1
|
Wang Z, Fei H, Wu YN. Unveiling Advancements: Trends and Hotspots of Metal-Organic Frameworks in Photocatalytic CO 2 Reduction. CHEMSUSCHEM 2024; 17:e202400504. [PMID: 38666390 DOI: 10.1002/cssc.202400504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/23/2024] [Indexed: 05/19/2024]
Abstract
Metal-organic frameworks (MOFs) are robust, crystalline, and porous materials featured by their superior CO2 adsorption capacity, tunable energy band structure, and enhanced photovoltaic conversion efficiency, making them highly promising for photocatalytic CO2 reduction reaction (PCO2RR). This study presents a comprehensive examination of the advancements in MOFs-based PCO2RR field spanning the period from 2011 to 2023. Employing bibliometric analysis, the paper scrutinizes the widely adopted terminology and citation patterns, elucidating trends in publication, leading research entities, and the thematic evolution within the field. The findings highlight a period of rapid expansion and increasing interdisciplinary integration, with extensive international and institutional collaboration. A notable emphasis on significant research clusters and key terminologies identified through co-occurrence network analysis, highlighting predominant research on MOFs such as UiO, MIL, ZIF, porphyrin-based MOFs, their composites, and the hybridization with photosensitizers and molecular catalysts. Furthermore, prospective design approaches for catalysts are explored, encompassing single-atom catalysts (SACs), interfacial interaction enhancement, novel MOF constructions, biocatalysis, etc. It also delves into potential avenues for scaling these materials from the laboratory to industrial applications, underlining the primary technical challenges that need to be overcome to facilitate the broader application and development of MOFs-based PCO2RR technologies.
Collapse
Affiliation(s)
- Ziqi Wang
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Rd., Shanghai, 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Rd., Shanghai, 200092, China
| | - Honghan Fei
- School of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, 1239 Siping Rd., Shanghai, 200092, China
| | - Yi-Nan Wu
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Rd., Shanghai, 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Rd., Shanghai, 200092, China
| |
Collapse
|
2
|
Meng X, Wang Y, Li Z, Yang F, Wang J. Knowledge mapping of links between dendritic cells and allergic diseases: A bibliometric analysis (2004-2023). Heliyon 2024; 10:e30315. [PMID: 38765036 PMCID: PMC11096944 DOI: 10.1016/j.heliyon.2024.e30315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 04/23/2024] [Accepted: 04/23/2024] [Indexed: 05/21/2024] Open
Abstract
In this study, bibliometric analysis was carried out to comprehend the global research trends, hotspots, scientific frontiers, and output characteristics of the links between dendritic cells (DCs) and allergic diseases from 2004 to 2023. Publications and their recorded information were retrieved from the Web of Science Core Collection (WoSCC). VOSviewer and Citespace were used to visualize the hotspots and trends of research area. ChemBio 3D, Autodock tools, and Discovery Studio were used to visualize the molecular docking results of hotspots. A total of 4861 articles were retrieved. The number of publications (Np) was in a high and stable state. Years 2011 and 2017 were two peaks in Np. The largest contributor in terms of publications, scholars, and affiliations was the USA. The paper published in NATURE MEDICINE (IF: 82.9) and written by Trompette, A in 2006 had the highest global citation score (GCS). Keywords, such as "asthma," "t-cells," "inflammation," "expression," "atopic dermatitis," "food allergy," "gut microbiota," "murine model," and "cytokines related to immunity" appeared the most frequently. Most of the binding free energy of the key active components of Saposhnikovia divaricata docked with toll-like receptor proteins well. This bibliometric study aimed to help better comprehend the present state and make decisions from a macro viewpoint.
Collapse
Affiliation(s)
- Xianghe Meng
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yi Wang
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Zhuqing Li
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Fan Yang
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Ji Wang
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| |
Collapse
|
3
|
Biswal T, Shadangi KP, Sarangi PK, Srivastava RK. Conversion of carbon dioxide to methanol: A comprehensive review. CHEMOSPHERE 2022; 298:134299. [PMID: 35304218 DOI: 10.1016/j.chemosphere.2022.134299] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 02/28/2022] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
This review explains the various methods of conversion of Carbon dioxide (CO2) to methanol by using homogenous, heterogeneous catalysts through hydrogenation, photochemical, electrochemical, and photo-electrochemical techniques. Since, CO2 is the major contributor to global warming, its utilization for the production of fuels and chemicals is one of the best ways to save our environment in a sustainable manner. However, as the CO2 is very stable and less reactive, a proper method and catalyst development is most important to break the CO2 bond to produce valuable chemicals like methanol. Litertaure says the catalyt types, ratio and it surface structure along with the temperature and pressure are the most controlling parameters to optimize the process for the production of methanol from CO2. This article explains about the various controlling parameters of synthesis of Methanol from CO2 along with the advantages and drawbacks of each process. The mechanism of each synthesis process in presence of metal supported catalyst is described. Basically the activity of Cu supported catalyst and its stability based on the activity for the methanol synthesis from CO2 through various methods is critically described.
Collapse
Affiliation(s)
- Trinath Biswal
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla. Sambalpur, Odisha, 768018, India
| | - Krushna Prasad Shadangi
- Department of Chemical Engineering, Veer Surendra Sai University of Technology, Burla. Sambalpur, Odisha, 768018, India.
| | - Prakash Kumar Sarangi
- College of Agriculture, Central Agricultural University, Imphal, Manipur, 795004, India.
| | - Rajesh K Srivastava
- Department of Biotechnology, GITAM Institute of Technology, Gandhi Institute of Technology and Management (GITAM) Deemed to Be University, Gandhinagar, Rushikonda, Visakhapatnam, 530 045, AP, India
| |
Collapse
|
4
|
Editorial Catalysts: Catalysis for the Removal of Gas-Phase Pollutants. Catalysts 2022. [DOI: 10.3390/catal12030280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Air pollution is one of the greatest concerns affecting the world today [...]
Collapse
|
5
|
Akinwekomi AD, Akhtar F. Bibliometric Mapping of Literature on High-Entropy/Multicomponent Alloys and Systematic Review of Emerging Applications. ENTROPY 2022; 24:e24030329. [PMID: 35327840 PMCID: PMC8947743 DOI: 10.3390/e24030329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 12/04/2022]
Abstract
High-entropy/multicomponent alloy (HEA/MCA) has received significant research attention in the last decade. There is a dearth of data-driven works dedicated to assessing and visualizing the HEA/MCA literature from a global perspective. To this end, we present the first bibliometric literature analysis of more than 3500 HEA/MCA articles, published between 2004 and 2021, in the Scopus database. We identify the most prolific authors, their collaborators, institutions, and most prominent research outlet. Co-occurrence networks of keywords are mapped and analyzed. A steep rise in research outputs is observed from 2013, when the number of annual publications doubled the previous years. The top five preferred research outlets include Journal of Alloys and Compounds, Materials Science and Engineering A, Scripta Materialia, Intermetallics, and Acta Materialia. Most of these publications emanate from researchers and institutions within China, USA, and Germany, although international scientific collaboration among them is lacking. Research gaps and future research directions are proposed, based on co-occurrence frequencies of author keywords. Finally, a brief systematic review of emerging applications, covering hydrogen storage, additive manufacturing, catalysis, and superconductivity, is undertaken. This work provides an important comprehensive reference guide for researchers to deepen their knowledge of the field and pursue new research directions.
Collapse
|
6
|
Research Progress and Reaction Mechanism of CO2 Methanation over Ni-Based Catalysts at Low Temperature: A Review. Catalysts 2022. [DOI: 10.3390/catal12020244] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The combustion of fossil fuels has led to a large amount of carbon dioxide emissions and increased greenhouse effect. Methanation of carbon dioxide can not only mitigate the greenhouse effect, but also utilize the hydrogen generated by renewable electricity such as wind, solar, tidal energy, and others, which could ameliorate the energy crisis to some extent. Highly efficient catalysts and processes are important to make CO2 methanation practical. Although noble metal catalysts exhibit higher catalytic activity and CH4 selectivity at low temperature, their large-scale industrial applications are limited by the high costs. Ni-based catalysts have attracted extensive attention due to their high activity, low cost, and abundance. At the same time, it is of great importance to study the mechanism of CO2 methanation on Ni-based catalysts in designing high-activity and stability catalysts. Herein, the present review focused on the recent progress of CO2 methanation and the key parameters of catalysts including the essential nature of nickel active sites, supports, promoters, and preparation methods, and elucidated the reaction mechanism on Ni-based catalysts. The design and preparation of catalysts with high activity and stability at low temperature as well as the investigation of the reaction mechanism are important areas that deserve further study.
Collapse
|
7
|
Abstract
The application of plasma in the field of volatile organic compounds (VOCs) can be traced back to the 1990s and has gradually developed into an important research field. In this regard, this article primarily sorts and analyzes the literature on the “application of plasma in the field of VOCs” in the Web of Science core collection database from 1992 to 2021 and, subsequently, obtains important data and trends, including the annual number of articles published, country, institution analysis, and journal, as well as discipline analysis, etc. The results show that China is not only in a leading position in the field of research, but also has six top-ten research institutions. This field has more research results in engineering, chemistry, physics, and environmental disciplines. In addition, this article summarizes dielectric barrier discharge (DBD) and titanium-containing catalysts, which represent the discharge characteristics and type of catalyst highlighted through the hot keywords. This review will provide certain guidance for future, related research.
Collapse
|
8
|
Dong Y, Chen S, Wang Z, Ma Y, Chen J, Li G, Zhou J, Ren Y, Ma H, Xie J, Li H, Zhu Z. Trends in Research of Prenatal Stress From 2011 to 2021: A Bibliometric Study. Front Pediatr 2022; 10:846560. [PMID: 35874593 PMCID: PMC9298743 DOI: 10.3389/fped.2022.846560] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 05/09/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Maternal stress during pregnancy can raise the risk of mental disorders in offspring. The continuous emergence of clinical concepts and the introduction of new technologies are great challenges. In this study, through bibliometric analysis, the research trends and hotspots on prenatal stress (PS) were explored to comprehend clinical treatments and recommend future scientific research directions. METHODS Studies on PS published on the Web of Science Core Collection (WoSCC) database between 2011 and 2021 were reviewed. Bibliometric analysis was conducted according to the number of publications, keywords, journals, citations, affiliations, and countries. With the data collected from the WoSCC, visualization of geographic distribution; clustering analysis of keywords, affiliations, and authors; and descriptive analysis and review of PS were carried out. RESULTS A total of 7,087 articles published in 2011-2021 were retrieved. During this period, the number of publications increased. Psychoneuroendocrinology is the leading journal on PS. The largest contributor was the United States. The University of California system was leading among institutions conducting relevant research. Wang H, King S, and Tain YL were scholars with significant contributions. Hotspots were classified into four clusters, namely, pregnancy, prenatal stress, oxidative stress, and growth. CONCLUSION The number of studies on PS increased. Journals, countries, institutions, researchers with the most contributions, and most cited articles worldwide were extracted. Studies have mostly concentrated on treating diseases, the application of new technologies, and the analysis of epidemiological characteristics. Multidisciplinary integration is becoming the focus of current development. Epigenetics is increasingly used in studies on PS. Thus, it constitutes a solid foundation for future clinical medical and scientific research.
Collapse
Affiliation(s)
- Yankai Dong
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Institute of Maternal and Infant Health, Northwest University, Xi'an, China
| | - Shengquan Chen
- Department of Neonatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zhifei Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Institute of Maternal and Infant Health, Northwest University, Xi'an, China
| | - Yao Ma
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Institute of Maternal and Infant Health, Northwest University, Xi'an, China
| | - Jinfeng Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Institute of Maternal and Infant Health, Northwest University, Xi'an, China
| | - Ge Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Institute of Maternal and Infant Health, Northwest University, Xi'an, China
| | - Jiahao Zhou
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Institute of Maternal and Infant Health, Northwest University, Xi'an, China
| | - Yating Ren
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Institute of Maternal and Infant Health, Northwest University, Xi'an, China
| | - Hengyu Ma
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Institute of Maternal and Infant Health, Northwest University, Xi'an, China
| | - Juanping Xie
- School of Medicine, Qinba Chinese Medicine Resources R&D Center, Ankang University, Ankang, China
| | - Hui Li
- Department of Neonatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zhongliang Zhu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Institute of Maternal and Infant Health, Northwest University, Xi'an, China
| |
Collapse
|
9
|
Khan NA, Ahangar H, Jhamb G. Global naturopathy research as reflected by Scopus during 2000-2019. COLLECTION AND CURATION 2021. [DOI: 10.1108/cc-06-2020-0024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Purpose
The purpose of this study is to analyze research output in the naturopathy field at the global level and to examine the various trends in scientific literature available on naturopathy using bibliometric analysis.
Design/methodology/approach
The data was collected from the SciVerse Scopus database published from 2000 through 2019. The search was conducted using Medical Subject headings entry terms, i.e. “Naturopathy” OR “Naturopathic Medicine” using the “Document” search option. The search results comprised of documents that had these above search terms in their article title, abstract and keywords. The retrieved documents were then analyzed concerning different parameters like the growth of publications, authorship patterns, productive countries and institutions, highly cited papers, top prolific authors, funding agencies and document types.
Findings
The results of this study reveal that a total of 1,099 documents were published during 20-year time span. The most preferred publication type is research articles 683 (62.14%). Germany, USA, Australia, India and Canada were the most productive countries in terms of the number of scientific documents. The findings also show that the most preferred journal in the field of naturopathy is MMW Fortschritte der Medizin, with 115 documents followed by Journal of Alternative and Complementary Medicine with 58 documents. In contrast, the journal BMC Complementary and Alternative Medicine had the highest citations per paper (17.85). For the 20-year study period, the average value for the degree of collaboration was calculated as 0.57, indicating 54% of the total publications in naturopathy were multi-authored. The value of the collaboration coefficient (CC) signifies the levels of multi-authored papers. CC was highest in the year 2019 (0.55) indicating that the publications were contributed in collaboration rather than in isolation and the number of multi-authored/mega-authored papers outnumbered the single authors in the collection of all authors in the year 2019. Bastyr University, USA was the most productive Institution. Journal articles were the most preferred form of publication.
Practical implications
This study traces various trends in the research behavior and preferences of researchers in the field of naturopathy. It thus can be of immense help to identify strong areas in naturopathy research. Further, this study will help the librarians to identify the core/preferred journals in naturopathy.
Originality/value
This paper makes an endeavor to carry an extensive bibliometric study that provides an overview of emerging trends in naturopathy research.
Collapse
|
10
|
Li X, Wang L, Su W, Xing Y. A review of the research status of CO 2 photocatalytic conversion technology based on bibliometrics. NEW J CHEM 2021. [DOI: 10.1039/d0nj04597g] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In order to clarify the research status, hot spots and development trend in the field of conversion of carbon dioxide, a large amount of literature data set in the scientific network database was analyzed by bibliometrics.
Collapse
Affiliation(s)
- Xiaopeng Li
- School of Energy and Environmental Engineering
- University of Science and Technology Beijing
- Beijing 100083
- China
| | - Li Wang
- School of Energy and Environmental Engineering
- University of Science and Technology Beijing
- Beijing 100083
- China
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants
| | - Wei Su
- School of Energy and Environmental Engineering
- University of Science and Technology Beijing
- Beijing 100083
- China
- Key Laboratory of Knowledge Automation for Industrial Processes
| | - Yi Xing
- School of Energy and Environmental Engineering
- University of Science and Technology Beijing
- Beijing 100083
- China
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants
| |
Collapse
|
11
|
Nathanael AJ, Kannaiyan K, Kunhiraman AK, Ramakrishna S, Kumaravel V. Global opportunities and challenges on net-zero CO 2 emissions towards a sustainable future. REACT CHEM ENG 2021. [DOI: 10.1039/d1re00233c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Artistic representation of CO2 emissions from various sources into the atmosphere, and its consequence on the global climatic conditions.
Collapse
Affiliation(s)
- A. Joseph Nathanael
- Centre for Biomaterials, Cellular and Molecular Theranostics, Vellore Institute of Technology, India
| | - Kumaran Kannaiyan
- Mechanical Engineering, Guangdong Technion Israel Institute of Technology, China
| | | | - Seeram Ramakrishna
- Department of Mechanical Engineering, Center for Nanofibers and Nanotechnology, National University of Singapore, Singapore
| | - Vignesh Kumaravel
- Department of Environmental Science, School of Science, Institute of Technology Sligo, Ireland
- Centre for Precision Engineering, Materials and Manufacturing Research (PEM), Institute of Technology Sligo, Ireland
| |
Collapse
|
12
|
An Analysis of Research on Membrane-Coated Electrodes in the 2001–2019 Period: Potential Application to CO2 Capture and Utilization. Catalysts 2020. [DOI: 10.3390/catal10111226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The chemistry and electrochemistry basic fields have been active for the last two decades of the past century studying how the modification of the electrodes’ surface by coating with conductive thin films enhances their electrocatalytic activity and sensitivity. In light of the development of alternative sustainable ways of energy storage and carbon dioxide conversion by electrochemical reduction, these research studies are starting to jump into the 21st century to more applied fields such as chemical engineering, energy and environmental science, and engineering. The huge amount of literature on experimental works dealing with the development of CO2 electroreduction processes addresses electrocatalyst development and reactor configurations. Membranes can help with understanding and controlling the mass transport limitations of current electrodes as well as leading to novel reactor designs. The present work makes use of a bibliometric analysis directed to the papers published in the 21st century on membrane-coated electrodes and electrocatalysts to enhance the electrochemical reactor performance and their potential in the urgent issue of carbon dioxide capture and utilization.
Collapse
|