1
|
Hao L, Luan J. Visible Light-Driven Direct Z-Scheme Ho 2SmSbO 7/YbDyBiNbO 7 Heterojunction Photocatalyst for Efficient Degradation of Fenitrothion. Molecules 2024; 29:5930. [PMID: 39770019 PMCID: PMC11678090 DOI: 10.3390/molecules29245930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/14/2024] [Accepted: 12/14/2024] [Indexed: 01/11/2025] Open
Abstract
A highly versatile Z-scheme heterostructure, Ho2SmSbO7/YbDyBiNbO7 (HYO), was synthesized using an ultrasonic-assisted solvent thermal method. The HYO heterojunction, composed of dual A2B2O7 compounds, exhibits superior separation of photogenerated carriers due to its efficient Z-scheme mechanism. The synergistic properties of Ho2SmSbO7 and YbDyBiNbO7, particularly the excellent visible light absorption, enable HYO to achieve exceptional photocatalytic performance in the degradation of fenitrothion (FNT). Specifically, HYO demonstrated an outstanding removal efficiency of 99.83% for FNT and a mineralization rate of 98.77% for total organic carbon (TOC) during the degradation process. Comparative analyses revealed that HYO significantly outperformed other photocatalysts, including Ho2SmSbO7, YbDyBiNbO7, and N-doped TiO2, achieving removal rates that were 1.10, 1.20, and 2.97 times higher for FNT, respectively. For TOC mineralization, HYO exhibited even greater enhancements, with rates 1.13, 1.26, and 3.37 times higher than those of the aforementioned catalysts. Additionally, the stability and durability of HYO were systematically evaluated, confirming its potential applicability in practical scenarios. Trapping experiments and electron paramagnetic resonance analyses were conducted to identify the active species generated by HYO, specifically hydroxyl radicals (•OH), superoxide anions (•O2-), and holes (h+). This facilitated a comprehensive understanding of the degradation mechanisms and pathways associated with FNT. In conclusion, this study represents a substantial contribution to the advancement of efficient Z-scheme heterostructure and offers critical insights for the development of sustainable remediation approaches aimed at mitigating FNT contamination.
Collapse
Affiliation(s)
- Liang Hao
- School of Physics, Changchun Normal University, Changchun 130032, China;
| | - Jingfei Luan
- School of Physics, Changchun Normal University, Changchun 130032, China;
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| |
Collapse
|
2
|
Hao L, Luan J. Constructing Direct Z-Scheme Y 2TmSbO 7/GdYBiNbO 7 Heterojunction Photocatalyst with Enhanced Photocatalytic Degradation of Acetochlor under Visible Light Irradiation. Int J Mol Sci 2024; 25:6871. [PMID: 38999979 PMCID: PMC11241117 DOI: 10.3390/ijms25136871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/05/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
This study presents a pioneering synthesis of a direct Z-scheme Y2TmSbO7/GdYBiNbO7 heterojunction photocatalyst (YGHP) using an ultrasound-assisted hydrothermal synthesis technique. Additionally, novel photocatalytic nanomaterials, namely Y2TmSbO7 and GdYBiNbO7, were fabricated via the hydrothermal fabrication technique. A comprehensive range of characterization techniques, including X-ray diffractometry, Fourier-transform infrared spectroscopy, Raman spectroscopy, UV-visible spectrophotometry, X-ray photoelectron spectroscopy, transmission electron microscopy, X-ray energy-dispersive spectroscopy, fluorescence spectroscopy, photocurrent testing, electrochemical impedance spectroscopy, ultraviolet photoelectron spectroscopy, and electron paramagnetic resonance, was employed to thoroughly investigate the morphological features, composition, chemical, optical, and photoelectric properties of the fabricated samples. The photocatalytic performance of YGHP was assessed in the degradation of the pesticide acetochlor (AC) and the mineralization of total organic carbon (TOC) under visible light exposure, demonstrating eximious removal efficiencies. Specifically, AC and TOC exhibited removal rates of 99.75% and 97.90%, respectively. Comparative analysis revealed that YGHP showcased significantly higher removal efficiencies for AC compared to the Y2TmSbO7, GdYBiNbO7, or N-doped TiO2 photocatalyst, with removal rates being 1.12 times, 1.21 times, or 3.07 times higher, respectively. Similarly, YGHP demonstrated substantially higher removal efficiencies for TOC than the aforementioned photocatalysts, with removal rates 1.15 times, 1.28 times, or 3.51 times higher, respectively. These improvements could be attributed to the Z-scheme charge transfer configuration, which preserved the preferable redox capacities of Y2TmSbO7 and GdYBiNbO7. Furthermore, the stability and durability of YGHP were confirmed, affirming its potential for practical applications. Trapping experiments and electron spin resonance analyses identified active species generated by YGHP, namely •OH, •O2-, and h+, allowing for comprehensive analysis of the degradation mechanisms and pathways of AC. Overall, this investigation advances the development of efficient Z-scheme heterostructural materials and provides valuable insights into formulating sustainable remediation strategies for combatting AC contamination.
Collapse
Affiliation(s)
- Liang Hao
- School of Physics, Changchun Normal University, Changchun 130032, China;
| | - Jingfei Luan
- School of Physics, Changchun Normal University, Changchun 130032, China;
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| |
Collapse
|
3
|
Hao L, Luan J. The Fabrication and Property Characterization of a Ho 2YSbO 7/Bi 2MoO 6 Heterojunction Photocatalyst and the Application of the Photodegradation of Diuron under Visible Light Irradiation. Int J Mol Sci 2024; 25:4418. [PMID: 38674003 PMCID: PMC11050021 DOI: 10.3390/ijms25084418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
A novel photocatalytic nanomaterial, Ho2YSbO7, was successfully synthesized for the first time using the solvothermal synthesis technique. In addition, a Ho2YSbO7/Bi2MoO6 heterojunction photocatalyst (HBHP) was prepared via the hydrothermal fabrication technique. Extensive characterizations of the synthesized samples were conducted using various instruments, such as an X-ray diffractometer, a Fourier transform infrared spectrometer, a Raman spectrometer, a UV-visible spectrophotometer, an X-ray photoelectron spectrometer, and a transmission electron microscope, as well as X-ray energy dispersive spectroscopy, photoluminescence spectroscopy, a photocurrent test, electrochemical impedance spectroscopy, ultraviolet photoelectron spectroscopy, and electron paramagnetic resonance. The photocatalytic activity of the HBHP was evaluated for the degradation of diuron (DRN) and the mineralization of total organic carbon (TOC) under visible light exposure for 152 min. Remarkable removal efficiencies were achieved, with 99.78% for DRN and 97.19% for TOC. Comparative analysis demonstrated that the HBHP exhibited markedly higher removal efficiencies for DRN compared to Ho2YSbO7, Bi2MoO6, or N-doped TiO2 photocatalyst, with removal efficiencies 1.13 times, 1.21 times, or 2.95 times higher, respectively. Similarly, the HBHP demonstrated significantly higher removal efficiencies for TOC compared to Ho2YSbO7, Bi2MoO6, or N-doped TiO2 photocatalyst, with removal efficiencies 1.17 times, 1.25 times, or 3.39 times higher, respectively. Furthermore, the HBHP demonstrated excellent stability and reusability. The mechanisms which could enhance the photocatalytic activity remarkably and the involvement of the major active species were comprehensively discussed, with superoxide radicals identified as the primary active species, followed by hydroxyl radicals and holes. The results of this study contribute to the advancement of efficient heterostructural materials and offer valuable insights into the development of sustainable remediation strategies for addressing DRN contamination.
Collapse
Affiliation(s)
- Liang Hao
- School of Physics, Changchun Normal University, Changchun 130032, China;
| | - Jingfei Luan
- School of Physics, Changchun Normal University, Changchun 130032, China;
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| |
Collapse
|
4
|
Grčić I, Radetić L, Miklec K, Presečki I, Leskovar K, Meaški H, Čizmić M, Brnardić I. Solar photocatalysis application in UWWTP outlets - simulations based on predictive models in flat-plate reactors and pollutant degradation studies with in silico toxicity assessment. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132589. [PMID: 37742381 DOI: 10.1016/j.jhazmat.2023.132589] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 09/26/2023]
Abstract
The application of the solar photocatalysis for the degradation of residual pollutants found in surface water was demonstrated. Semi-pilot scale flat-plate cascade reactor (FPCR) was used to study the degradation of model organic pollutants: enrofloxacin (ENRO), 17β-estradiol (E2) and 1H-benzotriazole (1H-BT) over TiO2 thin-film supported on glass fibers. A modular panel with full-spectra solar lamps with appropriate UVB and UVA irradiation levels was used as a simulation of sunlight. Pollutant degradation in FPCR was estimated using predictive models; intrinsic reaction rate constants (ki) for ENRO, E2 and 1H-BT independent of the reactor size, flow rate and irradiation conditions were determined: 9.60, 3.35 and 0.37 109 s-1 W-0.5 m1.5, respectively. Main degradation products (DPs), formed upon hydroxylation, ring opening and oxidation, were identified using LC-QTOF-MS. The ecotoxicological impact was assessed via T.E.S.T. and ECOSAR open-source tools showing the formation of less harmful DPs after sufficient reaction time. Pollutant degradation was simulated at four locations of interest, i.e. exhausts from urban wastewater treatment plants (UWWTPs) in Zagreb, Croatia (45°N), Krakow, Poland (50°N), Sevilla, Spain (37°N) and Ioannina, Greece (39.6°N). Results have proved that a simple flat-plate system with supported photocatalysts can be easily scaled up and incorporated at the outlet of UWWTP for the reduction of pollutant load and related toxicity. The exhaust canal in Zagreb with the estimated length of a photocatalytic layer of 122 m for the > 90% degradation of all target pollutants was discussed as the best installation site among studied locations. ENVIRONMENTAL IMPLICATION: A multi-disciplinary approach to the tentative application of TiO2 solar photocatalysis outdoors to reduce pollutant loads and toxicity in surface waters was demonstrated. Possible application at four selected locations in Europe, as an additional step in water treatment after urban wastewater treatment plants (UWWTPs) was discussed. Target pollutants were studied under environmentally relevant conditions (sunlight levels, water matrix, simulation of process on a real scale at selected geographical location), at both higher and low concentrations.
Collapse
Affiliation(s)
- Ivana Grčić
- University of Zagreb, Faculty of Geotechnical Engineering, Hallerova aleja 7, 42000 Varaždin, Croatia.
| | - Lucija Radetić
- University of Zagreb, Faculty of Geotechnical Engineering, Hallerova aleja 7, 42000 Varaždin, Croatia
| | - Kristina Miklec
- University of Zagreb, Faculty of Geotechnical Engineering, Hallerova aleja 7, 42000 Varaždin, Croatia
| | - Ivana Presečki
- University of Zagreb, Faculty of Geotechnical Engineering, Hallerova aleja 7, 42000 Varaždin, Croatia
| | - Karlo Leskovar
- University of Zagreb, Faculty of Geotechnical Engineering, Hallerova aleja 7, 42000 Varaždin, Croatia
| | - Hrvoje Meaški
- University of Zagreb, Faculty of Geotechnical Engineering, Hallerova aleja 7, 42000 Varaždin, Croatia
| | - Mirta Čizmić
- Selvita S.A., Hondlova 2, 10 000 Zagreb, Croatia
| | - Ivan Brnardić
- University of Zagreb, Faculty of Metallurgy, Aleja narodnih heroja 3, 44000 Sisak, Croatia
| |
Collapse
|
5
|
In-situ fabrication of AgI/AgnMoxO3x+n/2/g-C3N4 ternary composite photocatalysts for benzotriazole degradation: Tuning the heterostructure, photocatalytic activity and photostability by the degree of molybdate polymerization. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
6
|
Study of Photocatalytic Oxidation of Micropollutants in Water and Intensification Case Study. Catalysts 2022. [DOI: 10.3390/catal12111463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
During the last decades, heterogenous photocatalysis has shown as the most promising advanced oxidation process for the removal of micropollutants due to degradation rate, sustainability, non-toxicity, and low-cost. Synergistic interaction of light irradiation, photocatalysts, and highly reactive species are used to break down pollutants toward inert products. Even though titanium dioxide (TiO2) is the most researched photocatalyst, to overcome shortcomings, various modifications have been made to intensify photocatalytic activity in visible spectra range among which is modification with multiwalled carbon nanotubes (MWCNTs). Therefore, photocatalytic oxidation and its intensification by photocatalyst’s modification was studied on the example of four micropollutants (diclofenac, DF; imidacloprid, IMI; 1-H benzotriazole, BT; methylene blue, MB) degradation. Compound parabolic collector (CPC) reactor was used as, nowadays, it has been considered the state-of-the-art system due to its usage of both direct and diffuse solar radiation and quantum efficiency. A commercially available TiO2 P25 and nanocomposite of TiO2 and MWCNT were immobilized on a glass fiber mesh by sol-gel method. Full-spectra solar lamps with appropriate UVB and UVA irradiation levels were used in all experiments. Photocatalytic degradation of DF, IMI, BT, and MB by immobilized TiO2 and TiO2/CNT photocatalysts was achieved. Mathematical modelling which included mass transfer and photon absorption was applied and intrinsic reaction rate constants were estimated: kDF=3.56 × 10−10s−1W−0.5m1.5, kIMI=8.90 × 10−11s−1W−0.5m1.5, kBT=1.20 × 10−9s−1W−0.5m1.5, kMB=1.62 × 10−10s−1W−0.5m1.5. Intensification of photocatalysis by TiO2/CNT was observed for DF, IMI, and MB, while that was not the case for BT. The developed model can be effectively applied for different irradiation conditions which makes it extremely versatile and adaptable when predicting the degradation extents throughout the year using sunlight as the energy source at any location.
Collapse
|