant preclinical tool to assess tumour hypoxia in vivo. EJNMMI Res 2018; 8:111. [PMID: 30574662 PMCID: PMC6301908 DOI: 10.1186/s13550-018-0464-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 12/03/2018] [Indexed: 11/10/2022] Open
Abstract
PURPOSE Molecular imaging techniques visualise biomarkers for both drug development and personalised medicine. In this field, Cherenkov luminescence imaging (CLI) seems to be very attractive by allowing imaging with clinical PET radiotracers with high-throughput capabilities. In this context, we developed a fast CLI method to detect tumour hypoxia with 18F-fluoromisonidazole (FMISO) for drug development purposes. METHODS Colon cancer model was induced in mice by subcutaneous injection of 1 × 106 CT-26 cells. FMISO was injected, and simultaneous PET-blood oxygen level dependent (BOLD)-MRI followed by CLI were performed along with immunohistochemistry staining with pimonidazole. RESULTS There was a significant correlation between FMISO PET and CLI tumour uptakes, consistent with the BOLD-MRI mapping. Tumour-to-background ratio was significantly higher for CLI compared with PET and MRI. Immunohistochemistry confirmed tumour hypoxia. The imaging workflow with CLI was about eight times faster than the PET-MRI procedure. CONCLUSION CLI is a fast and relevant tool to assess tumour hypoxia. This approach could be particularly interesting for hypoxia-targeting drug development.
Collapse
Affiliation(s)
- Emiko Desvaux
- Centre George François Leclerc (CGFL), 1 rue du Professeur Marion, 21079, Dijon, France
| | - Alan Courteau
- Centre George François Leclerc (CGFL), 1 rue du Professeur Marion, 21079, Dijon, France
| | - Pierre-Simon Bellaye
- Centre George François Leclerc (CGFL), 1 rue du Professeur Marion, 21079, Dijon, France
| | - Mélanie Guillemin
- Centre George François Leclerc (CGFL), 1 rue du Professeur Marion, 21079, Dijon, France
| | - Camille Drouet
- Centre George François Leclerc (CGFL), 1 rue du Professeur Marion, 21079, Dijon, France
| | - Paul Walker
- Université Bourgogne Franche Comté, CNRS, Laboratoire Electronique Informatique & Image (Le2i), UMR, 6306, Dijon, France.,Université Hospital Francois Mitterrand, Dijon, France
| | - Bertrand Collin
- Centre George François Leclerc (CGFL), 1 rue du Professeur Marion, 21079, Dijon, France.,Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB), 9 Avenue Alain Savary, 21078, Dijon, France
| | - Richard A Decréau
- Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB), 9 Avenue Alain Savary, 21078, Dijon, France.
| |
Collapse
|
41
|
Tsitskari M, Filippiadis D, Kostantos C, Palialexis K, Zavridis P, Kelekis N, Brountzos E. The role of interventional oncology in the treatment of colorectal cancer liver metastases. Ann Gastroenterol 2018; 32:147-155. [PMID: 30837787 PMCID: PMC6394269 DOI: 10.20524/aog.2018.0338] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 11/20/2018] [Indexed: 12/14/2022] Open
Abstract
Colorectal cancer is a leading cause of death both in Europe and worldwide. Unfortunately, 20-25% of patients with colorectal cancer already have metastases at the time of diagnosis, while 50-60% of the remainder will develop metastases later during the course of the disease. Although hepatic excision is the first-line treatment for patients with liver-limited colorectal metastases and is reported to prolong the survival of these patients, few patients are candidates. Locoregional therapy encompasses minimally invasive techniques practiced by interventional radiology. Most widely used locoregional therapies include ablative treatments (radiofrequency ablation, microwave ablation) and transcatheter intra-arterial therapies (transarterial chemoembolization, and radioembolization with yttrium-90).
Collapse
Affiliation(s)
- Maria Tsitskari
- Second Department of Radiology, Unit of Vascular and Interventional Radiology, Attikon University Hospital, National and Kapodistrian University of Athens, Greece
| | - Dimitris Filippiadis
- Second Department of Radiology, Unit of Vascular and Interventional Radiology, Attikon University Hospital, National and Kapodistrian University of Athens, Greece
| | - Chrysostomos Kostantos
- Second Department of Radiology, Unit of Vascular and Interventional Radiology, Attikon University Hospital, National and Kapodistrian University of Athens, Greece
| | - Kostantinos Palialexis
- Second Department of Radiology, Unit of Vascular and Interventional Radiology, Attikon University Hospital, National and Kapodistrian University of Athens, Greece
| | - Periklis Zavridis
- Second Department of Radiology, Unit of Vascular and Interventional Radiology, Attikon University Hospital, National and Kapodistrian University of Athens, Greece
| | - Nikolaos Kelekis
- Second Department of Radiology, Unit of Vascular and Interventional Radiology, Attikon University Hospital, National and Kapodistrian University of Athens, Greece
| | - Elias Brountzos
- Second Department of Radiology, Unit of Vascular and Interventional Radiology, Attikon University Hospital, National and Kapodistrian University of Athens, Greece
| |
Collapse
|
42
|
Tsitskari M, Filippiadis D, Kostantos C, Palialexis K, Zavridis P, Kelekis N, Brountzos E. The role of interventional oncology in the treatment of colorectal cancer liver metastases. Ann Gastroenterol 2018. [PMID: 30837787 DOI: 10.20524/aog.2019.0338] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Colorectal cancer is a leading cause of death both in Europe and worldwide. Unfortunately, 20-25% of patients with colorectal cancer already have metastases at the time of diagnosis, while 50-60% of the remainder will develop metastases later during the course of the disease. Although hepatic excision is the first-line treatment for patients with liver-limited colorectal metastases and is reported to prolong the survival of these patients, few patients are candidates. Locoregional therapy encompasses minimally invasive techniques practiced by interventional radiology. Most widely used locoregional therapies include ablative treatments (radiofrequency ablation, microwave ablation) and transcatheter intra-arterial therapies (transarterial chemoembolization, and radioembolization with yttrium-90).
Collapse
Affiliation(s)
- Maria Tsitskari
- Second Department of Radiology, Unit of Vascular and Interventional Radiology, Attikon University Hospital, National and Kapodistrian University of Athens, Greece
| | - Dimitris Filippiadis
- Second Department of Radiology, Unit of Vascular and Interventional Radiology, Attikon University Hospital, National and Kapodistrian University of Athens, Greece
| | - Chrysostomos Kostantos
- Second Department of Radiology, Unit of Vascular and Interventional Radiology, Attikon University Hospital, National and Kapodistrian University of Athens, Greece
| | - Kostantinos Palialexis
- Second Department of Radiology, Unit of Vascular and Interventional Radiology, Attikon University Hospital, National and Kapodistrian University of Athens, Greece
| | - Periklis Zavridis
- Second Department of Radiology, Unit of Vascular and Interventional Radiology, Attikon University Hospital, National and Kapodistrian University of Athens, Greece
| | - Nikolaos Kelekis
- Second Department of Radiology, Unit of Vascular and Interventional Radiology, Attikon University Hospital, National and Kapodistrian University of Athens, Greece
| | - Elias Brountzos
- Second Department of Radiology, Unit of Vascular and Interventional Radiology, Attikon University Hospital, National and Kapodistrian University of Athens, Greece
| |
Collapse
|
43
|
Yahya JB, Farrell MJ, Herzig DO, Degnin CR, Chen Y, Holland J, Brown S, Jaboin J, Thomas CR, Mitin T. Preferential use of imaging modalities in staging newly diagnosed rectal cancer: a survey of US radiation oncologists. J Gastrointest Oncol 2018; 9:435-440. [PMID: 29998008 DOI: 10.21037/jgo.2018.01.19] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Background Accurate staging is crucial for management of patients with newly diagnosed rectal cancer. Endorectal ultrasound (EUS) has been the standard modality in the United States for decades, with magnetic resonance imaging (MRI) now preferred by national guidelines. Positron emission tomography (PET), conversely, is not recommended. The current utilization of imaging modalities by American radiation oncologists in staging newly diagnosed rectal cancer is unknown. Methods American radiation oncologists completed an anonymous institutional review board-approved online survey probing their imaging preferences for initial staging of rectal cancer patients. Results We received 220 responses from American radiation oncologists, with 39% in academic centers and with 45% seeing more than 10 rectal cancer patients per year. Most respondents utilize all three imaging modalities for rectal cancer staging-EUS, MRI and positron emission tomography/computed tomography (PET/CT). Fifty-two percent and 38% of respondents are high utilizers of EUS and MRI, respectively, defined as ordering these tests at least 75% of the time. Forty seven percent were high PET utilizers. The latter was associated with practice in a private setting (P=0.015) and being within 10 years from residency training completion (P<0.01). Conclusions Our analysis reveals a dramatic discordance among national guidelines and the practice patterns among American radiation oncologists. More rely on PET for initial staging of rectal cancer patients than on pelvic MRI. Further research needs to determine the most effective imaging work-up of patients with an initial diagnosis of rectal cancer.
Collapse
Affiliation(s)
- Jehan Belal Yahya
- Department of Radiation Medicine, Oregon Health & Science University, Portland, OR, USA
| | | | - Daniel O Herzig
- Division of Gastrointestinal and General Surgery, Department of Surgery, Oregon Health & Science University, Portland, OR, USA
| | - Catherine R Degnin
- Department of Biostatistics, Oregon Health & Science University, Portland, OR, USA
| | - Yiyi Chen
- Department of Radiation Medicine, Oregon Health & Science University, Portland, OR, USA
| | - John Holland
- Department of Radiation Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Simon Brown
- Department of Radiation Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Jerry Jaboin
- Department of Radiation Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Charles R Thomas
- Department of Radiation Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Timur Mitin
- Department of Radiation Medicine, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
44
|
Pellino G, Gallo G, Pallante P, Capasso R, De Stefano A, Maretto I, Malapelle U, Qiu S, Nikolaou S, Barina A, Clerico G, Reginelli A, Giuliani A, Sciaudone G, Kontovounisios C, Brunese L, Trompetto M, Selvaggi F. Noninvasive Biomarkers of Colorectal Cancer: Role in Diagnosis and Personalised Treatment Perspectives. Gastroenterol Res Pract 2018; 2018:2397863. [PMID: 30008744 PMCID: PMC6020538 DOI: 10.1155/2018/2397863] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 04/03/2018] [Accepted: 04/15/2018] [Indexed: 02/08/2023] Open
Abstract
Colorectal cancer (CRC) is the third leading cause of cancer-related deaths worldwide. It has been estimated that more than one-third of patients are diagnosed when CRC has already spread to the lymph nodes. One out of five patients is diagnosed with metastatic CRC. The stage of diagnosis influences treatment outcome and survival. Notwithstanding the recent advances in multidisciplinary management and treatment of CRC, patients are still reluctant to undergo screening tests because of the associated invasiveness and discomfort (e.g., colonoscopy with biopsies). Moreover, the serological markers currently used for diagnosis are not reliable and, even if they were useful to detect disease recurrence after treatment, they are not always detected in patients with CRC (e.g., CEA). Recently, translational research in CRC has produced a wide spectrum of potential biomarkers that could be useful for diagnosis, treatment, and follow-up of these patients. The aim of this review is to provide an overview of the newer noninvasive or minimally invasive biomarkers of CRC. Here, we discuss imaging and biomolecular diagnostics ranging from their potential usefulness to obtain early and less-invasive diagnosis to their potential implementation in the development of a bespoke treatment of CRC.
Collapse
Affiliation(s)
- Gianluca Pellino
- Unit of General Surgery, Department of Medical, Surgical, Neurological, Metabolic and Ageing Sciences, Università degli Studi della Campania “Luigi Vanvitelli”, Piazza Miraglia 2, 80138 Naples, Italy
- Colorectal Surgery Unit, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Gaetano Gallo
- Department of Medical and Surgical Sciences, OU of General Surgery, University of Catanzaro, Catanzaro, Italy
- Department of Colorectal Surgery, Clinic S. Rita, Vercelli, Italy
| | - Pierlorenzo Pallante
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council (CNR), Via S. Pansini 5, Naples, Italy
| | - Raffaella Capasso
- Department of Medicine and Health Sciences, University of Molise, Via Francesco de Sanctis 1, 86100 Campobasso, Italy
| | - Alfonso De Stefano
- Department of Abdominal Oncology, Division of Abdominal Medical Oncology, Istituto Nazionale per lo Studio e la Cura dei Tumori, “Fondazione G. Pascale, ” IRCCS, Naples, Italy
| | - Isacco Maretto
- 1st Surgical Clinic, Department of Surgical, Oncological, and Gastroenterological Sciences, University of Padua, Padua, Italy
| | - Umberto Malapelle
- Dipartimento di Sanità Pubblica, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Shengyang Qiu
- Department of Colorectal Surgery, Royal Marsden Hospital, London, UK
| | - Stella Nikolaou
- Department of Colorectal Surgery, Royal Marsden Hospital, London, UK
| | - Andrea Barina
- 1st Surgical Clinic, Department of Surgical, Oncological, and Gastroenterological Sciences, University of Padua, Padua, Italy
| | - Giuseppe Clerico
- Department of Colorectal Surgery, Clinic S. Rita, Vercelli, Italy
| | - Alfonso Reginelli
- Department of Internal and Experimental Medicine, Magrassi-Lanzara, Institute of Radiology, Università degli Studi della Campania “Luigi Vanvitelli”, Piazza Miraglia 2, 80138 Naples, Italy
| | - Antonio Giuliani
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Campobasso, Italy
| | - Guido Sciaudone
- Unit of General Surgery, Department of Medical, Surgical, Neurological, Metabolic and Ageing Sciences, Università degli Studi della Campania “Luigi Vanvitelli”, Piazza Miraglia 2, 80138 Naples, Italy
| | - Christos Kontovounisios
- Department of Colorectal Surgery, Royal Marsden Hospital, London, UK
- Department of Surgery and Cancer, Chelsea and Westminster Hospital Campus, Imperial College London, London, UK
| | - Luca Brunese
- Department of Medicine and Health Sciences, University of Molise, Via Francesco de Sanctis 1, 86100 Campobasso, Italy
| | - Mario Trompetto
- Department of Colorectal Surgery, Clinic S. Rita, Vercelli, Italy
| | - Francesco Selvaggi
- Unit of General Surgery, Department of Medical, Surgical, Neurological, Metabolic and Ageing Sciences, Università degli Studi della Campania “Luigi Vanvitelli”, Piazza Miraglia 2, 80138 Naples, Italy
| |
Collapse
|
45
|
de Mey S, Jiang H, Wang H, Engels B, Gevaert T, Dufait I, Feron O, Aerts J, Verovski V, De Ridder M. Potential of memory T cells in bridging preoperative chemoradiation and immunotherapy in rectal cancer. Radiother Oncol 2018; 127:361-369. [PMID: 29871814 DOI: 10.1016/j.radonc.2018.04.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 03/20/2018] [Accepted: 04/02/2018] [Indexed: 02/06/2023]
Abstract
The management of locally advanced rectal cancer has passed a long way of developments, where total mesorectal excision and preoperative radiotherapy are crucial to secure clinical outcome. These and other aspects of multidisciplinary strategies are in-depth summarized in the literature, while our mini-review pursues a different goal. From an ethical and medical standpoint, we witness a delayed implementation of novel therapies given the cost/time consuming process of organizing randomized trials that would bridge an already excellent local control in cT3-4 node-positive disease with long-term survival. This unfortunate separation of clinical research and medical care provides a strong motivation to repurpose known pharmaceuticals that suit for treatment intensification with a focus on distant control. In the framework of on-going phase II-III IG/IMRT-SIB trials, we came across an intriguing translational observation that the ratio of circulating (protumor) myeloid-derived suppressor cells to (antitumor) central memory CD8+ T cells is drastically increased, a possible mechanism of tumor immuno-escape and spread. This finding prompts that restoring the CD45RO memory T-cell pool could be a part of integrated adjuvant interventions. Therefore, the immunocorrective potentials of modified IL-2 and the anti-diabetic drug metformin are thoroughly discussed in the context of tumor immunobiology, mTOR pathways and revised Warburg effect.
Collapse
Affiliation(s)
- Sven de Mey
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Belgium
| | - Heng Jiang
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Belgium
| | - Hui Wang
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Belgium
| | - Benedikt Engels
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Belgium
| | - Thierry Gevaert
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Belgium
| | - Inès Dufait
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Belgium
| | - Olivier Feron
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, Brussels, Belgium
| | - Joeri Aerts
- Department of Immunology-Physiology, Laboratory for Pharmaceutical Biotechnology and Molecular Biology, Vrije Universiteit Brussel, Belgium
| | - Valeri Verovski
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Belgium
| | - Mark De Ridder
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Belgium.
| |
Collapse
|
46
|
Drouet Y, Treilleux I, Viari A, Léon S, Devouassoux-Shisheboran M, Voirin N, de la Fouchardière C, Manship B, Puisieux A, Lasset C, Moyret-Lalle C. Integrated analysis highlights APC11 protein expression as a likely new independent predictive marker for colorectal cancer. Sci Rep 2018; 8:7386. [PMID: 29743633 PMCID: PMC5943309 DOI: 10.1038/s41598-018-25631-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 04/17/2018] [Indexed: 12/22/2022] Open
Abstract
After a diagnosis of colorectal cancer (CRC), approximately 50% of patients will present distant metastasis. Although significant progress has been made in treatments, most of them will die from the disease. We investigated the predictive and prognostic potential of APC11, the catalytic subunit of APC/C, which has never been examined in the context of CRC. The expression of APC11 was assessed in CRC cell lines, in tissue microarrays (TMAs) and in public datasets. Overexpression of APC11 mRNA was associated with chromosomal instability, lymphovascular invasion and residual tumor. Regression models accounting for the effects of well-known protein markers highlighted association of APC11 protein expression with residual tumor (odds ratio: OR = 6.51; 95% confidence intervals: CI = 1.54–27.59; P = 0.012) and metastasis at diagnosis (OR = 3.87; 95% CI = 1.20–2.45; P = 0.024). Overexpression of APC11 protein was also associated with worse distant relapse-free survival (hazard ratio: HR = 2.60; 95% CI = 1.26–5.37; P = 0.01) and worse overall survival (HR = 2.69; 95% CI = 1.31–5.51; P = 0.007). APC11 overexpression in primary CRC thus represents a potentially novel theranostic marker of metastatic CRC.
Collapse
Affiliation(s)
- Youenn Drouet
- Centre Léon Bérard, Département de Santé Publique, Lyon, F-69008, France.,CNRS UMR 5558, Laboratoire de Biométrie et Biologie Evolutive, Lyon, F-69373, France
| | | | - Alain Viari
- INRIA Grenoble-Rhône-Alpes, 655 Avenue de l'Europe, 38330, Montbonnot, Saint Martin, France.,Synergie Lyon Cancer, Plateforme de Bioinformatique 'Gilles Thomas' Centre Léon Bérard, Lyon, France
| | - Sophie Léon
- Centre Léon Bérard, Service d'Anatomopathologie, Lyon, F-69008, France
| | - Mojgan Devouassoux-Shisheboran
- Centre Léon Bérard, Lyon, F-69008, France.,INSERM U1052, Cancer Research Center of Lyon, Lyon, F-69008, France.,CNRS UMR 5286, Cancer Research Center of Lyon, Lyon, F-69008, France.,Université de Lyon, Lyon, F-69622, France.,Université Lyon1, ISPB, Lyon, F-69008, France.,LabEx DEVweCAN, Université de Lyon, F-69000, Lyon, France.,Hôpital de la Croix Rousse, Hospices Civils de Lyon, Lyon, F-69008, France
| | - Nicolas Voirin
- Centre Léon Bérard, Département de Santé Publique, Lyon, F-69008, France.,Hospices Civils de Lyon, Hôpital Edouard Herriot, Service d'Hygiéne, Epidémiologie et Prévention, Lyon, F-69437, France
| | | | | | - Alain Puisieux
- Centre Léon Bérard, Lyon, F-69008, France.,INSERM U1052, Cancer Research Center of Lyon, Lyon, F-69008, France.,CNRS UMR 5286, Cancer Research Center of Lyon, Lyon, F-69008, France.,Université de Lyon, Lyon, F-69622, France.,Université Lyon1, ISPB, Lyon, F-69008, France.,LabEx DEVweCAN, Université de Lyon, F-69000, Lyon, France
| | - Christine Lasset
- Centre Léon Bérard, Département de Santé Publique, Lyon, F-69008, France.,CNRS UMR 5558, Laboratoire de Biométrie et Biologie Evolutive, Lyon, F-69373, France.,Université de Lyon, Lyon, F-69622, France
| | - Caroline Moyret-Lalle
- Centre Léon Bérard, Lyon, F-69008, France. .,INSERM U1052, Cancer Research Center of Lyon, Lyon, F-69008, France. .,CNRS UMR 5286, Cancer Research Center of Lyon, Lyon, F-69008, France. .,Université de Lyon, Lyon, F-69622, France. .,Université Lyon1, ISPB, Lyon, F-69008, France. .,LabEx DEVweCAN, Université de Lyon, F-69000, Lyon, France.
| |
Collapse
|
47
|
Abstract
Progressive technological advancements in imaging have significantly improved the preoperative sensitivity for the detection of very small foci of regionally- or hematogenously-metastatic colorectal cancer. Unfortunately, this information has not translated to continued linear gains in patient survival, and might even result in the false-positive upstaging of some cases: these are two conundrums in the imaging of colorectal cancer. Both conundrums might be resolved by the widespread use of real-time imaging guidance during operative procedures. This might open the way for the widespread use of fluorodeoxyglucose PET/CT for the initial staging of patients with colorectal cancer.
Collapse
Affiliation(s)
- Nathan C Hall
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA; Diagnostic Imaging, Nuclear Medicine, Corporal Michael J. Crescenz VA Medical Center, 3900 Woodland Avenue, Philadelphia, PA 19104, USA; Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center, 410 West 10th Avenue, Columbus, OH 43210, USA.
| | - Alexander T Ruutiainen
- Diagnostic Radiology, Corporal Michael J. Crescenz VA Medical Center, 3900 Woodland Avenue, Philadelphia, PA 19104, USA
| |
Collapse
|
48
|
Rullier E, Vendrely V, Denost Q, Asselineau J, Doussau A. GRECCAR2 trial: details worthy of more attention - Authors' reply. Lancet 2018; 391:122-123. [PMID: 29353619 DOI: 10.1016/s0140-6736(18)30016-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 10/18/2017] [Indexed: 11/25/2022]
Affiliation(s)
- Eric Rullier
- Departments of Colorectal Surgery, Haut-Lévèque Hospital, CHU Bordeaux, Université de Bordeaux, Pessac 33600, France.
| | - Véronique Vendrely
- Radiotherapy, Haut-Lévèque Hospital, CHU Bordeaux, Université de Bordeaux, Pessac 33600, France
| | - Quentin Denost
- Departments of Colorectal Surgery, Haut-Lévèque Hospital, CHU Bordeaux, Université de Bordeaux, Pessac 33600, France
| | - Julien Asselineau
- Unité de Soutien Méthodologique à la Recherche Clinique et Epidémiologique du CHU de Bordeaux, Université Bordeaux, Bordeaux, France
| | - Adélaïde Doussau
- Unité de Soutien Méthodologique à la Recherche Clinique et Epidémiologique du CHU de Bordeaux, Université Bordeaux, Bordeaux, France
| |
Collapse
|
49
|
Borstlap WAA, van Oostendorp SE, Klaver CEL, Hahnloser D, Cunningham C, Rullier E, Bemelman WA, Tuynman JB, Tanis PJ. Organ preservation in rectal cancer: a synopsis of current guidelines. Colorectal Dis 2017; 20:201-210. [PMID: 29136328 DOI: 10.1111/codi.13960] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 08/14/2017] [Indexed: 12/21/2022]
Abstract
BACKGROUND The high morbidity associated with radical resection for rectal cancer is an incentive for surgeons to adopt strategies aimed at organ preservation, particularly for early disease. There are a number of different approaches to achieve this. In this study we have collated current national and international guidelines to produce a synopsis to support this changing practice. METHODS The databases PubMed, Embase, Trip database, national guideline clearinghouse, BMJ Best practice were interrogated. Guidelines published before 2010 were excluded. The AGREE-II tool was used for quality assessment. RESULTS 24 guidelines were drawn from 2278 potential publications. A consensus exists for local excision for "low risk" T1 rectal cancer but there is no agreement how to stratify the risk of treatment failure. There is a low level of agreement for rectal preservation for more advanced disease but when mentioned is recommended for unfit patients or in th context of a clinical trial. Guidelines are inconsistent with respect to surveillance in node negative disease and after, complete response to chemoradiotherapy CONCLUSION: According to current guidelines and consensus statements organ preservation for rectal cancer beyond low risk T1, is still considered experimental and only indicated in patients unsuitable for radical surgery.. Follow up strategies and cN0 staging deserve attention and highlight the need for high quality clinical trials. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- W A A Borstlap
- Department of Surgery, Academic Medical Center, University of Amsterdam, the Netherlands
| | | | - C E L Klaver
- Department of Surgery, Academic Medical Center, University of Amsterdam, the Netherlands
| | - D Hahnloser
- Department of Surgery, Lausanne University Hospital, Lausanne, Switzerland
| | - C Cunningham
- Department of Surgery, John Radcliffe Hospital, Oxford, UK
| | - E Rullier
- Department of Colorectal Surgery, Haut-Lévèque Hospital, Bordeaux, France
| | - W A Bemelman
- Department of Surgery, Academic Medical Center, University of Amsterdam, the Netherlands
| | - J B Tuynman
- Department of Surgery, VU Medical Center, Amsterdam, the Netherlands
| | - P J Tanis
- Department of Surgery, Academic Medical Center, University of Amsterdam, the Netherlands
| |
Collapse
|
50
|
Ludwig DR, Mintz AJ, Sanders VR, Fowler KJ. Liver Imaging for Colorectal Cancer Metastases. CURRENT COLORECTAL CANCER REPORTS 2017. [DOI: 10.1007/s11888-017-0391-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|