1
|
Kawamura G, Hirai D, Yamauchi S, Tan WK, Muto H, Matsuda A. Synergy Effect of Plasmonic Field Enhancement and Light Confinement in Mesoporous Titania-Coated Aluminum Nanovoid Photoelectrode. J Phys Chem Lett 2023; 14:11691-11696. [PMID: 38109358 PMCID: PMC10758215 DOI: 10.1021/acs.jpclett.3c03150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 11/30/2023] [Accepted: 12/14/2023] [Indexed: 12/20/2023]
Abstract
Photoelectrochemical (PEC) water splitting is a highly demanded technology for the realization of sustainable society. Various types of photoanodes have been developed to achieve high efficiency of PEC water splitting. Plasmonic field enhancement and light confinement effects are often adopted to improve PEC performance. However, their synergistic effects have not been studied. In this work, a mesoporous TiO2 layer was deposited on an Al plate with a nanovoid array structure, which acts as a photoanode and simultaneously exhibits a light confinement effect and surface plasmon resonance. The solo and synergy effects were investigated through experimental photocurrent measurements and theoretical simulations using the finite-difference time-domain method. The highest improvement in PEC performance was confirmed when the synergy effect occurred.
Collapse
Affiliation(s)
- Go Kawamura
- Department
of Electrical and Electronic Information Engineering, Toyohashi University of Technology, Toyohashi, Aichi 441-8580, Japan
| | - Daiki Hirai
- Department
of Electrical and Electronic Information Engineering, Toyohashi University of Technology, Toyohashi, Aichi 441-8580, Japan
| | - Shingo Yamauchi
- Department
of Electrical and Electronic Information Engineering, Toyohashi University of Technology, Toyohashi, Aichi 441-8580, Japan
| | - Wai Kian Tan
- Institute
of Liberal Arts and Science, Toyohashi, Aichi 441-8580, Japan
| | - Hiroyuki Muto
- Institute
of Liberal Arts and Science, Toyohashi, Aichi 441-8580, Japan
| | - Atsunori Matsuda
- Department
of Electrical and Electronic Information Engineering, Toyohashi University of Technology, Toyohashi, Aichi 441-8580, Japan
| |
Collapse
|
2
|
Green synthesis of stable S-scheme C-ZnO nanosheet/Ag3PO4 heterostructure towards extremely efficient visible-light catalytic degradation of ciprofloxacin. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
3
|
Wang K, Yoshiiri K, Rosa L, Wei Z, Juodkazis S, Ohtani B, Kowalska E. TiO2/Au/TiO2 plasmonic photocatalyst with enhanced photocatalytic activity and stability under visible-light irradiation. Catal Today 2022. [DOI: 10.1016/j.cattod.2021.09.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
4
|
A Photocatalytic Hydrolysis and Degradation of Toxic Dyes by Using Plasmonic Metal–Semiconductor Heterostructures: A Review. CHEMISTRY 2022. [DOI: 10.3390/chemistry4020034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Converting solar energy to chemical energy through a photocatalytic reaction is an efficient technique for obtaining a clean and affordable source of energy. The main problem with solar photocatalysts is the recombination of charge carriers and the large band gap of the photocatalysts. The plasmonic noble metal coupled with a semiconductor can give a unique synergetic effect and has emerged as the leading material for the photocatalytic reaction. The LSPR generation by these kinds of materials has proved to be very efficient in the photocatalytic hydrolysis of the hydrogen-rich compound, photocatalytic water splitting, and photocatalytic degradation of organic dyes. A noble metal coupled with a low bandgap semiconductor result in an ideal photocatalyst. Here, both the noble metal and semiconductor can absorb visible light. They tend to produce an electron–hole pair and prevent the recombination of the generated electron–hole pair, which ultimately reacts with the chemicals in the surrounding area, resulting in an enhanced photocatalytic reaction. The enhanced photocatalytic activity credit could be given to the shared effect of the strong SPR and the effective separation of photogenerated electrons and holes supported by noble metal particles. The study of plasmonic metal nanoparticles onto semiconductors has recently accelerated. It has emerged as a favourable technique to master the constraint of traditional photocatalysts and stimulate photocatalytic activity. This review work focuses on three main objectives: providing a brief explanation of plasmonic dynamics, understanding the synthesis procedure and examining the main features of the plasmonic metal nanostructure that dominate its photocatalytic activity, comparing the reported literature of some plasmonic photocatalysts on the hydrolysis of ammonia borane and dye water treatment, providing a detailed description of the four primary operations of the plasmonic energy transfer, and the study of prospects and future of plasmonic nanostructures.
Collapse
|
5
|
Jia H, Wong YL, Wang B, Xing G, Tsoi CC, Wang M, Zhang W, Jian A, Sang S, Lei D, Zhang X. Enhanced solar water splitting using plasmon-induced resonance energy transfer and unidirectional charge carrier transport. OPTICS EXPRESS 2021; 29:34810-34825. [PMID: 34809262 DOI: 10.1364/oe.440777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 09/30/2021] [Indexed: 06/13/2023]
Abstract
Solar water splitting by photoelectrochemical (PEC) reactions is promising for hydrogen production. The gold nanoparticles (AuNPs) are often applied to promote the visible response of wideband photocatalysts. However, in a typical TiO2/AuNPs structure, the opposite transfer direction of excited electrons between AuNPs and TiO2 under visible light and UV light severely limits the solar PEC performance. Here we present a unique Pt/TiO2/Cu2O/NiO/AuNPs photocathode, in which the NiO hole transport layer (HTL) is inserted between AuNPs and Cu2O to achieve unidirectional transport of charge carriers and prominent plasmon-induced resonance energy transfer (PIRET) between AuNPs and Cu2O. The measured applied bias photon-to-current efficiency and the hydrogen production rate under AM 1.5G illumination can reach 1.5% and 16.4 μmol·cm-2·h-1, respectively. This work is original in using the NiO film as the PIRET spacer and provides a promising photoelectrode for energy-efficient solar water splitting.
Collapse
|
6
|
Nigusie AL, Ujihara M. Plasmon-enhanced hydrogen evolution reaction on a Ag-branched-nanowire/Pt nanoparticle/AgCl nanocomposite. Phys Chem Chem Phys 2021; 23:16366-16375. [PMID: 34318807 DOI: 10.1039/d1cp00467k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A plasmon-enhanced photocatalytic system was designed with Ag-Pt-AgCl nanocomposites. Branched nanowires of Ag (AgBNWs) were first synthesized on indium-doped tin oxide-coated glass by electrodeposition. Then, the AgBNWs were dipped into an aqueous solution of Na2[PtCl6] at different concentrations from 1 to 5 mM to deposit Pt nanoparticles (PtNPs) on the AgBNWs via galvanic displacement. During the PtNP deposition, eluted Ag+ ions reacted with Cl- ions to precipitate AgCl on the AgBNWs. The obtained AgBNW/PtNP/AgCl nanocomposites exhibited plasmonic absorption at approximately 465 nm. The nanocomposites were then examined as photoelectrodes for hydrogen evolution. The hybridization of the PtNPs on the AgBNWs significantly decreased the overpotential for water splitting in the dark, and the large number of PtNPs resulted in a higher efficiency compared to a conventional catalyst. Under blue-light irradiation (479 nm, 100 mW cm-2), the overpotential decreased by -110 mV, and the current density increased by 27.8 mA cm-2. Under red-light irradiation (631 nm, 100 mW cm-2), the shift in onset potential was small, which could be attributed to the mismatching of the plasmonic absorption band with the excitation wavelength. The nanocomposite without AgCl (AgBNW/PtNP) was less effective at lowering the overpotential but more effective at improving the onset potential than AgBNW/PtNP/AgCl. These electrochemical behaviors were explained by the synergistic effect of the plasmon-induced photocurrent and charge transfer between Ag, Pt, and AgCl. The nanocomposite retained its photocatalytic activity after 400 cycles; therefore, the AgBNW/PtNP/AgCl nanocomposite could be useful for hydrogen evolution devices.
Collapse
Affiliation(s)
- Amanu Lakachew Nigusie
- Department of Chemical Engineering, National Taiwan University of Science and Technology, 43 Keelung Road, Taipei 10607, Taiwan, Republic of China
| | | |
Collapse
|
7
|
Hasija V, Raizada P, Hosseini‐Bandegharaei A, Thakur VK, Van Le Q, Nguyen V, Singh P. A Strategy to Develop Efficient Ag
3
PO
4
‐based Photocatalytic Materials Toward Water Splitting: Perspectives and Challenges. ChemCatChem 2021. [DOI: 10.1002/cctc.202100135] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Vasudha Hasija
- School of Advanced Chemical Sciences Shoolini University Solan (HP) 173229 India
| | - Pankaj Raizada
- School of Advanced Chemical Sciences Shoolini University Solan (HP) 173229 India
| | - Ahmad Hosseini‐Bandegharaei
- Department of Environmental Health Engineering Faculty of Health Sabzevar University of Medical Sciences Sabzevar Iran
- Department of Engineering Kashmar Branch Islamic Azad University PO Box 161 Kashmar Iran
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Centre Scotland's Rural College (SRUC) Edinburgh United Kingdom
| | - Quyet Van Le
- Institute of Research and Development Duy Tan University Da Nang 550000 Vietnam
| | - Van‐Huy Nguyen
- Faculty of Biotechnology Binh Duong University Thu Dau Mot Vietnam
| | - Pardeep Singh
- School of Advanced Chemical Sciences Shoolini University Solan (HP) 173229 India
| |
Collapse
|
8
|
Abstract
Plasmonic photocatalysts, i [...]
Collapse
|
9
|
Salmón-Gamboa JU, Romero-Gómez M, Roth DJ, Krasavin AV, Wang P, Dickson W, Zayats AV. Rational design of bimetallic photocatalysts based on plasmonically-derived hot carriers. NANOSCALE ADVANCES 2021; 3:767-780. [PMID: 36133839 PMCID: PMC9419383 DOI: 10.1039/d0na00728e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 12/17/2020] [Indexed: 05/17/2023]
Abstract
Hot carriers generated by plasmonic excitations have recently opened up new avenues in photocatalysis. The transfer of these energetic carriers to adjacent molecules can promote chemical transformations that are important for hydrogen generation by water splitting, CO2 reduction and degradation of organic pollutants. Here, we have developed and optimised a plasmonic hot-carrier catalytic system based on silica nanoparticles decorated with plasmonic gold nanoparticles as a source of hot carriers, equipped with platinum nanoclusters as co-catalyst for the enhancement of hot-carrier extraction. The latter plays a triple role by providing: a surface favourable for molecular adsorption; hot-electron generation near the nanoclusters due to field enhancement effects and electron momentum relaxation facilitating the electron transfer across the metal surface, exactly where molecules are adsorbed. The combination of plasmonic and catalytic metals in nano-heterostructured devices provides a new platform for photocatalytic processes and is of significant interest for future solar-based clean technologies.
Collapse
Affiliation(s)
- Jorge U Salmón-Gamboa
- Department of Physics and London Centre for Nanotechnology, King's College London Strand London WC2R 2LS UK
| | - Mayela Romero-Gómez
- Department of Physics and London Centre for Nanotechnology, King's College London Strand London WC2R 2LS UK
| | - Diane J Roth
- Department of Physics and London Centre for Nanotechnology, King's College London Strand London WC2R 2LS UK
| | - Alexey V Krasavin
- Department of Physics and London Centre for Nanotechnology, King's College London Strand London WC2R 2LS UK
| | - Pan Wang
- Department of Physics and London Centre for Nanotechnology, King's College London Strand London WC2R 2LS UK
| | - Wayne Dickson
- Department of Physics and London Centre for Nanotechnology, King's College London Strand London WC2R 2LS UK
| | - Anatoly V Zayats
- Department of Physics and London Centre for Nanotechnology, King's College London Strand London WC2R 2LS UK
| |
Collapse
|
10
|
Recent Advances in the Design and Photocatalytic Enhanced Performance of Gold Plasmonic Nanostructures Decorated with Non-Titania Based Semiconductor Hetero-Nanoarchitectures. Catalysts 2020. [DOI: 10.3390/catal10121459] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Plasmonic photocatalysts combining metallic nanoparticles and semiconductors have been aimed as versatile alternatives to drive light-assisted catalytic chemical reactions beyond the ultraviolet (UV) regions, and overcome one of the major drawbacks of the most exploited photocatalysts (TiO2 or ZnO). The strong size and morphology dependence of metallic nanostructures to tune their visible to near-infrared (vis-NIR) light harvesting capabilities has been combined with the design of a wide variety of architectures for the semiconductor supports to promote the selective activity of specific crystallographic facets. The search for efficient heterojunctions has been subjected to numerous studies, especially those involving gold nanostructures and titania semiconductors. In the present review, we paid special attention to the most recent advances in the design of gold-semiconductor hetero-nanostructures including emerging metal oxides such as cerium oxide or copper oxide (CeO2 or Cu2O) or metal chalcogenides such as copper sulfide or cadmium sulfides (CuS or CdS). These alternative hybrid materials were thoroughly built in past years to target research fields of strong impact, such as solar energy conversion, water splitting, environmental chemistry, or nanomedicine. Herein, we evaluate the influence of tuning the morphologies of the plasmonic gold nanostructures or the semiconductor interacting structures, and how these variations in geometry, either individual or combined, have a significant influence on the final photocatalytic performance.
Collapse
|
11
|
Niobium Oxide Catalysts as Emerging Material for Textile Wastewater Reuse: Photocatalytic Decolorization of Azo Dyes. Catalysts 2019. [DOI: 10.3390/catal9121070] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Niobium-based metal oxides are emerging semiconductor materials with barely explored properties for photocatalytic wastewater remediation. Brazil possesses the greatest reserves of niobium worldwide, being a natural resource that is barely exploited. Environmental applications of solar active niobium photocatalysts can provide opportunities in the developing areas of Northeast Brazil, which receives over 22 MJ m2 of natural sunlight irradiation annually. The application of photocatalytic treatment could incentivize water reuse practices in small and mid-sized textile businesses in the region. This work reports the facile synthesis of Nb2O5 catalysts and explores their performance for the treatment of colored azo dye effluents. The high photoactivity of this alternative photocatalyst makes it possible to quickly obtain complete decolorization, in less than 40 min of treatment. The optimal operational conditions are defined as 1.0 g L−1 Nb2O5 loading in slurry, 0.2 M of H2O2, pH 5.0 to treat up to 15 mg L−1 of methyl orange solution. To evaluate reutilization without photocatalytic activity loss, the Nb2O5 was recovered after the experience and reused, showing the same decolorization rate after several cycles. Therefore, Nb2O5 appears to be a promising photocatalytic material with potential applicability in wastewater treatment due to its innocuous character and high stability.
Collapse
|