1
|
Sandomierski M, Jakubowski M, Ratajczak M, Voelkel A. Drug distribution evaluation using FT-IR imaging on the surface of a titanium alloy coated with zinc titanate with potential application in the release of drugs for osteoporosis. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 281:121575. [PMID: 35797951 DOI: 10.1016/j.saa.2022.121575] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/22/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
The drugs most commonly used in the treatment of osteoporosis are bisphosphonates. This disease results in low mineral density and a weakened bone microstructure. The delivery methods for these drugs have many disadvantages, and new ones are being searched for. In this work, biocompatible zinc titanate coated titanium implants were obtained as potential new carriers for drugs. Such a material will release the drug, and it will have antibacterial properties. Gradual release of the bisphosphonate will have a positive effect on the recovery process and osteointegration. In addition, the drug will be released around the affected bones. The effectiveness of the modification and attachment of the drug was confirmed by SEM, XPS, EDS, FT-IR imaging, and UV-VIS. It was shown that the risedronate could be almost completely released upon contact with body fluids within a week. The drug is evenly distributed over the entire surface of the alloy as confirmed by FT-IR imaging. The results presented in this work will allow for the preparation of endoprostheses that release the drug and have antibacterial properties.
Collapse
Affiliation(s)
- Mariusz Sandomierski
- Institute of Chemical Technology and Engineering, Poznan University of Technology, ul. Berdychowo 4, 60-965 Poznań, Poland.
| | - Marcel Jakubowski
- Institute of Chemical Technology and Engineering, Poznan University of Technology, ul. Berdychowo 4, 60-965 Poznań, Poland
| | - Maria Ratajczak
- Institute of Building Engineering, Poznan University of Technology, ul. Piotrowo 5, 60-965 Poznań, Poland
| | - Adam Voelkel
- Institute of Chemical Technology and Engineering, Poznan University of Technology, ul. Berdychowo 4, 60-965 Poznań, Poland
| |
Collapse
|
2
|
Simultaneous CO2 Photo-Reduction and Water Splitting Over Na2Ti3O7 Deposited with Co and Cu Oxide Cocatalysts. Top Catal 2022. [DOI: 10.1007/s11244-022-01668-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
3
|
Opra DP, Neumoin AI, Sinebryukhov SL, Podgorbunsky AB, Kuryavyi VG, Mayorov VY, Ustinov AY, Gnedenkov SV. Moss-like Hierarchical Architecture Self-Assembled by Ultrathin Na2Ti3O7 Nanotubes: Synthesis, Electrical Conductivity, and Electrochemical Performance in Sodium-Ion Batteries. NANOMATERIALS 2022; 12:nano12111905. [PMID: 35683760 PMCID: PMC9182444 DOI: 10.3390/nano12111905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/26/2022] [Accepted: 05/29/2022] [Indexed: 12/25/2022]
Abstract
Nanocrystalline layer-structured monoclinic Na2Ti3O7 is currently under consideration for usage in solid state electrolyte applications or electrochemical devices, including sodium-ion batteries, fuel cells, and sensors. Herein, a facile one-pot hydrothermal synthetic procedure is developed to prepare self-assembled moss-like hierarchical porous structure constructed by ultrathin Na2Ti3O7 nanotubes with an outer diameter of 6–9 nm, a wall thickness of 2–3 nm, and a length of several hundred nanometers. The phase and chemical transformations, optoelectronic, conductive, and electrochemical properties of as-prepared hierarchically-organized Na2Ti3O7 nanotubes have been studied. It is established that the obtained substance possesses an electrical conductivity of 3.34 × 10−4 S/cm at room temperature allowing faster motion of charge carriers. Besides, the unique hierarchical Na2Ti3O7 architecture exhibits promising cycling and rate performance as an anode material for sodium-ion batteries. In particular, after 50 charge/discharge cycles at the current loads of 50, 150, 350, and 800 mA/g, the reversible capacities of about 145, 120, 100, and 80 mA∙h/g, respectively, were achieved. Upon prolonged cycling at 350 mA/g, the capacity of approximately 95 mA∙h/g at the 200th cycle was observed with a Coulombic efficiency of almost 100% showing the retention as high as 95.0% initial storage. At last, it is found that residual water in the un-annealed nanotubular Na2Ti3O7 affects its electrochemical properties.
Collapse
|
4
|
Payra S, Ray S, Sharma R, Tarafder K, Mohanty P, Roy S. Photo- and Electrocatalytic Reduction of CO 2 over Metal-Organic Frameworks and Their Derived Oxides: A Correlation of the Reaction Mechanism with the Electronic Structure. Inorg Chem 2022; 61:2476-2489. [PMID: 35084843 DOI: 10.1021/acs.inorgchem.1c03317] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A Ce/Ti-based bimetallic 2-aminoterephthalate metal-organic framework (MOF) was synthesized and evaluated for photocatalytic reduction of CO2 in comparison with an isoreticular pristine monometallic Ce-terephthalate MOF. Owing to highly selective CO2 adsorption capability, optimized band gaps, higher flux of photogenerated electron-hole pairs, and a lower rate of recombination, this material exhibited better photocatalytic reduction of CO2 and lower hydrogen evolution compared to Ce-terephthalate. Thorough probing of the surface and electronic structure inferred that the reducibility of Ce4+ to Ce3+ was due to the introduction of an amine functional group into the linker, and low-lying Ti(3d) orbitals in Ce/Ti-2-aminoterephthalate facilitated the photoreduction reaction. Both the MOFs were calcined to their respective oxides of Ce1-xTixO2 and CeO2, and the electrocatalytic reduction of CO2 was performed over the oxidic materials. In contrast to the photocatalytic reaction mechanism, the lattice substitution of Ti in the CeO2 fluorite cubic structure showed a better hydrogen evolution reaction and consequently, poorer electroreduction of CO2 compared to pristine CeO2. Density functional theory calculations of the competitive hydrogen evolution reaction on the MOF and the oxide surfaces corroborated the experimental findings.
Collapse
Affiliation(s)
- Soumitra Payra
- Department of Chemistry, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Hyderabad 500078, India
| | - Subhasmita Ray
- Department of Physics, National Institute of Technology Karnataka, Mangalore 575025, India
| | - Ruchi Sharma
- Functional Materials Laboratory, Department of Chemistry, IIT Roorkee, Roorkee 247667, India
| | - Kartick Tarafder
- Department of Physics, National Institute of Technology Karnataka, Mangalore 575025, India
| | - Paritosh Mohanty
- Functional Materials Laboratory, Department of Chemistry, IIT Roorkee, Roorkee 247667, India
| | - Sounak Roy
- Department of Chemistry, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Hyderabad 500078, India
| |
Collapse
|
5
|
Sandomierski M, Zielińska M, Buchwald T, Patalas A, Voelkel A. Controlled release of the drug for osteoporosis from the surface of titanium implants coated with calcium titanate. J Biomed Mater Res B Appl Biomater 2021; 110:431-437. [PMID: 34288398 DOI: 10.1002/jbm.b.34919] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/16/2021] [Accepted: 07/08/2021] [Indexed: 12/15/2022]
Abstract
The most popular drugs used to prevent osteoporosis that causes low mineral density and weakened microstructure of bones are bisphosphonates. Bisphosphonates can be administered in several ways, but each delivery method has drawbacks. Due to this, new methods of their delivery are being sought. Titanium implants coated with calcium titanate were prepared in this work as carriers for bisphosphonates. Such a modification has been proposed in order to improve the therapeutic properties of the implant. Slow release of the drug at a constant level will positively affect the recovery process and osteointegration. Furthermore, the drug will be slowly released very close to the area affected by osteoporosis. These studies were confirmed, using a variety of methods: EDS and XPS (to examine surface modification and drug sorption), Raman mapping (to proof the presence of the drug on the entire surface of the material) and UV-VIS spectroscopy (to determine bisphosphonate sorption and release profile). It was proved that the active substance (sorbed on the implant) could be completely released upon contact with body fluids within a month. The obtained results will allow for the production of endoprostheses dedicated to patients with osteoporosis in the future.
Collapse
Affiliation(s)
- Mariusz Sandomierski
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Poznań, Poland
| | - Monika Zielińska
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Poznań, Poland
| | - Tomasz Buchwald
- Institute of Materials Research and Quantum Engineering, Poznań University of Technology, Poznań, Poland
| | - Adam Patalas
- Institute of Mechanical Technology, Poznań University of Technology, Poznań, Poland
| | - Adam Voelkel
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Poznań, Poland
| |
Collapse
|
6
|
Abstract
In the present work the process of hydrogen production was conducted in the plasma-catalytic reactor, the substrates were first treated with plasma and then introduced into the catalyst bed. Plasma was produced by a spark discharge. The discharge power ranged from 15 to 46 W. The catalyst was metallic nickel supported on Al2O3. The catalyst was active from a temperature of 400 °C. The substrate flow rate was 1 mol/h of water and 1 mol/h of methanol. The process generated H2, CO, CO2 and CH4. The gas which formed the greatest amount was H2. Its concentration in the gas was ~60%. The conversion of methanol and the production of hydrogen in the plasma-catalytic reactor were higher than in the plasma and catalytic reactors. The synergy effect of the interaction of two environments, i.e., plasma and the catalyst, was observed. The highest hydrogen production was 1.38 mol/h and the highest methanol conversion was 64%. The increased in the discharge power resulted in increasing methanol conversion and hydrogen production.
Collapse
|
7
|
Yari O, Elhamifar D, Shaker M. Self-assembled ionic liquid based organosilica-titania: A novel and efficient catalyst for green epoxidation of alkenes. J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2021.121787] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
8
|
Pang L, Paxton NC, Ren J, Liu F, Zhan H, Woodruff MA, Bo A, Gu Y. Development of Mechanically Enhanced Polycaprolactone Composites by a Functionalized Titanate Nanofiller for Melt Electrowriting in 3D Printing. ACS APPLIED MATERIALS & INTERFACES 2020; 12:47993-48006. [PMID: 33044824 DOI: 10.1021/acsami.0c14831] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Three-dimensional (3D) printing technologies are widely applied in various industries and research fields and are currently the subject of intensive investigation and development. However, high-performance materials that are suitable for 3D printing are still in short supply, which is a major limitation for 3D printing, particularly for biomedical applications. The physicochemical properties of single constituent materials may not be sufficient to meet the needs of modern biotechnology development and production. To enhance the materials' performance and broaden their applications, this work designed and tested a series of titanate nanofiller (nanowire and nanotube)-enhanced polycaprolactone (PCL) composites that were 3D-printable and provided superior mechanical properties. By grafting two different functional groups (phenyl- and thiol-terminated ligands), the nanofiller surface showed improved hydrophobicity, which significantly improved their dispersion in the PCL matrix. After characterizing the surface modification, we evaluated the significance of the homogeneity of the ceramic nanofiller in terms of printability, formability, and mechanical strength. Melt electrowriting additive manufacturing was used to fabricate microfibers of PCL and PCL/nanofiller composites. Improved nanofiller dispersion enabled intact and uniform sample morphology, and in contrast, nanofiller aggregation greatly varied the viscosity during the printing process, which could result in poorly printed structures. Importantly, the modified ceramic/PCL composite delivered enhanced and stable mechanical properties, where its Young's modulus was measured to be 1.67 GPa, which is more than 7 times higher compared to that of pristine PCL (0.22 GPa). Retaining the cell safety properties (comparable to PCL), the concept of enhancing biocompatible polymers with modified nanofillers shows great potential in the field of customized 3D printing for biomedicine.
Collapse
Affiliation(s)
- Le Pang
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, Queensland 4001, Australia
| | - Naomi C Paxton
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, Queensland 4001, Australia
| | - Jiongyu Ren
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, Queensland 4001, Australia
| | - Fan Liu
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, Queensland 4001, Australia
- School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430305, China
| | - Haifei Zhan
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, Queensland 4001, Australia
| | - Maria A Woodruff
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, Queensland 4001, Australia
| | - Arixin Bo
- INM-Leibniz Institute for New Materials, Saarbrücken 66123, Germany
| | - Yuantong Gu
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, Queensland 4001, Australia
| |
Collapse
|
9
|
Rangarajan G, Yan N, Farnood R. High‐performance photocatalysts for the selective oxidation of alcohols to carbonyl compounds. CAN J CHEM ENG 2020. [DOI: 10.1002/cjce.23835] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Goutham Rangarajan
- Department of Chemical Engineering & Applied Chemistry University of Toronto Toronto Ontario Canada
| | - Ning Yan
- Department of Chemical and Biomolecular Engineering National University of Singapore Singapore Singapore
| | - Ramin Farnood
- Department of Chemical Engineering & Applied Chemistry University of Toronto Toronto Ontario Canada
| |
Collapse
|