1
|
Afsar A, Zhang L. Putative Molecular Mechanisms Underpinning the Inverse Roles of Mitochondrial Respiration and Heme Function in Lung Cancer and Alzheimer's Disease. BIOLOGY 2024; 13:185. [PMID: 38534454 DOI: 10.3390/biology13030185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/01/2024] [Accepted: 03/08/2024] [Indexed: 03/28/2024]
Abstract
Mitochondria are the powerhouse of the cell. Mitochondria serve as the major source of oxidative stress. Impaired mitochondria produce less adenosine triphosphate (ATP) but generate more reactive oxygen species (ROS), which could be a major factor in the oxidative imbalance observed in Alzheimer's disease (AD). Well-balanced mitochondrial respiration is important for the proper functioning of cells and human health. Indeed, recent research has shown that elevated mitochondrial respiration underlies the development and therapy resistance of many types of cancer, whereas diminished mitochondrial respiration is linked to the pathogenesis of AD. Mitochondria govern several activities that are known to be changed in lung cancer, the largest cause of cancer-related mortality worldwide. Because of the significant dependence of lung cancer cells on mitochondrial respiration, numerous studies demonstrated that blocking mitochondrial activity is a potent strategy to treat lung cancer. Heme is a central factor in mitochondrial respiration/oxidative phosphorylation (OXPHOS), and its association with cancer is the subject of increased research in recent years. In neural cells, heme is a key component in mitochondrial respiration and the production of ATP. Here, we review the role of impaired heme metabolism in the etiology of AD. We discuss the numerous mitochondrial effects that may contribute to AD and cancer. In addition to emphasizing the significance of heme in the development of both AD and cancer, this review also identifies some possible biological connections between the development of the two diseases. This review explores shared biological mechanisms (Pin1, Wnt, and p53 signaling) in cancer and AD. In cancer, these mechanisms drive cell proliferation and tumorigenic functions, while in AD, they lead to cell death. Understanding these mechanisms may help advance treatments for both conditions. This review discusses precise information regarding common risk factors, such as aging, obesity, diabetes, and tobacco usage.
Collapse
Affiliation(s)
- Atefeh Afsar
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Li Zhang
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX 75080, USA
| |
Collapse
|
2
|
Francia MG, Verneri P, Oses C, Vazquez Echegaray C, Garcia MR, Toro A, Levi V, Guberman AS. AKT1 induces Nanog promoter in a SUMOylation-dependent manner in different pluripotent contexts. BMC Res Notes 2023; 16:309. [PMID: 37919788 PMCID: PMC10623886 DOI: 10.1186/s13104-023-06598-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 10/26/2023] [Indexed: 11/04/2023] Open
Abstract
AKT/PKB is a kinase crucial for pluripotency maintenance in pluripotent stem cells. Multiple post-translational modifications modulate its activity. We have previously demonstrated that AKT1 induces the expression of the pluripotency transcription factor Nanog in a SUMOylation-dependent manner in mouse embryonic stem cells. Here, we studied different cellular contexts and main candidates that could mediate this induction. Our results strongly suggest the pluripotency transcription factors OCT4 and SOX2 are not essential mediators. Additionally, we concluded that this induction takes place in different pluripotent contexts but not in terminally differentiated cells. Finally, the cross-matching analysis of ESCs, iPSCs and MEFs transcriptomes and AKT1 phosphorylation targets provided new clues about possible factors that could be involved in the SUMOylation-dependent Nanog induction by AKT.
Collapse
Affiliation(s)
- Marcos Gabriel Francia
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Paula Verneri
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Camila Oses
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Camila Vazquez Echegaray
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
- Lund Stem Cell Center, Department of Molecular Medicine and Gene Therapy, Lund University, Lund, Sweden
| | - Mora Reneé Garcia
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ayelen Toro
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Valeria Levi
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Alejandra Sonia Guberman
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina.
- Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.
- Laboratorio de Regulación Génica en Células Madre (CONICET-UBA), Intendente Guiraldes 2160 Pab. 2, 4to Piso, QB-71, C1428EGA, Buenos Aires, Argentina.
| |
Collapse
|
3
|
Gabriel Francia M, Oses C, Lorena Roberti S, Reneé Garcia M, Helio Cozza L, Candelaria Diaz M, Levi V, Sonia Guberman A. SUMOylation and the oncogenic E17K mutation affect AKT1 subcellular distribution and impact on Nanog-binding dynamics to chromatin in embryonic stem cells. J Struct Biol 2023; 215:107961. [PMID: 37059313 DOI: 10.1016/j.jsb.2023.107961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 03/23/2023] [Accepted: 04/02/2023] [Indexed: 04/16/2023]
Abstract
AKT/PKB is a kinase involved in the regulation of a plethora of cell processes. Particularly, in embryonic stem cells (ESCs), AKT is crucial for the maintenance of pluripotency. Although the activation of this kinase relies on its recruitment to the cellular membrane and subsequent phosphorylation, multiple other post-translational modifications (PTMs), including SUMOylation, fine-tune its activity and target specificity. Since this PTM can also modify the localization and availability of different proteins, in this work we explored if SUMOylation impacts on the subcellular compartmentalization and distribution of AKT1 in ESCs. We found that this PTM does not affect AKT1 membrane recruitment, but it modifies the AKT1 nucleus/cytoplasm distribution, increasing its nuclear presence. Additionally, within this compartment, we found that AKT1 SUMOylation also impacts on the chromatin-binding dynamics of NANOG, a central pluripotency transcription factor. Remarkably, the oncogenic E17K AKT1 mutant produces major changes in all these parameters increasing the binding of NANOG to its targets, also in a SUMOylation dependent manner. These findings demonstrate that SUMOylation modulates AKT1 subcellular distribution, thus adding an extra layer of regulation of its function, possibly by affecting the specificity and interaction with its downstream targets.
Collapse
Affiliation(s)
- Marcos Gabriel Francia
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN, CONICET-UBA), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Ciudad Autónoma de Buenos Aires, Argentina
| | - Camila Oses
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN, CONICET-UBA), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Ciudad Autónoma de Buenos Aires, Argentina
| | - Sabrina Lorena Roberti
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN, CONICET-UBA), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Ciudad Autónoma de Buenos Aires, Argentina
| | - Mora Reneé Garcia
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN, CONICET-UBA), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Ciudad Autónoma de Buenos Aires, Argentina
| | - Lucas Helio Cozza
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN, CONICET-UBA), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Ciudad Autónoma de Buenos Aires, Argentina
| | - Maria Candelaria Diaz
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN, CONICET-UBA), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Ciudad Autónoma de Buenos Aires, Argentina
| | - Valeria Levi
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN, CONICET-UBA), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Ciudad Autónoma de Buenos Aires, Argentina
| | - Alejandra Sonia Guberman
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN, CONICET-UBA), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Ciudad Autónoma de Buenos Aires, Argentina; Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Ciudad Autónoma de Buenos Aires, Argentina.
| |
Collapse
|
4
|
Liu Y, Gu W. The complexity of p53-mediated metabolic regulation in tumor suppression. Semin Cancer Biol 2022; 85:4-32. [PMID: 33785447 PMCID: PMC8473587 DOI: 10.1016/j.semcancer.2021.03.010] [Citation(s) in RCA: 136] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 02/07/2023]
Abstract
Although the classic activities of p53 including induction of cell-cycle arrest, senescence, and apoptosis are well accepted as critical barriers to cancer development, accumulating evidence suggests that loss of these classic activities is not sufficient to abrogate the tumor suppression activity of p53. Numerous studies suggest that metabolic regulation contributes to tumor suppression, but the mechanisms by which it does so are not completely understood. Cancer cells rewire cellular metabolism to meet the energetic and substrate demands of tumor development. It is well established that p53 suppresses glycolysis and promotes mitochondrial oxidative phosphorylation through a number of downstream targets against the Warburg effect. The role of p53-mediated metabolic regulation in tumor suppression is complexed by its function to promote both cell survival and cell death under different physiological settings. Indeed, p53 can regulate both pro-oxidant and antioxidant target genes for complete opposite effects. In this review, we will summarize the roles of p53 in the regulation of glucose, lipid, amino acid, nucleotide, iron metabolism, and ROS production. We will highlight the mechanisms underlying p53-mediated ferroptosis, AKT/mTOR signaling as well as autophagy and discuss the complexity of p53-metabolic regulation in tumor development.
Collapse
Affiliation(s)
- Yanqing Liu
- Institute for Cancer Genetics, Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, 1130 Nicholas Ave, New York, NY, 10032, USA
| | - Wei Gu
- Institute for Cancer Genetics, Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, 1130 Nicholas Ave, New York, NY, 10032, USA; Department of Pathology and Cell Biology, Vagelos College of Physicians & Surgeons, Columbia University, 1130 Nicholas Ave, New York, NY, 10032, USA.
| |
Collapse
|
5
|
Gao M, Qi Z, Deng M, Huang H, Xu Z, Guo G, Jing J, Huang X, Xu M, Kloeber JA, Liu S, Huang J, Lou Z, Han J. The deubiquitinase USP7 regulates oxidative stress through stabilization of HO-1. Oncogene 2022; 41:4018-4027. [PMID: 35821281 DOI: 10.1038/s41388-022-02403-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 06/21/2022] [Accepted: 06/28/2022] [Indexed: 11/09/2022]
Abstract
Heme oxygenase-1 (HO-1) is an inducible heme degradation enzyme that plays a cytoprotective role against various oxidative and inflammatory stresses. However, it has also been shown to exert an important role in cancer progression through a variety of mechanisms. Although transcription factors such as Nrf2 are involved in HO-1 regulation, the posttranslational modifications of HO-1 after oxidative insults and the underlying mechanisms remain unexplored. Here, we screened and identified that the deubiquitinase USP7 plays a key role in the control of redox homeostasis through promoting HO-1 deubiquitination and stabilization in hepatocytes. We used low-dose arsenic as a stress model which does not affect the transcriptional level of HO-1, and found that the interaction between USP7 and HO-1 is increased after arsenic exposure, leading to enhanced HO-1 expression and attenuated oxidative damages. Furthermore, HO-1 protein is ubiquitinated at K243 and subjected to degradation under resting conditions; whereas when after arsenic exposure, USP7 itself can be ubiquitinated at K476, thereafter promoting the binding between USP7 and HO-1, finally leading to enhanced HO-1 deubiquitination and protein accumulation. Moreover, depletion of USP7 and HO-1 inhibit liver tumor growth in vivo, and USP7 positively correlates with HO-1 protein level in clinical human hepatocellular carcinoma (HCC) specimens. In summary, our findings reveal a critical role of USP7 as a HO-1 deubiquitinating enzyme in the regulation of oxidative stresses, and suggest that USP7 inhibitor might be a potential therapeutic agent for treating HO-1 overexpressed liver cancers.
Collapse
Affiliation(s)
- Ming Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Zijuan Qi
- Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University, Ji'nan, 250014, Shandong, China
| | - Min Deng
- State Key Laboratory of Molecular Oncology and Department of Radiation Oncology, Chinese Academy of Medical Sciences, 100021, Beijing, China
| | - Hongyang Huang
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, 999077, China
| | - Zhijie Xu
- Department of Pathology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Guijie Guo
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Jiajun Jing
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Xiaofeng Huang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Ming Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Jake A Kloeber
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA.,Mayo Clinic Medical Scientist Training Program, Mayo Clinic, Rochester, MN, 55905, USA
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Jinzhou Huang
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA.
| | - Zhenkun Lou
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA.
| | - Jinxiang Han
- Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University, Ji'nan, 250014, Shandong, China.
| |
Collapse
|
6
|
Echegaray CV, Salvati B, Vivien SD, Francia MG, Solari CM, Cosentino MS, Guberman A, Perullini M. Design of silica nanocarriers: tuning the release to embryonic stem cells by simple strategies. J Biotechnol 2022; 353:19-27. [DOI: 10.1016/j.jbiotec.2022.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 04/11/2022] [Accepted: 05/18/2022] [Indexed: 11/16/2022]
|
7
|
Wang T, Ashrafi A, Modareszadeh P, Deese AR, Chacon Castro MDC, Alemi PS, Zhang L. An Analysis of the Multifaceted Roles of Heme in the Pathogenesis of Cancer and Related Diseases. Cancers (Basel) 2021; 13:4142. [PMID: 34439295 PMCID: PMC8393563 DOI: 10.3390/cancers13164142] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/08/2021] [Accepted: 08/13/2021] [Indexed: 12/28/2022] Open
Abstract
Heme is an essential prosthetic group in proteins and enzymes involved in oxygen utilization and metabolism. Heme also plays versatile and fascinating roles in regulating fundamental biological processes, ranging from aerobic respiration to drug metabolism. Increasing experimental and epidemiological data have shown that altered heme homeostasis accelerates the development and progression of common diseases, including various cancers, diabetes, vascular diseases, and Alzheimer's disease. The effects of heme on the pathogenesis of these diseases may be mediated via its action on various cellular signaling and regulatory proteins, as well as its function in cellular bioenergetics, specifically, oxidative phosphorylation (OXPHOS). Elevated heme levels in cancer cells intensify OXPHOS, leading to higher ATP generation and fueling tumorigenic functions. In contrast, lowered heme levels in neurons may reduce OXPHOS, leading to defects in bioenergetics and causing neurological deficits. Further, heme has been shown to modulate the activities of diverse cellular proteins influencing disease pathogenesis. These include BTB and CNC homology 1 (BACH1), tumor suppressor P53 protein, progesterone receptor membrane component 1 protein (PGRMC1), cystathionine-β-synthase (CBS), soluble guanylate cyclase (sGC), and nitric oxide synthases (NOS). This review provides an in-depth analysis of heme function in influencing diverse molecular and cellular processes germane to disease pathogenesis and the modes by which heme modulates the activities of cellular proteins involved in the development of cancer and other common diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Li Zhang
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX 75080, USA; (T.W.); (A.A.); (P.M.); (A.R.D.); (M.D.C.C.C.); (P.S.A.)
| |
Collapse
|
8
|
Petrone MV, Toro A, Vazquez Echegaray C, Francia MG, Solari C, Cosentino MS, Vazquez E, Guberman A. The pluripotency transcription factor OCT4 represses heme oxygenase-1 gene expression. FEBS Lett 2021; 595:1949-1961. [PMID: 34056710 DOI: 10.1002/1873-3468.14138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/17/2021] [Accepted: 05/23/2021] [Indexed: 01/03/2023]
Abstract
In embryonic stem (ES) cells, oxidative stress control is crucial for genomic stability, self-renewal, and cell differentiation. Heme oxygenase-1 (HO-1) is a key player of the antioxidant system and is also involved in stem cell differentiation and pluripotency acquisition. We found that the HO-1 gene is expressed in ES cells and induced after promoting differentiation. Moreover, downregulation of the pluripotency transcription factor (TF) OCT4 increased HO-1 mRNA levels in ES cells, and analysis of ChIP-seq public data revealed that this TF binds to the HO-1 gene locus in pluripotent cells. Finally, ectopic expression of OCT4 in heterologous systems repressed a reporter carrying the HO-1 gene promoter and the endogenous gene. Hence, this work highlights the connection between pluripotency and redox homeostasis.
Collapse
Affiliation(s)
- María Victoria Petrone
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-UBA, Buenos Aires, Argentina
| | - Ayelén Toro
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-UBA, Buenos Aires, Argentina
| | - Camila Vazquez Echegaray
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-UBA, Buenos Aires, Argentina
| | - Marcos Gabriel Francia
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-UBA, Buenos Aires, Argentina
| | - Claudia Solari
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-UBA, Buenos Aires, Argentina
| | - Maria Soledad Cosentino
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-UBA, Buenos Aires, Argentina
| | - Elba Vazquez
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires, Buenos Aires, Argentina.,IQUIBICEN, CONICET-UBA, Buenos Aires, Argentina
| | - Alejandra Guberman
- IQUIBICEN, CONICET-UBA, Buenos Aires, Argentina.,Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires, Argentina
| |
Collapse
|