1
|
Da Costa M, Gevaert O, Van Overtveldt S, Lange J, Joosten HJ, Desmet T, Beerens K. Structure-function relationships in NDP-sugar active SDR enzymes: Fingerprints for functional annotation and enzyme engineering. Biotechnol Adv 2021; 48:107705. [PMID: 33571638 DOI: 10.1016/j.biotechadv.2021.107705] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 12/18/2020] [Accepted: 01/27/2021] [Indexed: 12/12/2022]
Abstract
Short-chain Dehydrogenase/Reductase enzymes that are active on nucleotide sugars (abbreviated as NS-SDR) are of paramount importance in the biosynthesis of rare sugars and glycosides. Some family members have already been extensively characterized due to their direct implication in metabolic disorders or in the biosynthesis of virulence factors. In this review, we combine the knowledge gathered from studies that typically focused only on one NS-SDR activity with an in-depth analysis and overview of all of the different NS-SDR families (169,076 enzyme sequences). Through this structure-based multiple sequence alignment of NS-SDRs retrieved from public databases, we could identify clear patterns in conservation and correlation of crucial residues. Supported by this analysis, we suggest updating and extending the UDP-galactose 4-epimerase "hexagonal box model" to an "heptagonal box model" for all NS-SDR enzymes. This specificity model consists of seven conserved regions surrounding the NDP-sugar substrate that serve as fingerprint for each specificity. The specificity fingerprints highlighted in this review will be beneficial for functional annotation of the large group of NS-SDR enzymes and form a guide for future enzyme engineering efforts focused on the biosynthesis of rare and specialty carbohydrates.
Collapse
Affiliation(s)
- Matthieu Da Costa
- Centre for Synthetic Biology - Unit for Biocatalysis and Enzyme Engineering, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Gent, Belgium
| | - Ophelia Gevaert
- Centre for Synthetic Biology - Unit for Biocatalysis and Enzyme Engineering, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Gent, Belgium
| | - Stevie Van Overtveldt
- Centre for Synthetic Biology - Unit for Biocatalysis and Enzyme Engineering, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Gent, Belgium
| | - Joanna Lange
- Bio-Prodict BV, Nieuwe Marktstraat 54E, 6511, AA, Nijmegen, the Netherlands
| | - Henk-Jan Joosten
- Bio-Prodict BV, Nieuwe Marktstraat 54E, 6511, AA, Nijmegen, the Netherlands
| | - Tom Desmet
- Centre for Synthetic Biology - Unit for Biocatalysis and Enzyme Engineering, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Gent, Belgium.
| | - Koen Beerens
- Centre for Synthetic Biology - Unit for Biocatalysis and Enzyme Engineering, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Gent, Belgium.
| |
Collapse
|
2
|
Gevaert O, Van Overtveldt S, Da Costa M, Beerens K, Desmet T. GDP-altrose as novel product of GDP-mannose 3,5-epimerase: Revisiting its reaction mechanism. Int J Biol Macromol 2020; 165:1862-1868. [PMID: 33075338 DOI: 10.1016/j.ijbiomac.2020.10.067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 10/23/2022]
Abstract
GDP-mannose 3,5-epimerase (GM35E) catalyzes the double epimerization of GDP-mannose to yield GDP-l-galactose. GDP-l-gulose (C5-epimer) has previously been detected as a byproduct of this reaction, indicating that C3,5-epimerization occurs through an initial epimerization at C5. Given these products, GM35E constitutes a valuable bridge between d- and l-hexoses. In order to fully exploit this potential, the enzyme might be subjected to specificity engineering for which profound mechanistic insights are beneficial. Accordingly, this study further elucidated GM35E's reaction mechanism. For the first time, the production of the C3-epimer GDP-altrose was demonstrated, resulting in an adjustment of the acknowledged reaction mechanism. As GM35E converts GDP-mannose to GDP-l-gulose, GDP-altrose and GDP-l-galactose in a 72:4:4:20 ratio, this indicates that the enzyme does not discriminate between the C3 and C5 position as initial epimerization site. This was also confirmed by a structural investigation. Based on a mutational analysis of the active site, residues S115 and R281 were attributed a stabilizing function, which is believed to support the reactivation process of the catalytic residues. This paper eventually reflected on some engineering strategies that aim to change the enzyme towards a single specificity.
Collapse
Affiliation(s)
- Ophelia Gevaert
- Centre for Synthetic Biology, Department of Biotechnology, Ghent University, Coupure Links 653, 9000 Gent, Belgium
| | - Stevie Van Overtveldt
- Centre for Synthetic Biology, Department of Biotechnology, Ghent University, Coupure Links 653, 9000 Gent, Belgium
| | - Matthieu Da Costa
- Centre for Synthetic Biology, Department of Biotechnology, Ghent University, Coupure Links 653, 9000 Gent, Belgium
| | - Koen Beerens
- Centre for Synthetic Biology, Department of Biotechnology, Ghent University, Coupure Links 653, 9000 Gent, Belgium
| | - Tom Desmet
- Centre for Synthetic Biology, Department of Biotechnology, Ghent University, Coupure Links 653, 9000 Gent, Belgium.
| |
Collapse
|
3
|
Van Overtveldt S, Da Costa M, Gevaert O, Joosten HJ, Beerens K, Desmet T. Determinants of the Nucleotide Specificity in the Carbohydrate Epimerase Family 1. Biotechnol J 2020; 15:e2000132. [PMID: 32761842 DOI: 10.1002/biot.202000132] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/20/2020] [Indexed: 11/09/2022]
Abstract
In recent years, carbohydrate epimerases have attracted increasing attention as promising biocatalysts for the production of specialty sugars and derivatives. The vast majority of these enzymes are active on nucleotide-activated sugars, rather than on their free counterparts. Although such epimerases are known to have a clear preference for a particular nucleotide (UDP, GDP, CDP, or ADP), very little is known about the determinants of the respective specificities. In this work, sequence motifs are identified that correlate with the different nucleotide specificities in one of the main epimerase superfamilies, carbohydrate epimerase 1 (CEP1). To confirm their relevance, GDP- and CDP-specific residues are introduced into the UDP-glucose 4-epimerase from Thermus thermophilus, resulting in a 3-fold and 13-fold reduction in KM for GDP-Glc and CDP-Glc, respectively. Moreover, several variants are severely crippled in UDP-Glc activity, which further underlines the crucial role of the identified positions. Hence, the analysis should prove to be valuable for the further exploration and application of epimerases involved in carbohydrate synthesis.
Collapse
Affiliation(s)
- Stevie Van Overtveldt
- Centre for Synthetic Biology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Gent, 9000, Belgium
| | - Matthieu Da Costa
- Centre for Synthetic Biology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Gent, 9000, Belgium
| | - Ophelia Gevaert
- Centre for Synthetic Biology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Gent, 9000, Belgium
| | - Henk-Jan Joosten
- Bio-Prodict BV, Nieuwe Marktstraat 54E, Nijmegen, 6511 AA, The Netherlands
| | - Koen Beerens
- Centre for Synthetic Biology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Gent, 9000, Belgium
| | - Tom Desmet
- Centre for Synthetic Biology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Gent, 9000, Belgium
| |
Collapse
|
4
|
Borg AJE, Dennig A, Weber H, Nidetzky B. Mechanistic characterization of UDP-glucuronic acid 4-epimerase. FEBS J 2020; 288:1163-1178. [PMID: 32645249 PMCID: PMC7984243 DOI: 10.1111/febs.15478] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 06/22/2020] [Accepted: 07/06/2020] [Indexed: 12/27/2022]
Abstract
UDP-glucuronic acid (UDP-GlcA) is a central precursor in sugar nucleotide biosynthesis and common substrate for C4-epimerases and decarboxylases releasing UDP-galacturonic acid (UDP-GalA) and UDP-pentose products, respectively. Despite the different reactions catalyzed, the enzymes are believed to share mechanistic analogy rooted in their joint membership to the short-chain dehydrogenase/reductase (SDR) protein superfamily: Oxidation at the substrate C4 by enzyme-bound NAD+ initiates the catalytic pathway. Here, we present mechanistic characterization of the C4-epimerization of UDP-GlcA, which in comparison with the corresponding decarboxylation has been largely unexplored. The UDP-GlcA 4-epimerase from Bacillus cereus functions as a homodimer and contains one NAD+ /subunit (kcat = 0.25 ± 0.01 s-1 ). The epimerization of UDP-GlcA proceeds via hydride transfer from and to the substrate's C4 while retaining the enzyme-bound cofactor in its oxidized form (≥ 97%) at steady state and without trace of decarboxylation. The kcat for UDP-GlcA conversion shows a kinetic isotope effect of 2.0 (±0.1) derived from substrate deuteration at C4. The proposed enzymatic mechanism involves a transient UDP-4-keto-hexose-uronic acid intermediate whose formation is rate-limiting overall, and is governed by a conformational step before hydride abstraction from UDP-GlcA. Precise positioning of the substrate in a kinetically slow binding step may be important for the epimerase to establish stereo-electronic constraints in which decarboxylation of the labile β-keto acid species is prevented effectively. Mutagenesis and pH studies implicate the conserved Tyr149 as the catalytic base for substrate oxidation and show its involvement in the substrate positioning step. Collectively, this study suggests that based on overall mechanistic analogy, stereo-electronic control may be a distinguishing feature of catalysis by SDR-type epimerases and decarboxylases active on UDP-GlcA.
Collapse
Affiliation(s)
- Annika J E Borg
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Austria
| | - Alexander Dennig
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Austria.,Austrian Centre of Industrial Biotechnology, Graz, Austria
| | - Hansjörg Weber
- Institute of Organic Chemistry, Graz University of Technology, NAWI Graz, Austria
| | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Austria.,Austrian Centre of Industrial Biotechnology, Graz, Austria
| |
Collapse
|