1
|
Arce CCM, Machado RAR, Mamin M, Glauser G, Bruno P, Benrey B, Erb M, Robert CAM, Turlings TCJ. The polyvalent sequestration ability of an economically important beetle. Curr Biol 2024; 34:5417-5428.e4. [PMID: 39504964 DOI: 10.1016/j.cub.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 11/08/2024]
Abstract
Many specialized herbivorous insects sequester single classes of toxic secondary metabolites from their host plants as protection against natural enemies. If and how herbivores can use multiple classes of plant toxins across the large chemical diversity of plants for self-protection is unknown. We show that the polyphagous adults of the beetle Diabrotica virgifera are capable of selectively accumulating benzoxazinoids, cucurbitacins, and glucosinolates but not cyanogenic glycosides. Female beetles transfer the sequestered defense metabolites into their eggs, protecting them against generalist predators. Eggs containing a mixture of toxins are better protected than eggs with individual toxins. This work shows how herbivores can exploit plant chemical diversity to their own benefit as a novel adaptive mechanism that contributes to the structuring of multitrophic interaction networks.
Collapse
Affiliation(s)
- Carla C M Arce
- University of Neuchâtel, Institute of Biology, FARCE Laboratory, 2000 Neuchâtel, Switzerland.
| | - Ricardo A R Machado
- University of Neuchâtel, Institute of Biology, Experimental Biology, 2000 Neuchâtel, Switzerland
| | - Marine Mamin
- University of Neuchâtel, Institute of Biology, FARCE Laboratory, 2000 Neuchâtel, Switzerland
| | - Gaétan Glauser
- University of Neuchâtel, Neuchâtel Platform of Analytical Chemistry, 2000 Neuchâtel, Switzerland
| | - Pamela Bruno
- University of Neuchâtel, Institute of Biology, FARCE Laboratory, 2000 Neuchâtel, Switzerland
| | - Betty Benrey
- University of Neuchâtel, Institute of Biology, E-vol Laboratory, 2000 Neuchâtel, Switzerland
| | - Matthias Erb
- University of Bern, Institute of Plant Sciences, Biotic Interactions Group, 2013 Bern, Switzerland
| | - Christelle A M Robert
- University of Bern, Institute of Plant Sciences, Chemical Ecology Group, 2013 Bern, Switzerland
| | - Ted C J Turlings
- University of Neuchâtel, Institute of Biology, FARCE Laboratory, 2000 Neuchâtel, Switzerland.
| |
Collapse
|
2
|
Zhang M, Yi Y, Gao B, Su H, Bao Y, Shi X, Wang H, Li F, Ye M, Qiao X. Functional Characterization and Protein Engineering of a Triterpene 3‐/6‐/2′‐
O
‐Glycosyltransferase Reveal a Conserved Residue Critical for the Regiospecificity. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202113587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Meng Zhang
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University 38 Xueyuan Road Beijing 100191 China
| | - Yang Yi
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University 38 Xueyuan Road Beijing 100191 China
| | - Bai‐Han Gao
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University 38 Xueyuan Road Beijing 100191 China
| | - Hui‐Fei Su
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University 38 Xueyuan Road Beijing 100191 China
| | - Yang‐Oujie Bao
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University 38 Xueyuan Road Beijing 100191 China
| | - Xiao‐Meng Shi
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University 38 Xueyuan Road Beijing 100191 China
| | - Hai‐Dong Wang
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University 38 Xueyuan Road Beijing 100191 China
| | - Fu‐Dong Li
- National Science Center for Physical Sciences at Microscale Division of Molecular & Cell Biophysics and School of Life Sciences University of Science and Technology of China Hefei Anhui 230026 China
| | - Min Ye
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University 38 Xueyuan Road Beijing 100191 China
| | - Xue Qiao
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University 38 Xueyuan Road Beijing 100191 China
| |
Collapse
|
3
|
Zhang M, Yi Y, Gao BH, Su HF, Bao YO, Shi XM, Wang HD, Li FD, Ye M, Qiao X. Functional Characterization and Protein Engineering of a Triterpene 3-/6-/2'-O-Glycosyltransferase Reveal a Conserved Residue Critical for the Regiospecificity. Angew Chem Int Ed Engl 2021; 61:e202113587. [PMID: 34894044 DOI: 10.1002/anie.202113587] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Indexed: 01/13/2023]
Abstract
Engineering the function of triterpene glucosyltransferases (GTs) is challenging due to the large size of the sugar acceptors. In this work, we identified a multifunctional glycosyltransferase AmGT8 catalyzing triterpene 3-/6-/2'-O-glycosylation from the medicinal plant Astragalus membranaceus. To engineer its regiospecificity, a small mutant library was built based on semi-rational design. Variants A394F, A394D, and T131V were found to catalyze specific 6-O, 3-O, and 2'-O glycosylation, respectively. The origin of regioselectivity of AmGT8 and its A394F variant was studied by molecular dynamics and hydrogen deuterium exchange mass spectrometry. Residue 394 is highly conserved as A/G and is critical for the regiospecificity of the C- and O-GTs TcCGT1 and GuGT10/14. Finally, astragalosides III and IV were synthesized by mutants A394F, T131V and P192E. This work reports biocatalysts for saponin synthesis and gives new insights into protein engineering of regioselectivity in plant GTs.
Collapse
Affiliation(s)
- Meng Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Yang Yi
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Bai-Han Gao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Hui-Fei Su
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Yang-Oujie Bao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Xiao-Meng Shi
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Hai-Dong Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Fu-Dong Li
- National Science Center for Physical Sciences at Microscale, Division of Molecular & Cell Biophysics and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Min Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Xue Qiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| |
Collapse
|
4
|
Ren J, Tang W, Barton CD, Price OM, Mortensen MW, Phillips A, Wald B, Hulme SE, Stanley LP, Hevel J, Zhan J. A highly versatile fungal glucosyltransferase for specific production of quercetin-7-O-β-D-glucoside and quercetin-3-O-β-D-glucoside in different hosts. Appl Microbiol Biotechnol 2021; 106:227-245. [PMID: 34874472 DOI: 10.1007/s00253-021-11716-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 12/22/2022]
Abstract
Glycosylation is an effective way to improve the water solubility of natural products. In this work, a novel glycosyltransferase gene (BbGT) was discovered from Beauveria bassiana ATCC 7159 and heterologously expressed in Escherichia coli. The purified enzyme was functionally characterized through in vitro enzymatic reactions as a UDP-glucosyltransferase, converting quercetin to five monoglucosylated and one diglucosylated products. The optimal pH and temperature for BbGT are 35 ℃ and 8.0, respectively. The activity of BbGT was stimulated by Ca2+, Mg2+, and Mn2+, but inhibited by Zn2+. BbGT enzyme is flexible and can glycosylate a variety of substrates such as curcumin, resveratrol, and zearalenone. The enzyme was also expressed in other microbial hosts including Saccharomyces cerevisiae, Pseudomonas putida, and Pichia pastoris. Interestingly, the major glycosylation product of quercetin in E. coli, P. putida, and P. pastoris was quercetin-7-O-β-D-glucoside, while the enzyme dominantly produced quercetin-3-O-β-D-glucoside in S. cerevisiae. The BbGT-harboring E. coli and S. cerevisiae strains were used as whole-cell biocatalysts to specifically produce the two valuable quercetin glucosides, respectively. The titer of quercetin-7-O-β-D-glucosides was 0.34 ± 0.02 mM from 0.83 mM quercetin in 24 h by BbGT-harboring E. coli. The yield of quercetin-3-O-β-D-glucoside was 0.22 ± 0.02 mM from 0.41 mM quercetin in 12 h by BbGT-harboring S. cerevisiae. This work thus provides an efficient way to produce two valuable quercetin glucosides through the expression of a versatile glucosyltransferase in different hosts. KEY POINTS: • A highly versatile glucosyltransferase was identified from B. bassiana ATCC 7159. • BbGT converts quercetin to five mono- and one di-glucosylated derivatives in vitro. • Different quercetin glucosides were produced by BbGT in E. coli and S. cerevisiae.
Collapse
Affiliation(s)
- Jie Ren
- Department of Biological Engineering, Utah State University, 4105 Old Main Hill, Logan, UT, 84322-4105, USA
| | - Wenzhu Tang
- Department of Biological Engineering, Utah State University, 4105 Old Main Hill, Logan, UT, 84322-4105, USA.,School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, Liaoning, China
| | - Caleb Don Barton
- Department of Biological Engineering, Utah State University, 4105 Old Main Hill, Logan, UT, 84322-4105, USA
| | - Owen M Price
- Department of Chemistry and Biochemistry, Utah State University, 0300 Old Main Hill, Logan, UT, 84322-0300, USA
| | - Mark Wayne Mortensen
- Department of Biological Engineering, Utah State University, 4105 Old Main Hill, Logan, UT, 84322-4105, USA
| | - Alexandra Phillips
- Department of Biological Engineering, Utah State University, 4105 Old Main Hill, Logan, UT, 84322-4105, USA
| | - Banner Wald
- Department of Biological Engineering, Utah State University, 4105 Old Main Hill, Logan, UT, 84322-4105, USA
| | - Simon Elgin Hulme
- Department of Biological Engineering, Utah State University, 4105 Old Main Hill, Logan, UT, 84322-4105, USA
| | - Logan Powell Stanley
- Department of Biological Engineering, Utah State University, 4105 Old Main Hill, Logan, UT, 84322-4105, USA
| | - Joan Hevel
- Department of Chemistry and Biochemistry, Utah State University, 0300 Old Main Hill, Logan, UT, 84322-0300, USA
| | - Jixun Zhan
- Department of Biological Engineering, Utah State University, 4105 Old Main Hill, Logan, UT, 84322-4105, USA.
| |
Collapse
|