1
|
Dessie Y, Tilahun E, Wondimu TH. Functionalized carbon electrocatalysts in energy conversion and storage applications: A review. Heliyon 2024; 10:e39395. [PMID: 39492918 PMCID: PMC11530907 DOI: 10.1016/j.heliyon.2024.e39395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/12/2024] [Accepted: 10/14/2024] [Indexed: 11/05/2024] Open
Abstract
Energy crises, along with environmental tampering, are currently a big topic on the global scene. The most promising strategy in the current research trend is the creation of ecologically pleasant renewable green alternative energy sources. Since adequate access to green, ecologically acceptable energy sources promotes industrialization and the well-being of human society. Hence, in this review, the most recent carbon electrocatalysts electrode materials prepared from porous activated carbon (PAC) in electrochemical energy conversion and storage systems due to its long life cycle, porosity and high surface area nature as well as low-cost nature have been clearly discussed. This review aims to demonstrate that the increasing interest in the synthesis of PAC is accompanied by extensive research into their application in supercapacitors, where they continue to be the preferred electrode material. Their challenges and current progress of PAC electrodes are also discussed. The systematic methods of modifying PAC from biomass as well as some commercially available carbon materials have been thoroughly summarized in this review as an alternate high-surface area electrode for the effective generation of energy in many energy conversion and storage devices. The critical assessment is also extends to evaluate its recent advancements, trends in research progress, and future prospects.
Collapse
Affiliation(s)
- Yilkal Dessie
- Department of Applied Chemistry, Adama Science and Technology University, Adama, Ethiopia
| | - Eneyew Tilahun
- Department of Applied Chemistry, Adama Science and Technology University, Adama, Ethiopia
| | - Tadele Hunde Wondimu
- Department of Materials Science and Engineering, Adama Science and Technology University, Adama, Ethiopia
| |
Collapse
|
2
|
Marrocchi A, Cerza E, Chandrasekaran S, Sgreccia E, Kaciulis S, Vaccaro L, Syahputra S, Vacandio F, Knauth P, Di Vona ML. Hydrochar from Pine Needles as a Green Alternative for Catalytic Electrodes in Energy Applications. Molecules 2024; 29:3286. [PMID: 39064865 PMCID: PMC11278999 DOI: 10.3390/molecules29143286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Hydrothermal carbonization (HTC) serves as a sustainable method to transform pine needle waste into nitrogen-doped (N-doped) hydrochars. The primary focus is on evaluating these hydrochars as catalytic electrodes for the oxygen reduction reaction (ORR) and carbon dioxide reduction reaction (CO2RR), which are pivotal processes with significant environmental implications. Hydrochars were synthesized by varying the parameters such as nitrogen loading, temperature, and residence time. These materials were then thoroughly characterized using diverse analytical techniques, including elemental analysis, density measurements, BET surface area analysis, and spectroscopies like Raman, FTIR, and XPS, along with optical and scanning electron microscopies. The subsequent electrochemical assessment involved preparing electrocatalytic inks by combining hydrochars with an anion exchange ionomer (AEI) to leverage their synergistic effects. To the best of our knowledge, there are no previous reports on catalytic electrodes that simultaneously incorporate both a hydrochar and AEI. Evaluation metrics such as current densities, onset and half-wave potentials, and Koutecky-Levich and Tafel plots provided insights into their electrocatalytic performances. Notably, hydrochars synthesized at 230 °C exhibited an onset potential of 0.92 V vs. RHE, marking the highest reported value for a hydrochar. They also facilitated the exchange of four electrons at 0.26 V vs. RHE in the ORR. Additionally, the CO2RR yielded valuable C2 products like acetaldehyde and acetate. These findings highlight the remarkable electrocatalytic activity of the optimized hydrochars, which could be attributed, at least in part, to their optimal porosity.
Collapse
Affiliation(s)
- Assunta Marrocchi
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy; (E.C.); (L.V.)
| | - Elisa Cerza
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy; (E.C.); (L.V.)
| | - Suhas Chandrasekaran
- Tor Vergata University of Rome, Department Industrial Engineering and International Laboratory: Ionomer Materials for Energy (LIME), 00133 Roma, Italy; (S.C.); (E.S.)
| | - Emanuela Sgreccia
- Tor Vergata University of Rome, Department Industrial Engineering and International Laboratory: Ionomer Materials for Energy (LIME), 00133 Roma, Italy; (S.C.); (E.S.)
| | - Saulius Kaciulis
- Institute for the Study of Nanostructured Materials, ISMN-CNR, Monterotondo Stazione, 00015 Roma, Italy;
| | - Luigi Vaccaro
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy; (E.C.); (L.V.)
| | - Suanto Syahputra
- Aix Marseille University, CNRS, MADIREL (UMR 7246) and International Laboratory: Ionomer Materials for Energy (LIME), Campus St Jérôme, 13013 Marseille, France; (S.S.); (F.V.); (P.K.)
| | - Florence Vacandio
- Aix Marseille University, CNRS, MADIREL (UMR 7246) and International Laboratory: Ionomer Materials for Energy (LIME), Campus St Jérôme, 13013 Marseille, France; (S.S.); (F.V.); (P.K.)
| | - Philippe Knauth
- Aix Marseille University, CNRS, MADIREL (UMR 7246) and International Laboratory: Ionomer Materials for Energy (LIME), Campus St Jérôme, 13013 Marseille, France; (S.S.); (F.V.); (P.K.)
| | - Maria Luisa Di Vona
- Tor Vergata University of Rome, Department Industrial Engineering and International Laboratory: Ionomer Materials for Energy (LIME), 00133 Roma, Italy; (S.C.); (E.S.)
| |
Collapse
|
3
|
Dobele G, Plavniece A, Volperts A, Zhurinsh A, Upskuviene D, Balciunaite A, Jasulaitiene V, Niaura G, Talaikis M, Tamasauskaite-Tamasiunaite L, Norkus E, Kvello J, Colmenares-Rausseo LC. Effect of Pretreatment on the Nitrogen Doped Activated Carbon Materials Activity towards Oxygen Reduction Reaction. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6005. [PMID: 37687695 PMCID: PMC10488859 DOI: 10.3390/ma16176005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/21/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023]
Abstract
Nitrogen-doped activated carbons with controlled micro- and mesoporosity were obtained from wood and wastes via chemical processing using pre-treatment (pyrolysis at 500 °C and hydrothermally carbonization at 250 °C) and evaluated as oxygen reduction catalysts for further application in fuel cells. The elemental and chemical composition, structure and porosity, and types of nitrogen bonds of obtained catalyst materials were studied. The catalytic activity was evaluated in an alkaline medium using the rotating disk electrode method. It was shown that an increase in the volume of mesopores in the porous structure of a carbon catalyst promotes the diffusion of reagents and the reactions proceed more efficiently. The competitiveness of the obtained carbon materials compared to Pt/C for the reaction of catalytic oxygen reduction is shown.
Collapse
Affiliation(s)
- Galina Dobele
- Latvian State Institute of Wood Chemistry, Dzerbene Str. 27, LV-1006 Riga, Latvia; (G.D.); (A.V.); (A.Z.)
| | - Ance Plavniece
- Latvian State Institute of Wood Chemistry, Dzerbene Str. 27, LV-1006 Riga, Latvia; (G.D.); (A.V.); (A.Z.)
| | - Aleksandrs Volperts
- Latvian State Institute of Wood Chemistry, Dzerbene Str. 27, LV-1006 Riga, Latvia; (G.D.); (A.V.); (A.Z.)
| | - Aivars Zhurinsh
- Latvian State Institute of Wood Chemistry, Dzerbene Str. 27, LV-1006 Riga, Latvia; (G.D.); (A.V.); (A.Z.)
| | - Daina Upskuviene
- Center for Physical Sciences and Technology, Sauletekio Ave. 3, LT-10257 Vilnius, Lithuania; (D.U.); (A.B.); (V.J.); (G.N.); (M.T.); (L.T.-T.)
| | - Aldona Balciunaite
- Center for Physical Sciences and Technology, Sauletekio Ave. 3, LT-10257 Vilnius, Lithuania; (D.U.); (A.B.); (V.J.); (G.N.); (M.T.); (L.T.-T.)
| | - Vitalija Jasulaitiene
- Center for Physical Sciences and Technology, Sauletekio Ave. 3, LT-10257 Vilnius, Lithuania; (D.U.); (A.B.); (V.J.); (G.N.); (M.T.); (L.T.-T.)
| | - Gediminas Niaura
- Center for Physical Sciences and Technology, Sauletekio Ave. 3, LT-10257 Vilnius, Lithuania; (D.U.); (A.B.); (V.J.); (G.N.); (M.T.); (L.T.-T.)
| | - Martynas Talaikis
- Center for Physical Sciences and Technology, Sauletekio Ave. 3, LT-10257 Vilnius, Lithuania; (D.U.); (A.B.); (V.J.); (G.N.); (M.T.); (L.T.-T.)
| | - Loreta Tamasauskaite-Tamasiunaite
- Center for Physical Sciences and Technology, Sauletekio Ave. 3, LT-10257 Vilnius, Lithuania; (D.U.); (A.B.); (V.J.); (G.N.); (M.T.); (L.T.-T.)
| | - Eugenijus Norkus
- Center for Physical Sciences and Technology, Sauletekio Ave. 3, LT-10257 Vilnius, Lithuania; (D.U.); (A.B.); (V.J.); (G.N.); (M.T.); (L.T.-T.)
| | - Jannicke Kvello
- SINTEF Industry, Batteries and Hydrogen Technologies, Strindvegen 4, NO-7465 Trondheim, Norway; (J.K.); (L.C.C.-R.)
| | | |
Collapse
|
4
|
Samaniego Andrade SK, Lakshmi SS, Bakos I, Klébert S, Kun R, Mohai M, Nagy B, László K. The Influence of Reduced Graphene Oxide on the Texture and Chemistry of N,S-Doped Porous Carbon. Implications for Electrocatalytic and Energy Storage Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2364. [PMID: 37630949 PMCID: PMC10460025 DOI: 10.3390/nano13162364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/11/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023]
Abstract
In this work, we study the influence of reduced graphene oxide (rGO) on the morphology and chemistry of highly porous N,S-doped carbon cryogels. Simultaneously, we propose an easily upscalable route to prepare such carbons by adding graphene oxide (GO) in as-received suspended form to the aqueous solution of the ι-carrageenan and urea precursors. First, 1.25-5 wt% GO was incorporated into the dual-doped polymer matrix. The CO2, CO, and H2O emitted during the thermal treatments resulted in the multifaceted modification of the textural and chemical properties of the porous carbon. This facilitated the formation of micropores through self-activation and resulted in a substantial increase in the apparent surface area (up to 1780 m2/g) and pore volume (up to 1.72 cm3/g). However, adding 5 wt% GO led to overactivation. The incorporated rGO has an ordering effect on the carbon matrix. The evolving oxidative species influence the surface chemistry in a complex way, but sufficient N and S atoms (ca. 4 and >1 at%, respectively) were preserved in addition to the large number of developing defects. Despite the complexity of the textural and chemical changes, rGO increased the electrical conductivity monotonically. In alkaline oxygen reduction reaction (ORR) tests, the sample with 1.25 wt% GO exhibited a 4e- mechanism and reasonable stability, but a higher rGO content gradually compromised the performance of the electrodes. The sample containing 5 wt% GO was the most sensitive under oxidative conditions, but after stabilization it exhibited the highest gravimetric capacitance. In Li-ion battery tests, the coulombic efficiency of all the samples was consistently above 98%, indicating the high potential of these carbons for efficient Li-ion insertion and reinsertion during the charge-discharge process, thereby providing a promising alternative for graphite-based anodes. The cell from the 1.25 wt% GO sample showed an initial discharge capacity of 313 mAh/g, 95.1% capacity retention, and 99.3% coulombic efficiency after 50 charge-discharge cycles.
Collapse
Affiliation(s)
- Samantha K. Samaniego Andrade
- Department of Physical Chemistry and Materials Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, 1521 Budapest, Hungary;
| | - Shiva Shankar Lakshmi
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, 1117 Budapest, Hungary (I.B.); (S.K.); (R.K.); (M.M.)
| | - István Bakos
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, 1117 Budapest, Hungary (I.B.); (S.K.); (R.K.); (M.M.)
| | - Szilvia Klébert
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, 1117 Budapest, Hungary (I.B.); (S.K.); (R.K.); (M.M.)
| | - Robert Kun
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, 1117 Budapest, Hungary (I.B.); (S.K.); (R.K.); (M.M.)
- Department of Chemical and Environmental Process Engineering, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, 1521 Budapest, Hungary
| | - Miklós Mohai
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, 1117 Budapest, Hungary (I.B.); (S.K.); (R.K.); (M.M.)
| | - Balázs Nagy
- H-Ion Research, Development and Innovation Ltd., Konkoly-Thege út 29-33, 1121 Budapest, Hungary
| | - Krisztina László
- Department of Physical Chemistry and Materials Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, 1521 Budapest, Hungary;
| |
Collapse
|
5
|
Testa D, Zuccante G, Muhyuddin M, Landone R, Scommegna A, Lorenzi R, Acciarri M, Petri E, Soavi F, Poggini L, Capozzoli L, Lavacchi A, Lamanna N, Franzetti A, Zoia L, Santoro C. Giving New Life to Waste Cigarette Butts: Transformation into Platinum Group Metal-Free Electrocatalysts for Oxygen Reduction Reaction in Acid, Neutral and Alkaline Environment. Catalysts 2023. [DOI: 10.3390/catal13030635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
Abstract
Following the core theme of a circular economy, a novel strategy to upcycle cigarette butt waste into platinum group metal (PGM)-free metal nitrogen carbon (M-N-C) electrocatalysts for oxygen reduction reaction (ORR) is presented. The experimental route was composed of (i) the transformation of the powdered cigarette butts into carbonaceous char via pyrolysis at 450 °C, 600 °C, 750 °C and 900 °C, (ii) the porosity activation with KOH and (iii) the functionalization of the activated chars with iron (II) phthalocyanine (FePc). The electrochemical outcomes obtained by the rotating disk electrode (RRDE) technique revealed that the sample pyrolyzed at 450 °C (i.e., cig_450) outperformed the other counterparts with its highest onset (Eon) and half-wave potentials (E1/2) and demonstrated nearly tetra-electronic ORR in acidic, neutral and alkaline electrolytes, all resulting from the optimal surface chemistry and textural properties.
Collapse
|
6
|
Yan L, Liu Y, Hou J. High-Efficiency Oxygen Reduction Reaction Revived from Walnut Shell. Molecules 2023; 28:2072. [PMID: 36903323 PMCID: PMC10003918 DOI: 10.3390/molecules28052072] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/04/2023] [Accepted: 02/09/2023] [Indexed: 02/25/2023] Open
Abstract
The development of inexpensive and efficient electrocatalysts for oxygen reduction reactions (ORR) remains a challenge with respect to renewable energy technologies. In this research, a porous, nitrogen-doped ORR catalyst is prepared using the hydrothermal method and pyrolysis with walnut shell as a biomass precursor and urea as a nitrogen source. Unlike past research, in this study, urea is not directly doped; instead, a new type of doping is carried out after annealing at 550 °C. In addition, the sample's morphology and structure are analyzed and characterized by scanning electron microscopy (SEM) and X-ray powder diffraction (XRD). A CHI 760E electrochemical workstation is used to test NSCL-900's performance in terms of oxygen reduction electrocatalysis (ORR). It has been found that the catalytic performance of NSCL-900 is significantly improved compared with that of NS-900 without urea doping. In a 0.1 mol/L KOH electrolyte, the half-wave potential can reach 0.86 V (vs. RHE) and the initial potential is 1.00 V (vs. RHE). The catalytic process is close to four-electron transfer and there are large quantities of pyridine nitrogen and pyrrole nitrogen.
Collapse
Affiliation(s)
- Lei Yan
- School of Physics and Information Engineering, Shanxi Normal University, No. 339 Taiyu Road, Xiaodian District, Taiyuan 030031, China
| | - Yuchen Liu
- School of Physics and Information Engineering, Shanxi Normal University, No. 339 Taiyu Road, Xiaodian District, Taiyuan 030031, China
| | - Junhua Hou
- School of Physics and Information Engineering, Shanxi Normal University, No. 339 Taiyu Road, Xiaodian District, Taiyuan 030031, China
- Extreme Optical Collaborative Innovation Center, Shanxi University, No. 92, Wucheng Road, Xiaodian District, Taiyuan 030006, China
- Modern College of Humanities and Sciences, Shanxi Normal University, No. 501 Binhe West Road, Yaodu District, Linfen 041000, China
| |
Collapse
|
7
|
Muhyuddin M, Testa D, Lorenzi R, Vanacore GM, Poli F, Soavi F, Specchia S, Giurlani W, Innocenti M, Rosi L, Santoro C. Iron-based electrocatalysts derived from scrap tires for oxygen reduction reaction: Evolution of synthesis-structure-performance relationship in acidic, neutral and alkaline media. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
8
|
Juvanen S, Sarapuu A, Mooste M, Käärik M, Mäeorg U, Kikas A, Kisand V, Kozlova J, Treshchalov A, Aruväli J, Leis J, Tamm A, Tammeveski K. Electroreduction of oxygen on iron- and cobalt-containing nitrogen-doped carbon catalysts prepared from the rapeseed press cake. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
9
|
Peera SG, Liu C. Unconventional and scalable synthesis of non-precious metal electrocatalysts for practical proton exchange membrane and alkaline fuel cells: A solid-state co-ordination synthesis approach. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214554] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Cobalt-Containing Nitrogen-Doped Carbon Materials Derived from Saccharides as Efficient Electrocatalysts for Oxygen Reduction Reaction. Catalysts 2022. [DOI: 10.3390/catal12050568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The development of non-precious metal electrocatalysts towards oxygen reduction reaction (ORR) is crucial for the commercialisation of polymer electrolyte fuel cells. In this work, cobalt-containing nitrogen-doped porous carbon materials were prepared by a pyrolysis of mixtures of saccharides, cobalt nitrate and dicyandiamide, which acts as a precursor for reactive carbon nitride template and a nitrogen source. The rotating disk electrode (RDE) experiments in 0.1 M KOH solution showed that the glucose-derived material with optimised cobalt content had excellent ORR activity, which was comparable to that of 20 wt % Pt/C catalyst. In addition, the catalyst exhibited high tolerance to methanol, good stability in short-time potential cycling test and low peroxide yield. The materials derived from xylan, xylose and cyclodextrin displayed similar activities, indicating that various saccharides can be used as inexpensive and sustainable precursors to synthesise active catalyst materials for anion exchange membrane fuel cells.
Collapse
|
11
|
Influence of Chemical Activation Temperatures on Nitrogen-Doped Carbon Material Structure, Pore Size Distribution and Oxygen Reduction Reaction Activity. Catalysts 2021. [DOI: 10.3390/catal11121460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The goal of this research was to synthesize activated nitrogen-doped nanocarbons with high specific surface area and adjustable pore size distribution using wood charcoal as a raw material. The resulting carbon materials were tested for possible application as oxygen reduction reaction catalysts in alkaline media. Activated carbons were obtained using a thermochemical activation method with NaOH. Nitrogen was introduced into activated carbons using dicyandiamide solution. It was demonstrated that the content of introduced nitrogen depends on oxygen content in the structure of the activated carbon. The oxygen reduction reaction activity of the activated and nitrogen-doped carbon material was comparable with a commercial 20% Pt/C catalyst. Electrocatalytic properties of the synthesized N-doped wood-derived carbon catalysts may be associated with the highly developed surface area, specific ratio of micro- and mesopores, as well as the high percentage of pyridinic nitrogen.
Collapse
|
12
|
Goto Y, Nakayasu Y, Abe H, Katsuyama Y, Itoh T, Watanabe M. Synthesis of unused-wood-derived C-Fe-N catalysts for oxygen reduction reaction by heteroatom doping during hydrothermal carbonization and subsequent carbonization in nitrogen atmosphere. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2021; 379:20200348. [PMID: 34510926 DOI: 10.1098/rsta.2020.0348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/18/2021] [Indexed: 06/13/2023]
Abstract
There is an urgent need to develop renewable sources of energy and use existing resources in an efficient manner. In this study, in order to improve the utilization of unused biomass and develop green processes and sustainable technologies for energy production and storage, unused Douglas fir sawdust (SD) was transformed into catalysts for the oxygen reduction reaction. Fe and N were doped into SD during hydrothermal carbonization, and the N- and Fe-doped wood-derived carbon (Fe/N/SD) was carbonized in a nitrogen atmosphere. After the catalyst had been calcined at 800°C, its showed the highest current density (-5.86 mAcm-2 at 0.5 V versus reversible hydrogen electrode or RHE) and Eonset value (0.913 V versus RHE). Furthermore, its current density was higher than that of Pt/C (20 wt% Pt) (-5.66 mA cm-2 @0.5 V versus RHE). Finally, after 50 000 s, the current density of sample Fe/N/SD (2 : 10 : 10) remained at 79.3% of the initial value. Thus, the synthesized catalysts, which can be produced readily at a low cost, are suitable for use in various types of energy generation and storage devices, such as fuel cells and air batteries. This article is part of the theme issue 'Bio-derived and bioinspired sustainable advanced materials for emerging technologies (part 2)'.
Collapse
Affiliation(s)
- Yasuto Goto
- Research Center of Supercritical Fluid Technology, Department of Chemical Engineering, Graduate School of Engineering, Tohoku University, 6-6-11 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | - Yuta Nakayasu
- Research Center of Supercritical Fluid Technology, Department of Chemical Engineering, Graduate School of Engineering, Tohoku University, 6-6-11 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
- Frontier Research Institute for Interdisciplinary Sciences (FRIS), Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Hiroya Abe
- Frontier Research Institute for Interdisciplinary Sciences (FRIS), Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Yuto Katsuyama
- Research Center of Supercritical Fluid Technology, Department of Chemical Engineering, Graduate School of Engineering, Tohoku University, 6-6-11 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | - Takashi Itoh
- Frontier Research Institute for Interdisciplinary Sciences (FRIS), Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Masaru Watanabe
- Research Center of Supercritical Fluid Technology, Department of Chemical Engineering, Graduate School of Engineering, Tohoku University, 6-6-11 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
- Environment Conservation Center, Department of Chemical Engineering, Graduate School of Engineering, Tohoku University, 6-6-11 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| |
Collapse
|