1
|
Kurioka A, Klenerman P. Aging unconventionally: γδ T cells, iNKT cells, and MAIT cells in aging. Semin Immunol 2023; 69:101816. [PMID: 37536148 PMCID: PMC10804939 DOI: 10.1016/j.smim.2023.101816] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 08/05/2023]
Abstract
Unconventional T cells include γδ T cells, invariant Natural Killer T cells (iNKT) cells and Mucosal Associated Invariant T (MAIT) cells, which are distinguished from conventional T cells by their recognition of non-peptide ligands presented by non-polymorphic antigen presenting molecules and rapid effector functions that are pre-programmed during their development. Here we review current knowledge of the effect of age on unconventional T cells, from early life to old age, in both mice and humans. We then discuss the role of unconventional T cells in age-associated diseases and infections, highlighting the similarities between members of the unconventional T cell family in the context of aging.
Collapse
Affiliation(s)
- Ayako Kurioka
- Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| | - Paul Klenerman
- Nuffield Department of Medicine, University of Oxford, Oxford, UK; Translational Gastroenterology Unit, University of Oxford, Oxford, UK
| |
Collapse
|
2
|
Ou L, Wang H, Liu Q, Zhang J, Lu H, Luo L, Shi C, Lin S, Dong L, Guo Y, Huang L, Zhu J, Yin X, Huang AC, Karakousis G, Schuchter L, Amaravadi R, Zheng C, Fan Y, Guo W, Xu X. Dichotomous and stable gamma delta T-cell number and function in healthy individuals. J Immunother Cancer 2021; 9:e002274. [PMID: 34011536 PMCID: PMC8137237 DOI: 10.1136/jitc-2020-002274] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Gamma-delta (γδ) T lymphocytes are primed to potently respond to pathogens and transformed cells by recognizing a broad range of antigens. However, adoptive immunotherapy with γδT cells has exhibited mixed treatment responses. Better understanding of γδT cell biology and stratifying healthy donors for allogeneic adoptive therapy is clinically needed to fully realize the therapeutic potential of γδT cells. METHODS We examine 98 blood samples from healthy donors and measure their expansion capacity after zoledronate stimulation, and test the migration and cytotoxic effector function of expanded γδT cells in 2D culture, 3D tumor spheroid and patient-derived melanoma organoid assays. RESULTS We find that γδT cell expansion capacity is independent of expansion methods, gender, age and HLA type. Basal γδT cell levels in Peripheral blood mononuclear cell (PBMC) correlate well with their expansion, migration and cytotoxic effector capacity in vitro. Circulating γδT cells with lower expression of PD-1, CTLA-4, Eomes, T-bet and CD69, or higher IFN-γ production expand better. γδT cells with central memory and effector memory phenotypes are significantly more abundant in good expanders. A cut-off level of 0.82% γδT cells in PBMC stratifies good versus poor γδT cell expansion with a sensitivity of 97.78%, specificity of 90.48% and area under the curve of 0.968 in a healthy individual. Donors with higher Vδ2 Index Score in PBMC have greater anti-tumor functions including migratory function and cytotoxicity. CONCLUSIONS Our results demonstrate that the interindividual γδT cell functions correlate with their circulating levels in healthy donors. Examination of circulating γδT cell level may be used to select healthy donors to participate in γδT-based immunotherapies.
Collapse
Affiliation(s)
- Lingling Ou
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Stomatology, Jinan University First Affiliated Hospital, Guangzhou, Guangdong, China
| | - Huaishan Wang
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Qin Liu
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Jie Zhang
- Department of Computer Science, New Jersey Institute of Technology, Newark, New Jersey, USA
| | - Hezhe Lu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Liangping Luo
- Department of Stomatology, Jinan University First Affiliated Hospital, Guangzhou, Guangdong, China
| | - Changzheng Shi
- Department of Stomatology, Jinan University First Affiliated Hospital, Guangzhou, Guangdong, China
| | - Shaoqiang Lin
- Integrated Traditional and Western Medicine Research Center of The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Liyun Dong
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Yeye Guo
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Lili Huang
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jinjin Zhu
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Xiangfan Yin
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Alexander C Huang
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Giorgos Karakousis
- Department of Surgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Lynn Schuchter
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ravi Amaravadi
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Cathy Zheng
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Yi Fan
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Wei Guo
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Xiaowei Xu
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|