1
|
Lu P, Zhang N, Wang Y, Wang Y, Zhang J, Cai Q, Zhang Y. Synthesis of BiOX-Red Mud/Granulated Blast Furnace Slag Geopolymer Microspheres for Photocatalytic Degradation of Formaldehyde. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1585. [PMID: 38612099 PMCID: PMC11012286 DOI: 10.3390/ma17071585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/25/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024]
Abstract
Release of formaldehyde gas indoors is a serious threat to human health. The traditional adsorption method is not stable enough for formaldehyde removal. Photocatalytic degradation of formaldehyde is effective and rapid, but photocatalysts are generally expensive and not easy to recycle. In this paper, geopolymer microspheres were applied as matrix materials for photocatalysts loading to degrade formaldehyde. Geopolymer microspheres were prepared from red mud and granulated blast furnace slag as raw materials by alkali activation. When the red mud doping was 50%, the concentration of NaOH solution was 6 mol/L, and the additive amount was 30 mL, the prepared geopolymer microspheres possessed good morphological characteristics and a large specific surface area of 38.80 m2/g. With the loading of BiOX (X = Cl, Br, I) photocatalysts on the surface of geopolymer microspheres, 85.71% of formaldehyde gas were adsorbed within 60 min. The formaldehyde degradation rate of the geopolymer microspheres loaded with BiOI reached 87.46% within 180 min, which was 23.07% higher than that of the microspheres loaded with BiOBr, and 50.50% higher than that of the microspheres loaded with BiOCl. While ensuring the efficient degradation of formaldehyde, the BiOX (X = Cl, Br, I)-loaded geopolymer microspheres are easy to recycle and can save space. This work not only promotes the resource utilization of red mud and granulated blast furnace slag, but also provides a new idea on the formation of catalysts in the process of photocatalytic degradation of formaldehyde.
Collapse
Affiliation(s)
- Ping Lu
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, China University of Geosciences, Beijing 100083, China
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, China University of Geosciences, Beijing 100083, China
- National Laboratory of Mineral Materials, China University of Geosciences, Beijing 100083, China
- School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| | - Na Zhang
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, China University of Geosciences, Beijing 100083, China
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, China University of Geosciences, Beijing 100083, China
- National Laboratory of Mineral Materials, China University of Geosciences, Beijing 100083, China
- School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| | - Ying Wang
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, China University of Geosciences, Beijing 100083, China
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, China University of Geosciences, Beijing 100083, China
- National Laboratory of Mineral Materials, China University of Geosciences, Beijing 100083, China
- School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| | - Yidi Wang
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, China University of Geosciences, Beijing 100083, China
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, China University of Geosciences, Beijing 100083, China
- National Laboratory of Mineral Materials, China University of Geosciences, Beijing 100083, China
- School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| | - Jiale Zhang
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, China University of Geosciences, Beijing 100083, China
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, China University of Geosciences, Beijing 100083, China
- National Laboratory of Mineral Materials, China University of Geosciences, Beijing 100083, China
- School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| | - Qingyi Cai
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, China University of Geosciences, Beijing 100083, China
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, China University of Geosciences, Beijing 100083, China
- National Laboratory of Mineral Materials, China University of Geosciences, Beijing 100083, China
- School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| | - Yihe Zhang
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, China University of Geosciences, Beijing 100083, China
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, China University of Geosciences, Beijing 100083, China
- National Laboratory of Mineral Materials, China University of Geosciences, Beijing 100083, China
- School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| |
Collapse
|
2
|
Yang B, To DTH, Resendiz Mendoza E, Myung NV. Achieving One Part Per Billion Hydrogen Sulfide (H 2S) Level Detection through Optimizing Composition and Crystallinity of Gold-Decorated Tungsten Trioxide (Au-WO 3) Nanofibers. ACS Sens 2024; 9:292-304. [PMID: 38215726 DOI: 10.1021/acssensors.3c01979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2024]
Abstract
As a common environmental pollutant and an important breath biomarker for several diseases, it is essential to develop a hydrogen sulfide gas sensor with a low-ppb level detection limit to prevent harmful gas exposure and allow early diagnoses of diseases in low-resource settings. Gold doped/decorated tungsten trioxide (Au-WO3) nanofibers with various compositions and crystallinities were synthesized to optimize H2S-sensing performance. Systematically experimental results demonstrated the ability to detect 1 ppb H2S with a response value (Rair/Rgas) of 2.01 using a 5 at % Au-WO3 nanofibers with average grain sizes of around 15 nm. Additionally, energy barrier difference of sensing materials in air and nitrogen (ΔEb) and power law exponent (n) were determined to be 0.36 eV and 0.7, respectively, at 450 °C indicating that O- is predominately ionic oxygen species and adsorption of O- significantly altered the Schottky barrier between the grain. Such quantitative analysis provides a comprehensive understanding of H2S detection mechanism.
Collapse
Affiliation(s)
- Bingxin Yang
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame 46556, Indiana, United States
| | - Dung Thi Hanh To
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame 46556, Indiana, United States
| | - Emily Resendiz Mendoza
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame 46556, Indiana, United States
| | - Nosang V Myung
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame 46556, Indiana, United States
| |
Collapse
|
3
|
Bhaskaran A, Sharma D, Roy S, Singh SA. Technological solutions for NO x, SO x, and VOC abatement: recent breakthroughs and future directions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:91501-91533. [PMID: 37495811 DOI: 10.1007/s11356-023-28840-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/13/2023] [Indexed: 07/28/2023]
Abstract
NOx, SOx, and carbonaceous volatile organic compounds (VOCs) are extremely harmful to the environment, and their concentrations must be within the limits prescribed by the region-specific pollution control boards. Thus, NOx, SOx, and VOC abatement is essential to safeguard the environment. Considering the importance of NOx, SOx, and VOC abatement, the discussion on selective catalytic reduction, oxidation, redox methods, and adsorption using noble metal and non-noble metal-based catalytic approaches were elaborated. This article covers different thermal treatment techniques, category of materials as catalysts, and its structure-property insights along with the advanced oxidation processes and adsorption. The defect engineered catalysts with lattice oxygen vacancies, bi- and tri-metallic noble metal catalysts and non-noble metal catalysts, modified metal organic frameworks, mixed-metal oxide supports, and their mechanisms have been thoroughly reviewed. The main hurdles and potential achievements in developing novel simultaneous NOx, SOx, and VOC removal technologies are critically discussed to envisage the future directions. This review highlights the removal of NOx, SOx, and VOC through material selection, properties, and mechanisms to further improve the existing abatement methods in an efficient way.
Collapse
Affiliation(s)
- Aathira Bhaskaran
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Hyderabad, 500078, India
| | - Deepika Sharma
- Department of Chemical Engineering, Birla Institute of Technology and Science Pilani, Pilani Campus, Pilani, 333031, India
| | - Sounak Roy
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Hyderabad, 500078, India
- Materials Center for Sustainable Energy & Environment, Birla Institute of Technology and Science Pilani Hyderabad Campus, Hyderabad, 500078, India
| | - Satyapaul A Singh
- Materials Center for Sustainable Energy & Environment, Birla Institute of Technology and Science Pilani Hyderabad Campus, Hyderabad, 500078, India.
- Department of Chemical Engineering, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Hyderabad, 500078, India.
| |
Collapse
|