1
|
Zhang ZG, Shen X, Jiang SK, Lin JC, Yi Y, Ji XJ. Biocatalytic Hydrogenation of Biomass-Derived Furan Aldehydes to Alcohols. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:2266-2278. [PMID: 39808924 DOI: 10.1021/acs.jafc.4c11258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
The biomass-derived furan aldehydes furfural (FF) and 5-hydroxymethylfurfural (HMF) are versatile platform chemicals used to produce various value-added chemicals through further valorization processes. Selectively reducing C═O in FF and HMF molecules to form furfuryl alcohol (FAL) and 2,5-bis(hydroxymethyl)furan (BHMF), represents an important research field in upgrading biomass-based furan compounds. Currently, the reduction of furan aldehydes to furan alcohols through chemical transformation often leads to unavoidable environmental issues and the formation of potential byproducts. Biocatalysis has demonstrated expanded applications in converting biomass-derived furan aldehydes into a diverse array of value-added chemicals. This process exhibits significant potential in organic synthesis and biotechnology due to its green and sustainable properties. The biocatalytic reduction of FF and HMF represents an especially important route for the selective synthesis of FAL and BHMF. This review discusses recent progress in the biosynthesis of FAL and BHMF from biomass-derived FF and HMF through biocatalytic processes. Recently discovered enzymes and whole cells used as biocatalysts for the production of furan alcohols are summarized. In addition, chemoenzymatic cascades for synthesizing furan alcohols from biomass hydrolysate and raw biomass materials are also discussed.
Collapse
Affiliation(s)
- Zhi-Gang Zhang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211800, China
| | - Xi Shen
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211800, China
| | - Shi-Kai Jiang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211800, China
| | - Jia-Chun Lin
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211800, China
| | - Yan Yi
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211800, China
| | - Xiao-Jun Ji
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China
| |
Collapse
|
2
|
Kumar Vaidyanathan V, Saikia K, Senthil Kumar P, Karanam Rathankumar A, Rangasamy G, Dattatraya Saratale G. Advances in enzymatic conversion of biomass derived furfural and 5-hydroxymethylfurfural to value-added chemicals and solvents. BIORESOURCE TECHNOLOGY 2023; 378:128975. [PMID: 36990330 DOI: 10.1016/j.biortech.2023.128975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/24/2023] [Accepted: 03/25/2023] [Indexed: 06/19/2023]
Abstract
The progress of versatile chemicals and bio-based fuels using renewable biomass has gained ample importance. Furfural and 5-hydroxymethylfurfural are biomass-derived compounds that serve as the cornerstone for high-value chemicals and have a myriad of industrial applications. Despite the significant research into several chemical processes for furanic platform chemicals conversion, the harsh reaction conditions and toxic by-products render their biological conversion an ideal alternative strategy. Although biological conversion confers an array of advantages, these processes have been reviewed less. This review explicates and evaluates notable improvements in the bioconversion of 5-hydroxymethylfurfural and furfural to comprehend the current developments in the biocatalytic transformation of furan. Enzymatic conversion of HMF and furfural to furanic derivative have been explored, while the latter has substantially overlooked a foretime. This discrepancy was reviewed along with the outlook on the potential usage of 5-hydroxymethylfurfural and furfural for the furan-based value-added products' synthesis.
Collapse
Affiliation(s)
- Vinoth Kumar Vaidyanathan
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Kongkona Saikia
- Department of Biochemistry, FASCM, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu 641021, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam 603110, Tamil Nadu, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam 603 110, Tamil Nadu, India; School of Engineering, Lebanese American University, Byblos, Lebanon
| | - Abiram Karanam Rathankumar
- Department of Biotechnology, Faculty of Engineering, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu 641021, India
| | - Gayathri Rangasamy
- School of Engineering, Lebanese American University, Byblos, Lebanon; University Centre for Research and Development & Department of Civil Engineering, Chandigarh University, Gharuan, Mohali, Punjab 140413, India
| | - Ganesh Dattatraya Saratale
- Department of Food Science and Biotechnology, Dongguk University, Ilsandong-gu, Goyang-si, Gyeonggido, Seoul 10326, South Korea.
| |
Collapse
|
3
|
Chang S, Zhang S, Chen T, Xu L, Ge S, Li B, Yun C, Zhang G, He X, Pan X. Efficient synthesis of 5-hydroxymethyl-2-furancarboxylic acid from bio-based high-concentration 5-hydroxymethylfurfural via highly tolerant aldehyde dehydrogenase. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2023.112966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
4
|
Lu GH, Zong MH, Li N. Combining Electro-, Photo-, and Biocatalysis for One-Pot Selective Conversion of Furfural into Value-Added C4 Chemicals. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Guang-Hui Lu
- School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, Guangdong 510640, China
| | - Min-Hua Zong
- School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, Guangdong 510640, China
| | - Ning Li
- School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, Guangdong 510640, China
| |
Collapse
|
5
|
The Influence of NH 4NO 3 and NH 4ClO 4 on Porous Structure Development of Activated Carbons Produced from Furfuryl Alcohol. Molecules 2022; 27:molecules27227860. [PMID: 36431960 PMCID: PMC9695850 DOI: 10.3390/molecules27227860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/10/2022] [Accepted: 11/12/2022] [Indexed: 11/16/2022] Open
Abstract
The influence of NH4NO3 and NH4ClO4 on the porous texture and structure development of activated carbons produced from a non-porous polymeric precursor synthesized from furfuryl alcohol has been studied. The non-doped counterparts were prepared and studied for comparison purposes. NH4NO3 and NH4ClO4-doped polymers were carbonized under N2 atmosphere at 600 °C, followed by CO2 activation at 1000 °C and the obtained carbon materials and activated carbons were thoroughly characterized. The porosity characterization data have shown that NH4NO3-derived ACs present the highest specific surface area (up to 1523 m2/g in the experimental conditions studied), and the resulting porosity distributions are strongly dependent on the activation conditions. Thus, 1 h activation is optimum for the microporosity development, whereas larger activation times lead to micropores enlargement and conversion into mesopores. The type of doping salts used also has a substantial impact on the surface chemical composition, i.e., C=O groups. Moreover, NH4NO3 and NH4ClO4 constitute good sources of nitrogen. The type and contribution of nitrogen species are dependent on the preparation conditions. Quaternary nitrogen only appears in doped samples prepared by carbonization and pyrrolic, pyrydinic, and nitrogen oxide groups appear in the NH4NO3 -series. NH4NO3 incorporation has led to optimized materials towards CO2 and C2H4 sorption with just 1 h activation time.
Collapse
|
6
|
Li N, Zong MH. (Chemo)biocatalytic Upgrading of Biobased Furanic Platforms to Chemicals, Fuels, and Materials: A Comprehensive Review. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Ning Li
- School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
| | - Min-Hua Zong
- School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
| |
Collapse
|
7
|
Álvarez A, Gutiérrez A, Ramírez C, Cuenca F, Bolívar G. Aroma compounds produced by liquid fermentation with Saccharomyces cerevisiae and Zygosaccharomyces rouxii from castor oil through cell permeabilization. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2021.102243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Olbrycht M, Bajek-Bil A, Balawejder M, Poplewska I, Piątkowski W, Antos D. Development of a Route to the Most Active Nafronyl Stereoisomer by Coupling Asymmetric Synthesis and Chiral Chromatography Separation. Chem Eng Technol 2021. [DOI: 10.1002/ceat.202100074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Maksymilian Olbrycht
- Rzeszow University of Technology Faculty of Chemistry Department of Chemical and Process Engineering al. Powstancow Warszawy 6 35-959 Rzeszow Poland
| | - Agata Bajek-Bil
- Rzeszow University of Technology Faculty of Chemistry Department of Industrial and Materials Chemistry al. Powstancow Warszawy 6 35-959 Rzeszow Poland
| | - Maciej Balawejder
- University of Rzeszow Faculty of Biology and Agriculture Chair of Chemistry and Food Toxicology ul. Cwiklinskiej 1 35-601 Rzeszow Poland
| | - Izabela Poplewska
- Rzeszow University of Technology Faculty of Chemistry Department of Chemical and Process Engineering al. Powstancow Warszawy 6 35-959 Rzeszow Poland
| | - Wojciech Piątkowski
- Rzeszow University of Technology Faculty of Chemistry Department of Chemical and Process Engineering al. Powstancow Warszawy 6 35-959 Rzeszow Poland
| | - Dorota Antos
- Rzeszow University of Technology Faculty of Chemistry Department of Chemical and Process Engineering al. Powstancow Warszawy 6 35-959 Rzeszow Poland
| |
Collapse
|
9
|
Jia HY, Yang ZY, Chen Q, Zong MH, Li N. Engineering Promiscuous Alcohol Dehydrogenase Activity of a Reductive Aminase AspRedAm for Selective Reduction of Biobased Furans. Front Chem 2021; 9:610091. [PMID: 34055734 PMCID: PMC8155666 DOI: 10.3389/fchem.2021.610091] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 02/15/2021] [Indexed: 11/25/2022] Open
Abstract
Catalytic promiscuity is a promising starting point for improving the existing enzymes and even creating novel enzymes. In this work, site-directed mutagenesis was performed to improve promiscuous alcohol dehydrogenase activity of reductive aminase from Aspergillus oryzae (AspRedAm). AspRedAm showed the cofactor preference toward NADPH in reductive aminations, while it favored NADH in the reduction reactions. Some key amino acid residues such as N93, I118, M119, and D169 were identified for mutagenesis by molecular docking. Variant N93A showed the optimal pH and temperature of 8 and 30°C, respectively, in the reduction of 5-hydroxymethylfurfural (HMF). The thermostability was enhanced upon mutation of N93 to alanine. The catalytic efficiency of variant N93A (kcat/Km, 23.6 mM−1 s−1) was approximately 2-fold higher compared to that of the wild-type (WT) enzyme (13.1 mM−1 s−1). The improved catalytic efficiency of this variant may be attributed to the reduced steric hindrance that stems from the smaller side chain of alanine in the substrate-binding pocket. Both the WT enzyme and variant N93A had broad substrate specificity. Escherichia coli (E. coli) cells harboring plain vector enabled selective reduction of biobased furans to target alcohols, with the conversions of 35–95% and the selectivities of >93%. The introduction of variant N93A to E. coli resulted in improved substrate conversions (>98%) and selectivities (>99%).
Collapse
Affiliation(s)
- Hao-Yu Jia
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Zi-Yue Yang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Qi Chen
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, Shanghai, China
| | - Min-Hua Zong
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Ning Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
10
|
Catalytic Transformation of Renewables (Olefin, Bio-Sourced, et al.). Catalysts 2021. [DOI: 10.3390/catal11030364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The objective of this Special Issue is to provide new diverse contributions that can demonstrate recent applications in biomass transformation using heterogeneous catalysts [...]
Collapse
|
11
|
Rodríguez M A, Rache LY, Brijaldo MH, Romanelli GP, Luque R, Martinez JJ. Biocatalytic transformation of furfural into furfuryl alcohol using resting cells of Bacillus cereus. Catal Today 2021. [DOI: 10.1016/j.cattod.2021.01.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
12
|
Bu CY, Yan YX, Zou LH, Zheng ZJ, Ouyang J. One-pot biosynthesis of furfuryl alcohol and lactic acid via a glucose coupled biphasic system using single Bacillus coagulans NL01. BIORESOURCE TECHNOLOGY 2020; 313:123705. [PMID: 32593878 DOI: 10.1016/j.biortech.2020.123705] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/14/2020] [Accepted: 06/15/2020] [Indexed: 05/12/2023]
Abstract
Furfuryl alcohol is an important reduction product from biomass derived furfural. This study developed one-pot biosynthesis of furfuryl alcohol and lactic acid by a glucose coupled biphasic system using single Bacillus coagulans NL01. Water/dioctyl phthalate is chosen as biphasic system to alleviate the toxicity of furfural and furfuryl alcohol. Under the optimal conditions, the high-concentration conversion (208 mM) of furfural was successfully converted in 6 h reaction with 98% furfural conversion and 88% furfuryl alcohol selectivity. Notably, glucose as co-substrate could be effectively converted to lactic acid in this biphasic system. About 264 mM furfuryl alcohol and 64.2 g/L lactic acid were simultaneously produced from 310 mM furfural and 71.3 g/L glucose within 8.5 h by a fed-batch strategy. The developed approach can not only increase the produced furfuryl alcohol concentration but also reduce the cost of overall approach by lactic acid co-production, indicating its potential for industrial applications.
Collapse
Affiliation(s)
- Chong-Yang Bu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China; College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Yu-Xiu Yan
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China; College of Forestry, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Li-Hua Zou
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China; College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Zhao-Juan Zheng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China; College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Jia Ouyang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China; College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China.
| |
Collapse
|
13
|
Zheng Z, Xu Q, Tan H, Zhou F, Ouyang J. Selective Biosynthesis of Furoic Acid From Furfural by Pseudomonas Putida and Identification of Molybdate Transporter Involvement in Furfural Oxidation. Front Chem 2020; 8:587456. [PMID: 33102450 PMCID: PMC7545826 DOI: 10.3389/fchem.2020.587456] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 08/31/2020] [Indexed: 01/21/2023] Open
Abstract
Upgrading of furanic aldehydes to their corresponding furancarboxylic acids has received considerable interest recently. Herein we reported selective oxidation of furfural (FAL) to furoic acid (FA) with quantitative yield using whole-cells of Pseudomonas putida KT2440. The biocatalytic capacity could be substantially promoted through adding 5-hydroxymethylfurfural into media at the middle exponential growth phase. The reaction pH and cell dosage had notable impacts on both FA titer and selectivity. Based on the validation of key factors for FAL conversion, the capacity of P. putida KT2440 to produce FAL was substantially improved. In batch bioconversion, 170 mM FA was produced with selectivity nearly 100% in 2 h, whereas 204 mM FA was produced with selectivity above 97% in 3 h in fed-batch bioconversion. Particularly, the role of molybdate transporter in oxidation of FAL and 5-hydroxymethylfurfural was demonstrated for the first time. The furancarboxylic acids synthesis was repressed markedly by destroying molybdate transporter, which implied Mo-dependent enzyme/molybdoenzyme played pivotal role in such oxidation reactions. This research further highlights the potential of P. putida KT2440 as next generation industrial workhorse and provides a novel understanding of molybdoenzyme in oxidation of furanic aldehydes.
Collapse
Affiliation(s)
- Zhaojuan Zheng
- Jiangsu Province Key Laboratory of Green Biomass-Based Fuels and Chemicals, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
- Key Laboratory of Forestry Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing, China
| | - Qianqian Xu
- Jiangsu Province Key Laboratory of Green Biomass-Based Fuels and Chemicals, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Huanghong Tan
- Jiangsu Province Key Laboratory of Green Biomass-Based Fuels and Chemicals, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Feng Zhou
- Jiangsu Province Key Laboratory of Green Biomass-Based Fuels and Chemicals, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Jia Ouyang
- Jiangsu Province Key Laboratory of Green Biomass-Based Fuels and Chemicals, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
- Key Laboratory of Forestry Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
14
|
Feng XQ, Li YY, Ma CL, Xia Y, He YC. Improved conversion of bamboo shoot shells to furfuryl alcohol and furfurylamine by a sequential catalysis with sulfonated graphite and biocatalysts. RSC Adv 2020; 10:40365-40372. [PMID: 35520828 PMCID: PMC9057514 DOI: 10.1039/d0ra07372e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 10/22/2020] [Indexed: 11/21/2022] Open
Abstract
Furfurylamine and furfuryl alcohol are known as important furfural-upgrading derivatives in the production of pharmaceuticals, fibers, additives, polymers, etc. In a one-pot manner, the catalysis of biomass into furan-based chemicals was established in a tandem reaction with sulfonated Sn–graphite catalysts and biocatalysts. Using a raw bamboo shoot shell (75.0 g L−1) as the feedstock, a high furfural yield of 41.1% (based on xylan) was obtained using the heterogeneous Sn–graphite catalyst (3.6 wt% dosage) in water (pH 1.0) for 30 min at 180 °C. Under the optimum bioreaction conditions, the biomass-derived furfural could be transformed into furfuryl alcohol (0.310 g furfuryl alcohol per g xylan in biomass) by a reductase biocatalyst or furfurylamine (0.305 g furfurylamine per g xylan in biomass) using an ω-transaminase biocatalyst. Such one-pot chemoenzymatic processes combined the merits of both heterogeneous catalysts and biocatalysts, and sustainable processes were successfully constructed for synthesizing key bio-based furans. Furfurylamine and furfuryl alcohol are known as important furfural-upgrading derivatives in the production of pharmaceuticals, fibers, additives, polymers, etc.![]()
Collapse
Affiliation(s)
- Xiao-Qing Feng
- Biomass and Bioenergy Laboratory
- School of Pharmacy
- Changzhou University
- Changzhou
- P. R. China
| | - Yuan-Yuan Li
- Biomass and Bioenergy Laboratory
- School of Pharmacy
- Changzhou University
- Changzhou
- P. R. China
| | - Cui-Luan Ma
- Biomass and Bioenergy Laboratory
- School of Pharmacy
- Changzhou University
- Changzhou
- P. R. China
| | - Yan Xia
- Biomass and Bioenergy Laboratory
- School of Pharmacy
- Changzhou University
- Changzhou
- P. R. China
| | - Yu-Cai He
- Biomass and Bioenergy Laboratory
- School of Pharmacy
- Changzhou University
- Changzhou
- P. R. China
| |
Collapse
|
15
|
Sánta-Bell E, Molnár Z, Varga A, Nagy F, Hornyánszky G, Paizs C, Balogh-Weiser D, Poppe L. "Fishing and Hunting"-Selective Immobilization of a Recombinant Phenylalanine Ammonia-Lyase from Fermentation Media. Molecules 2019; 24:E4146. [PMID: 31731791 PMCID: PMC6891789 DOI: 10.3390/molecules24224146] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/12/2019] [Accepted: 11/13/2019] [Indexed: 02/07/2023] Open
Abstract
This article overviews the numerous immobilization methods available for various biocatalysts such as whole-cells, cell fragments, lysates or enzymes which do not require preliminary enzyme purification and introduces an advanced approach avoiding the costly and time consuming downstream processes required by immobilization of purified enzyme-based biocatalysts (such as enzyme purification by chromatographic methods and dialysis). Our approach is based on silica shell coated magnetic nanoparticles as solid carriers decorated with mixed functions having either coordinative binding ability (a metal ion complexed by a chelator anchored to the surface) or covalent bond-forming ability (an epoxide attached to the surface via a proper linker) enabling a single operation enrichment and immobilization of a recombinant phenylalanine ammonia-lyase from parsley fused to a polyhistidine affinity tag.
Collapse
Affiliation(s)
- Evelin Sánta-Bell
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, 1111 Budapest, Hungary; (E.S.-B.); (Z.M.); (F.N.); (G.H.)
| | - Zsófia Molnár
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, 1111 Budapest, Hungary; (E.S.-B.); (Z.M.); (F.N.); (G.H.)
- Fermentia Microbiological Ltd., 1405 Budapest, Hungary
- Institute of Enzymology, Research Center for Natural Sciences, Hungarian Academy of Science, 1117 Budapest, Hungary
| | - Andrea Varga
- Biocatalysis and Biotransformation Research Centre, Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University of Cluj-Napoca, 400028 Cluj-Napoca, Romania; (A.V.); (C.P.)
| | - Flóra Nagy
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, 1111 Budapest, Hungary; (E.S.-B.); (Z.M.); (F.N.); (G.H.)
| | - Gábor Hornyánszky
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, 1111 Budapest, Hungary; (E.S.-B.); (Z.M.); (F.N.); (G.H.)
- SynBiocat Ltd., 1172 Budapest, Hungary
| | - Csaba Paizs
- Biocatalysis and Biotransformation Research Centre, Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University of Cluj-Napoca, 400028 Cluj-Napoca, Romania; (A.V.); (C.P.)
| | - Diána Balogh-Weiser
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, 1111 Budapest, Hungary; (E.S.-B.); (Z.M.); (F.N.); (G.H.)
- SynBiocat Ltd., 1172 Budapest, Hungary
- Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, 1111 Budapest, Hungary
| | - László Poppe
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, 1111 Budapest, Hungary; (E.S.-B.); (Z.M.); (F.N.); (G.H.)
- Biocatalysis and Biotransformation Research Centre, Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University of Cluj-Napoca, 400028 Cluj-Napoca, Romania; (A.V.); (C.P.)
- SynBiocat Ltd., 1172 Budapest, Hungary
| |
Collapse
|
16
|
Ahangangoda Arachchige MS, Mizutani O, Toyama H. Yeast strains from coconut toddy in Sri Lanka show high tolerance to inhibitors derived from the hydrolysis of lignocellulosic materials. BIOTECHNOL BIOTEC EQ 2019. [DOI: 10.1080/13102818.2019.1676167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
| | - Osamu Mizutani
- United Graduate School of Agricultural Science, Kagoshima University, Kagoshima, Japan
- Department of Bioscience and Biotechnology, Faculty of Agriculture, University of the Ryukyus, Nishihara, Okinawa, Japan
| | - Hirohide Toyama
- United Graduate School of Agricultural Science, Kagoshima University, Kagoshima, Japan
- Department of Bioscience and Biotechnology, Faculty of Agriculture, University of the Ryukyus, Nishihara, Okinawa, Japan
| |
Collapse
|