1
|
Kornet MM, Müller TJJ. Recent Advances in Sequentially Pd-Catalyzed One-Pot Syntheses of Heterocycles. Molecules 2024; 29:5265. [PMID: 39598654 PMCID: PMC11596252 DOI: 10.3390/molecules29225265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/01/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024] Open
Abstract
Sequential Pd-catalyzed one-pot synthetic methodologies have emerged as a powerful and versatile approach in organic synthesis, enabling the construction of complex heterocyclic architectures with high efficiency, selectivity, and atom economy. This review discusses key advancements in multistep, sequentially Pd-catalyzed one-pot processes for accessing heterocyclic derivatives, focusing on classic reactions like Suzuki-Miyaura, Sonogashira, Heck, and hydroamination and extending to specialized techniques such as directed C-H activation. The concatenation of these steps has advanced the scope of one-pot strategies. A section is dedicated to exploring the cooperative use of palladium with other metals, particularly copper, ruthenium, and gold, which has broadened the range of accessible heterocyclic derivatives. Highlighted applications include the synthesis of biologically and pharmaceutically relevant compounds, such as tris(hetero)aryl systems, spiro-oxindoles, and indole derivatives. These one-pot strategies not only streamline synthesis but also align with green chemistry principles by minimizing purification steps and reducing waste and energy consumption. The review also addresses current challenges and limitations in these methodologies, offering insights into ongoing efforts to optimize reaction conditions and expand the applicability of sequential Pd-catalyzed processes.
Collapse
Affiliation(s)
- Maryna M. Kornet
- Institut für Organische Chemie und Makromolekulare Chemie, Mathematisch-Naturwissenschaftliche Fakultät, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
- Laboratory for Biotechnology of Physiologically Active Substances, Faculty of Biology, Zaporizhzhia National University, 66 Universytetska Str., 69600 Zaporizhzhia, Ukraine
| | - Thomas J. J. Müller
- Institut für Organische Chemie und Makromolekulare Chemie, Mathematisch-Naturwissenschaftliche Fakultät, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
| |
Collapse
|
2
|
Brandner L, Müller TJJ. Multicomponent synthesis of chromophores – The one-pot approach to functional π-systems. Front Chem 2023; 11:1124209. [PMID: 37007054 PMCID: PMC10065161 DOI: 10.3389/fchem.2023.1124209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/26/2023] [Indexed: 03/19/2023] Open
Abstract
Multicomponent reactions, conducted in a domino, sequential or consecutive fashion, have not only considerably enhanced synthetic efficiency as one-pot methodology, but they have also become an enabling tool for interdisciplinary research. The highly diversity-oriented nature of the synthetic concept allows accessing huge structural and functional space. Already some decades ago this has been recognized for life sciences, in particular, lead finding and exploration in pharma and agricultural chemistry. The quest for novel functional materials has also opened the field for diversity-oriented syntheses of functional π-systems, i.e. dyes for photonic and electronic applications based on their electronic properties. This review summarizes recent developments in MCR syntheses of functional chromophores highlighting syntheses following either the framework forming scaffold approach by establishing connectivity between chromophores or the chromogenic chromophore approach by de novo formation of chromophore of interest. Both approaches warrant rapid access to molecular functional π-systems, i.e. chromophores, fluorophores, and electrophores for various applications.
Collapse
|
3
|
Saleem A, Farooq U, Bukhari SM, Khan S, Zaidi A, Wani TA, Shaikh AJ, Sarwar R, Mahmud S, Israr M, Khan FA, Shahzad SA. Isoxazole Derivatives against Carbonic Anhydrase: Synthesis, Molecular Docking, MD Simulations, and Free Energy Calculations Coupled with In Vitro Studies. ACS OMEGA 2022; 7:30359-30368. [PMID: 36061660 PMCID: PMC9434621 DOI: 10.1021/acsomega.2c03600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/02/2022] [Indexed: 05/28/2023]
Abstract
Heterocyclic compounds with a five-membered ring as a core, particularly those containing more than one heteroatom, have a wide spectrum of biological functions, especially in enzyme inhibition. In this study, we present the synthesis of five-membered heterocyclic isoxazole derivatives via sonication of ethyl butyrylacetate with aromatic aldehyde in the presence of a SnII-Mont K10 catalyst. The synthesized compounds were characterized using sophisticated spectroscopic methods. In vitro testing of the compounds reveals three derivatives with significant inhibitory action against carbonic anhydrase (CA) enzyme. The compound AC2 revealed the most promising inhibitory activity against CA among the entire series, with an IC50 = 112.3 ± 1.6 μM (%inh = 79.5) followed by AC3 with an IC50 = 228.4 ± 2.3 μM (%inh = 68.7) compared to the standard with 18.6 ± 0.5 μM (%inh = 87.0). Molecular docking (MD) study coupled with extensive MD simulations (400 ns) and MMPBSA study fully supported the in vitro enzyme inhibition results, evident from the computed ΔG bind (AC2 = -13.53 and AC3 = -12.49 kcal/mol). The in vitro and in silico studies are also augmented by a fluorescence-based enzymatic assay in which compounds AC2 and AC3 showed significant fluorescence enhancement. Therefore, on the basis of the present study, it is inferred that AC2 and AC3 may serve as a new framework for designing effective CA inhibitors.
Collapse
Affiliation(s)
- Afia Saleem
- Department
of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22010, KPK, Pakistan
| | - Umar Farooq
- Department
of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22010, KPK, Pakistan
| | - Syed Majid Bukhari
- Department
of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22010, KPK, Pakistan
| | - Sara Khan
- Department
of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22010, KPK, Pakistan
| | - Asma Zaidi
- Department
of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22010, KPK, Pakistan
| | - Tanveer A. Wani
- Department
of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahson Jabbar Shaikh
- Department
of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22010, KPK, Pakistan
| | - Rizwana Sarwar
- Department
of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22010, KPK, Pakistan
| | - Shafi Mahmud
- Division
of Genome Sciences and Cancer, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia
| | - Muhammad Israr
- Pakistan
Science Foundation, 1-Constitution Avenue, G-5/2, Islamabad 44000, Pakistan
| | - Farhan A. Khan
- Department
of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22010, KPK, Pakistan
| | - Sohail Anjum Shahzad
- Department
of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22010, KPK, Pakistan
| |
Collapse
|
4
|
Heterocycles by Consecutive Multicomponent Syntheses via Catalytically Generated Alkynoyl Intermediates. Catalysts 2022. [DOI: 10.3390/catal12010090] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Multicomponent processes are beneficial tools for the synthesis of heterocycles. As densely substituted bifunctional electrophiles, ynones are essential intermediates by applying cyclocondensations or cycloadditions in numerous heterocycle syntheses. The respective alkynoyl intermediates are generally accessible by palladium-, copper- and palladium/copper-catalyzed alkynylation. In turn, the mild reaction conditions allow for a fast and versatile entry to functional heterocycles in the sense of consecutive multicomponent processes. This review collates and presents recent advances in accessing thirteen heterocycle classes and their applications by virtue of catalytic alkynoyl generation in diversity-oriented multicomponent syntheses in a one-pot fashion.
Collapse
|