1
|
Sheng K, Xia H, Ge J. Highly dispersed Pd nanoparticles supported by magnetically separable Fe 3O 4@ SiO 2 nanotube for catalytic hydrogenation of nitroaromatics. J Colloid Interface Sci 2024; 676:763-773. [PMID: 39059282 DOI: 10.1016/j.jcis.2024.07.156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/08/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024]
Abstract
Selective hydrogenation of nitroaromatics is a crucial industrial reaction, but there are still challenges in developing nanocatalysts with stable active centers, yet easily recyclable characteristics. Here, a magnetically separable Pd/Fe3O4@SiO2 nanocatalyst was prepared through the seeding growth of silica on the Fe3O4 nanocrystal cluster (NC) followed by in situ reduction of Pd nanoparticles (NPs) on the amino group modified Fe3O4@SiO2 nannotube (NT). The nanocatalyst showed good activity and stability in the hydrogenation of a series of nitroaromatics as the Pd NPs were highly dispersed on the nanotubes. Meanwhile, it could be easily separated from the reaction solution and well-redispersed in the solvent for the next-round reaction due to the superparamagnetic property of the Fe3O4 NC and the good dispersibility of silica in many organic solvents. The magnetically separable nanocatalyst combined the high activity of the nanocatalyst and the convenient separation of a traditional heterogeneous catalyst, which effectively promote the practical application of nanomaterials in catalysis.
Collapse
Affiliation(s)
- Kefa Sheng
- AnHui Province Key Laboratory of Optoelectronic and Magnetism Functional Materials, School of Chemistry and Chemical Engineering, Anqing Normal University, Anqing 246011, China.
| | - Hongyu Xia
- AnHui Province Key Laboratory of Optoelectronic and Magnetism Functional Materials, School of Chemistry and Chemical Engineering, Anqing Normal University, Anqing 246011, China
| | - Jianping Ge
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.
| |
Collapse
|
2
|
Xue Y, Liu K, Gao M, Zhang T, Wang L, Cui Y, Ji X, Ma G, Hu J. Vancomycin-Stabilized Platinum Nanoparticles with Oxidase-like Activity for Sensitive Dopamine Detection. Biomolecules 2023; 13:1312. [PMID: 37759712 PMCID: PMC10527023 DOI: 10.3390/biom13091312] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/17/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
The development of efficient, reliable, and sensitive dopamine detection methods has attracted much attention. In this paper, vancomycin-stabilized platinum nanoparticles (Van-Ptn NPs, n = 0.5, 1, 2) were prepared by the biological template method, where n represented the molar ratio of vancomycin to Pt. The results show that Van-Pt2 NPs had oxidase-like activity and peroxidase-like activity, and the mechanism was due to the generation of reactive oxygen 1O2 and OH. Van-Pt2 NPs exhibited good temperature stability, storage stability, and salt solution stability. Furthermore, Van-Pt2 NPs had almost no cytotoxicity to A549 cells. More importantly, the colorimetric detection of DA in human serum samples was performed based on the oxidase-like activity of Van-Pt2 NPs. The linear range of DA detection was 10-700 μM, and the detection limit was 0.854 μM. This study establishes a rapid and reliable method for the detection of dopamine and extends the application of biosynthetic nanoparticles in the field of biosensing.
Collapse
Affiliation(s)
- Yuzhen Xue
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Nano-Biotechnology, Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004, China; (Y.X.); (K.L.); (M.G.); (T.Z.); (J.H.)
| | - Kai Liu
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Nano-Biotechnology, Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004, China; (Y.X.); (K.L.); (M.G.); (T.Z.); (J.H.)
| | - Mingyue Gao
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Nano-Biotechnology, Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004, China; (Y.X.); (K.L.); (M.G.); (T.Z.); (J.H.)
| | - Tiantian Zhang
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Nano-Biotechnology, Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004, China; (Y.X.); (K.L.); (M.G.); (T.Z.); (J.H.)
| | - Longgang Wang
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Nano-Biotechnology, Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004, China; (Y.X.); (K.L.); (M.G.); (T.Z.); (J.H.)
| | - Yanshuai Cui
- Department of Environmental Engineering, Hebei University of Environmental Engineering, Qinhuangdao 066102, China; (Y.C.); (X.J.)
| | - Xianbing Ji
- Department of Environmental Engineering, Hebei University of Environmental Engineering, Qinhuangdao 066102, China; (Y.C.); (X.J.)
| | - Guanglong Ma
- Centre for Cancer Immunology, Faculty of Medicine, University of Southampton, Southampton SO166YD, UK;
| | - Jie Hu
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Nano-Biotechnology, Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004, China; (Y.X.); (K.L.); (M.G.); (T.Z.); (J.H.)
| |
Collapse
|
3
|
Water-induced synthesis of Pd nanotetrahedrons on g-C3N4 for highly efficient hydrogenation of nitroaromatic. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
|
4
|
Campos CH, Shanmugaraj K, Bustamante TM, Leal-Villarroel E, Vinoth V, Aepuru R, Mangalaraja RV, Torres CC. Catalytic production of anilines by nitro-compounds hydrogenation over highly recyclable platinum nanoparticles supported on halloysite nanotubes. Catal Today 2022. [DOI: 10.1016/j.cattod.2021.06.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
5
|
Preparation of COFs Supported Pd as an Efficient Catalyst for the Hydrogenation of Aromatic Nitro. Catal Letters 2022. [DOI: 10.1007/s10562-022-03941-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
6
|
Rangraz Y, Heravi MM, Elhampour A. Recent Advances on Heteroatom-Doped Porous Carbon/Metal Materials: Fascinating Heterogeneous Catalysts for Organic Transformations. CHEM REC 2021; 21:1985-2073. [PMID: 34396670 DOI: 10.1002/tcr.202100124] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/05/2021] [Indexed: 12/15/2022]
Abstract
Design and preparation of low-cost, effective, and novel catalysts are important topics in the field of heterogeneous catalysis from academic and industrial perspectives. Recently, heteroatom-doped porous carbon/metal materials have received significant attention as promising catalysts in divergent organic reactions. Incorporation of heteroatom into the carbon framework can tailor the properties of carbon, providing suitable interaction between support and metal, resulting in superior catalytic performance compared with those of traditional pure carbon/metal catalytic systems. In this review, we try to underscore the recent advances in the design, preparation, and application of heteroatom-doped porous carbon/metal catalysts towards various organic transformations.
Collapse
Affiliation(s)
- Yalda Rangraz
- Department of Chemistry, School of Physics and Chemistry, Alzahra University, PO Box 19938-93973, Vanak, Tehran, Iran
| | - Majid M Heravi
- Department of Chemistry, School of Physics and Chemistry, Alzahra University, PO Box 19938-93973, Vanak, Tehran, Iran
| | - Ali Elhampour
- Department of Chemistry, Semnan University, PO Box 35131-19111, Semnan, Iran
| |
Collapse
|
7
|
Wang S, Liu Y, Zhao J. PtN3-Embedded graphene as an efficient catalyst for electrochemical reduction of nitrobenzene to aniline: a theoretical study. Phys Chem Chem Phys 2020; 22:17639-17645. [DOI: 10.1039/d0cp02389b] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PtN3 moiety embedded into graphene can be utilized as a promising electrocatalyst for the reduction of nitrobenzene to amine due to its ultra-low limiting potential of (–0.21 V).
Collapse
Affiliation(s)
- Shuang Wang
- College of Chemistry and Chemical Engineering, and Key Laboratory of Photonic and Electronic Bandgap Materials
- Ministry of Education
- Harbin Normal University
- Harbin
- China
| | - Yuejie Liu
- Modern Experiment Center
- Harbin Normal University
- Harbin
- China
| | - Jingxiang Zhao
- College of Chemistry and Chemical Engineering, and Key Laboratory of Photonic and Electronic Bandgap Materials
- Ministry of Education
- Harbin Normal University
- Harbin
- China
| |
Collapse
|