1
|
Ganta PK, Huang F, Halima TB, Kamaraj R, Chu YT, Tseng HC, Ding S, Wu KH, Chen HY. Evolution of aluminum aminophenolate complexes in the ring-opening polymerization of ε-caprolactone: electronic and amino-chelating effects. Dalton Trans 2025; 54:511-532. [PMID: 39648948 DOI: 10.1039/d4dt02923b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
A series of aluminum complexes bearing phenolate (O-Al and O2-Al), biphenolate (OO-Al type), aminophenolate (ON-Al), aminobiphenolate (ONO-Al), bis(phenolato)bis(amine) (NNOO-Al), and Salan (ONNO-Al) type ligands were synthesized. ε-Caprolactone (CL) polymerization using these aluminum complexes as catalysts was investigated. The overall polymerization rates of Al catalysts with different ligands were found to be in the following order (kobs values): ONBr-Al (0.124 min-1) ≥ OBr2-Al (0.121 min-1) > ONNOBr-Al (0.054 min-1) > NNOBr-Al (0.044 min-1) ≥ ONOBr-Al (0.043 min-1) > OBr-Al (0.033 min-1) > NNOOBr-Al (0.015 min-1) ≥ BuONNOBu-Al (0.001 min-1) = OOBr-Al (0.001 min-1). In addition, Al complexes with electron-donating substituents on ligands exhibited higher catalytic activity than those with bromo substituents. Density functional theory (DFT) calculations revealed that a dinuclear Al complex with two bridging methoxides had to rearrange to a phenolate bridged dinuclear Al complex with terminal methoxides. This is due to the low initiating ability of two bridging benzyl alkoxides. Combining the polymerization data and DFT results, it was concluded that the electron-donating substituents on the phenolate ring and chelating amino group enhance the electron density of the Al center. This may prevent the formation of a less active dinuclear Al complex with two bridging alkoxides (initiators) or facilitate its structural rearrangement. OOMe-Al has been established as a powerful candidate with a high polymerization rate and it exhibits well-controlled polymerization for synthesizing the mPEG-b-PCL copolymer.
Collapse
Affiliation(s)
- Prasanna Kumar Ganta
- Department of Medicinal and Applied Chemistry, Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan, 80708, Republic of China.
| | - Fei Huang
- Department of Medicinal and Applied Chemistry, Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan, 80708, Republic of China.
| | - Taoufik Ben Halima
- Department of Chemistry & Biomolecular Sciences, University of Ottawa, Ottawa, Canada
| | - Rajiv Kamaraj
- Department of Medicinal and Applied Chemistry, Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan, 80708, Republic of China.
| | - Yu-Ting Chu
- Department of Medicinal and Applied Chemistry, Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan, 80708, Republic of China.
- Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, Taiwan, 80424, Republic of China
| | - Hsi-Ching Tseng
- College of Science Instrumentation Center, National Taiwan University, Taipei, Taiwan, 106319, Republic of China
| | - Shangwu Ding
- Department of Medicinal and Applied Chemistry, Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan, 80708, Republic of China.
- Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, Taiwan, 80424, Republic of China
| | - Kuo-Hui Wu
- Department of Chemistry, National Central University, Taoyuan, Taiwan, 32001, Republic of China
| | - Hsuan-Ying Chen
- Department of Medicinal and Applied Chemistry, Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan, 80708, Republic of China.
- Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, Taiwan, 80424, Republic of China
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan, Republic of China
- National Pingtung University of Science and Technology, Pingtung, Taiwan 91201, Republic of China
| |
Collapse
|
2
|
Wang Y, Zhang W, Zhu P, You W, Xue X, Wang R, Ma Y, Sun WH. Intensive Cycloalkyl-Fused Pyridines for Aminopyridyl-Zinc-Heteroimidazoles Achieving High Efficiency toward the Ring-Opening Polymerization of Lactides. Molecules 2024; 29:4150. [PMID: 39274998 PMCID: PMC11397438 DOI: 10.3390/molecules29174150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/23/2024] [Accepted: 08/30/2024] [Indexed: 09/16/2024] Open
Abstract
The model precatalyst sp3- and sp2-N dinitrogen-coordinated zinc-heteroimidazole has been used as an efficient catalyst for the ring-opening polymerization of cyclic esters. Subsequent to our exceptional active 5,6,7-trihydroquinolin-8-amine-zinc catalysts for the ring-opening polymerization (ROP) of ε-caprolactone, various pyridine-fused cycloalkanones (ring size from five to eight) are developed for the correspondent fused amine-pyridine derivatives and their zinc-heteroimidazole chloride complexes Zn1-Zn8 (LZnCl2) bearing N-diphenylphosphinoethyl pendants. Activated with two equivalents of LiN(SiMe3)2, the title zinc complexes efficiently promote the ROP of L-lactide (L-LA) in situ; among them, Zn4/2Li(NSiMe3)2 catalyzed 500 equivalent L-LA at 80 °C with 92% conversion in 5 min (TOF: 5520 h-1). Under the same conditions, the catalytic efficiency for the ROP of rac-LA by Zn1-Zn8/2Li(NSiMe3)2 was slightly lower than that for L-LA (highest TOF: 4440 h-1). In both cases, cyclooctyl-fused pyridyl-zinc complexes exhibited higher activity than others, while the cycloheptyl-fused zinc complexes showed the lowest activity. The microstructure analysis of the polymers showed they possessed a linear structure capped with CH3O as major and cyclic structure as minor. In this work, all the ligands and zinc complexes were well characterized by 1H/13C/31P NMR, FT-IR spectroscopy as well as elemental analysis.
Collapse
Affiliation(s)
- Yun Wang
- Beijing Key Laboratory of Clothing Materials R&D and Assessment, Beijing Engineering Research Center of Textile Nanofiber, School of Materials Science and Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China
- Key Laboratory of Engineering Plastics and Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Wenjuan Zhang
- Beijing Key Laboratory of Clothing Materials R&D and Assessment, Beijing Engineering Research Center of Textile Nanofiber, School of Materials Science and Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China
| | - Pengjiang Zhu
- Beijing Key Laboratory of Clothing Materials R&D and Assessment, Beijing Engineering Research Center of Textile Nanofiber, School of Materials Science and Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China
- Key Laboratory of Engineering Plastics and Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Wei You
- Key Laboratory of Engineering Plastics and Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiaopan Xue
- Beijing Key Laboratory of Clothing Materials R&D and Assessment, Beijing Engineering Research Center of Textile Nanofiber, School of Materials Science and Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China
- Key Laboratory of Engineering Plastics and Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Rui Wang
- Beijing Key Laboratory of Clothing Materials R&D and Assessment, Beijing Engineering Research Center of Textile Nanofiber, School of Materials Science and Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China
| | - Yanping Ma
- Key Laboratory of Engineering Plastics and Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Wen-Hua Sun
- Key Laboratory of Engineering Plastics and Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
3
|
Chang CC, Chen MT, Huang TL, Chen CT. Tunable zinc benzamidinate complexes: coordination modes and catalytic activity in the ring-opening polymerization of L-lactide. Dalton Trans 2024; 53:7229-7238. [PMID: 38584516 DOI: 10.1039/d4dt00188e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Seven asymmetric zinc benzamidinate complexes featuring or lacking side-arm functionalities were synthesized. Using equimolar zinc reagent produced distinct dinuclear motifs [(C6H5-C = NC6H5)ZnEt]2 (R = tBu, 1; (CH2)2OMe, 2; (CH2)2NMe2, 3). Half the zinc reagent yielded dinuclear [(C6H5-C = NC6H5)2Zn]2 (R = tBu, 4) or mononuclear zinc bis(chelate) complexes (R = (CH2)2OMe, 5; (CH2)2NMe2, 6; CH2Py, 7). Molecular structures of 1-4 and 7 were determined via single-crystal X-ray diffraction. Altering benzamidinate substituents modifies both coordination modes and catalytic activities in ring-opening polymerization of L-lactide. Specifically, complex 7 exhibits enhanced catalytic activity at 25 °C using 100 equivalents of L-lactide with a turnover frequency of 1820 h-1.
Collapse
Affiliation(s)
- Chen-Chieh Chang
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan, Republic of China.
| | - Ming-Tsz Chen
- Department of Applied Chemistry, Providence University, Taichung 43301, Taiwan, Republic of China.
| | - Tzu-Lun Huang
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan, Republic of China.
| | - Chi-Tien Chen
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan, Republic of China.
- i-Center for Advanced Science and Technology, National Chung Hsing University, Taichung 402, Taiwan, Republic of China
| |
Collapse
|
4
|
Ganta PK, Teja MR, Chang CJ, Sambandam A, Kamaraj R, Chu YT, Ding S, Chen HY, Chen HY. Improvement of catalytic activity of aluminum complexes for the ring-opening polymerization of ε-caprolactone: aluminum thioamidate and thioureidate systems. Dalton Trans 2023; 52:17132-17147. [PMID: 37929915 DOI: 10.1039/d3dt03198e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
In this study, a series of Al complexes bearing amidates, thioamidates, ureidates, and thioureidates were synthesized and their catalytic activity for ε-caprolactone (CL) polymerization was evaluated. SPr-Al exhibited a higher catalytic activity than OPr-Al (3.2 times as high for CL polymerization; [CL] : [SPr-Al] : [BnOH] = 100 : 0.5 : 2; [SPr-Al] = 10 mM, conv. = 93% after 14 min at 25 °C), and USCl-Al exhibited a higher catalytic activity than UCl-Al (4.6 times as high for CL polymerization; [CL] : [USCl-Al] : [BnOH] = 100 : 0.5 : 2; [USCl-Al] = 10 mM, conv. = 90% after 15 min at 25 °C). Regardless of whether aluminum amidates or ureidates were present, thioligands improved the polymerization rate of aluminum catalysts. Density functional theory calculations revealed that the eight-membered ring [SPr-AlOMe2]2 decomposed into the four-membered ring SPr-AlOMe2. However, [OPr-AlOMe2]2 did not decompose because of its strong bridging Al-O bond. The overall activation energy required for CL polymerization was lower when using [SPr-AlOMe2]2 (18.1 kcal mol-1) as a catalyst than when using [OPr-AlOMe2]2 (23.9 kcal mol-1). This is because the TS2a transition state of SPr-AlOMe2 had a more open coordination geometry with a small N-Al-S angle (72.91°) than did TS3c of [OPr-AlOMe2]2, the crowded highest-energy transition state of [OPr-AlOMe2]2 with a larger N-Al-O angle (99.63°).
Collapse
Affiliation(s)
- Prasanna Kumar Ganta
- Department of Medicinal and Applied Chemistry, Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan, 80708, Republic of China.
| | - Mallemadugula Ravi Teja
- Department of Medicinal and Applied Chemistry, Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan, 80708, Republic of China.
| | - Chun-Juei Chang
- Department of Medicinal and Applied Chemistry, Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan, 80708, Republic of China.
- Department of International Ph.D. Program for Science, National Sun Yat-sen University, Kaohsiung, Taiwan 80424, Republic of China
| | - Anandan Sambandam
- Nanomaterials and Solar Energy Conversion Lab, Department of Chemistry, National Institute of Technology, Tiruchirappalli, 620015, India
| | - Rajiv Kamaraj
- Department of Medicinal and Applied Chemistry, Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan, 80708, Republic of China.
| | - Yu-Ting Chu
- Department of Medicinal and Applied Chemistry, Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan, 80708, Republic of China.
- Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, Taiwan, 80424, Republic of China
| | - Shangwu Ding
- Department of Medicinal and Applied Chemistry, Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan, 80708, Republic of China.
- Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, Taiwan, 80424, Republic of China
| | - Hsing-Yin Chen
- Department of Medicinal and Applied Chemistry, Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan, 80708, Republic of China.
| | - Hsuan-Ying Chen
- Department of Medicinal and Applied Chemistry, Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan, 80708, Republic of China.
- Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, Taiwan, 80424, Republic of China
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan, Republic of China
- National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| |
Collapse
|
5
|
10th Anniversary of Catalysts: Molecular Catalysis. Catalysts 2022. [DOI: 10.3390/catal12121584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
On the occasion of this Special Issue, I would like to present an editorial message on this good occasion [...]
Collapse
|
6
|
Chen CT, Lai ZL. Aluminium complexes containing indolyl-phenolate ligands as catalysts for ring-opening polymerization of cyclic esters. RSC Adv 2022; 12:28052-28058. [PMID: 36320241 PMCID: PMC9527570 DOI: 10.1039/d2ra05112e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/27/2022] [Indexed: 11/06/2022] Open
Abstract
A family of aluminium complexes supported by mono-anionic indolyl-phenolate ligands are described. Reactions of indolyl-phenolate based ligand precursors, IndHPhROH, with 1.0 or 0.5 equivalents of AlMe2Cl in toluene afforded aluminium indolyl-phenolate complexes 1-4 and aluminium bis-indolyl-phenolate complexes 5-8 respectively. The molecular structure is reported for 5. Based on the NMR spectroscopic and X-ray crystallographic studies, a 1,3-hydrogen shift could happen from nitrogen to carbon on the five-membered ring of the indolyl group upon reacting with aluminium reagents. These novel aluminium complexes demonstrate catalytic activities toward the ring-opening polymerization of cyclic esters in the presence of alcohol.
Collapse
Affiliation(s)
- Chi-Tien Chen
- Department of Chemistry, National Chung Hsing University Taichung 402 Taiwan
| | - Zi-Ling Lai
- Department of Chemistry, National Chung Hsing University Taichung 402 Taiwan
| |
Collapse
|
7
|
Jiang Y, Zhang W, Han M, Wang X, Solan GA, Wang R, Ma Y, Sun WH. Phenoxy-imine/-amide aluminum complexes with pendant or coordinated pyridine moieties: Solvent effects on structural type and catalytic capability for the ROP of cyclic esters. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|