1
|
Rivas V, González-Muñoz T, Albitre Á, Lafarga V, Delgado-Arévalo C, Mayor F, Penela P. GRK2-mediated AKT activation controls cell cycle progression and G2 checkpoint in a p53-dependent manner. Cell Death Discov 2024; 10:385. [PMID: 39198399 PMCID: PMC11358448 DOI: 10.1038/s41420-024-02143-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/03/2024] [Accepted: 08/09/2024] [Indexed: 09/01/2024] Open
Abstract
Cell cycle checkpoints, activated by stressful events, halt the cell cycle progression, and prevent the transmission of damaged DNA. These checkpoints prompt cell repair but also trigger cell death if damage persists. Decision-making between these responses is multifactorial and context-dependent, with the tumor suppressor p53 playing a central role. In many tumor cells, p53 alterations lead to G1/S checkpoint loss and the weakening of the G2 checkpoint, rendering cell viability dependent on the strength of the latter through mechanisms not fully characterized. Cells with a strong pro-survival drive can evade cell death despite substantial DNA lesions. Deciphering the integration of survival pathways with p53-dependent and -independent mechanisms governing the G2/M transition is crucial for understanding G2 arrest functionality and predicting tumor cell response to chemotherapy. The serine/threonine kinase GRK2 emerges as a signaling node in cell cycle modulation. In cycling cells, but not in G2 checkpoint-arrested cells, GRK2 protein levels decline during G2/M transition through a process triggered by CDK2-dependent phosphorylation of GRK2 at the S670 residue and Mdm2 ubiquitination. We report now that this downmodulation in G2 prevents the unscheduled activation of the PI3K/AKT pathway, allowing cells to progress into mitosis. Conversely, higher GRK2 levels lead to tyrosine phosphorylation by the kinase c-Abl, promoting the direct association of GRK2 with the p85 regulatory subunit of PI3K and AKT activation in a GRK2 catalytic-independent manner. Hyperactivation of AKT is conditioned by p53's scaffolding function, triggering FOXO3a phosphorylation, impaired Cyclin B1 accumulation, and CDK1 activation, causing a G2/M transition delay. Upon G2 checkpoint activation, GRK2 potentiates early arrest independently of p53 through AKT activation. However, its ability to overcome the G2 checkpoint in viable conditions depends on p53. Our results suggest that integrating the GRK2/PI3K/AKT axis with non-canonical functions of p53 might confer a survival advantage to tumor cells.
Collapse
Affiliation(s)
- Verónica Rivas
- Departamento de Biología Molecular, IUBM-UAM and Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Madrid, Spain
- Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
| | - Teresa González-Muñoz
- Departamento de Biología Molecular, IUBM-UAM and Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Madrid, Spain
- Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
| | - Ángela Albitre
- Departamento de Biología Molecular, IUBM-UAM and Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Madrid, Spain
- Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
| | - Vanesa Lafarga
- Department of Molecular Oncology, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Cristina Delgado-Arévalo
- Departamento de Biología Molecular, IUBM-UAM and Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Madrid, Spain
- Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
| | - Federico Mayor
- Departamento de Biología Molecular, IUBM-UAM and Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Madrid, Spain
- Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
- CIBER de Enfermedades Cardiovasculares, ISCIII (CIBERCV), Madrid, Spain
| | - Petronila Penela
- Departamento de Biología Molecular, IUBM-UAM and Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Madrid, Spain.
- Instituto de Investigación Sanitaria La Princesa, Madrid, Spain.
- CIBER de Enfermedades Cardiovasculares, ISCIII (CIBERCV), Madrid, Spain.
| |
Collapse
|
2
|
Guo P, Jiang J, Chu R, He F, Ge M, Fang R, Guan Q, Cheng H, Jiang C, Su T, Zhu Z, Liu H, Wei W, Zhang S, Wang Q. GRK2 mediated degradation of SAV1 initiates hyperplasia of fibroblast-like synoviocytes in rheumatoid arthritis. Acta Pharm Sin B 2024; 14:1222-1240. [PMID: 38486990 PMCID: PMC10935169 DOI: 10.1016/j.apsb.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/27/2023] [Accepted: 11/29/2023] [Indexed: 03/17/2024] Open
Abstract
Hyperplasia and migration of fibroblast-like synoviocytes (FLSs) are the key drivers in the pathogenesis of rheumatoid arthritis (RA) and joint destruction. Abundant Yes-associated protein (YAP), which is a powerful transcription co-activator for proliferative genes, was observed in the nucleus of inflammatory FLSs with unknown upstream mechanisms. Using Gene Expression Omnibus database analysis, it was found that Salvador homolog-1 (SAV1), the pivotal negative regulator of the Hippo-YAP pathway, was slightly downregulated in RA synovium. However, SAV1 protein expression is extremely reduced. Subsequently, it was revealed that SAV1 is phosphorylated, ubiquitinated, and degraded by interacting with an important serine-threonine kinase, G protein-coupled receptor (GPCR) kinase 2 (GRK2), which was predominately upregulated by GPCR activation induced by ligands such as prostaglandin E2 (PGE2) in RA. This process further contributes to the decreased phosphorylation, nuclear translocation, and transcriptional potency of YAP, and leads to aberrant FLSs proliferation. Genetic depletion of GRK2 or inhibition of GRK2 by paroxetine rescued SAV1 expression and restored YAP phosphorylation and finally inhibited RA FLSs proliferation and migration. Similarly, paroxetine treatment effectively reduced the abnormal proliferation of FLSs in a rat model of collagen-induced arthritis which was accompanied by a significant improvement in clinical manifestations. Collectively, these results elucidate the significance of GRK2 regulation of Hippo-YAP signaling in FLSs proliferation and migration and the potential application of GRK2 inhibition in the treatment of FLSs-driven joint destruction in RA.
Collapse
Affiliation(s)
- Paipai Guo
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicines, Hefei 230032, China
| | - Ji Jiang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicines, Hefei 230032, China
| | - Rui Chu
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicines, Hefei 230032, China
| | - Feng He
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicines, Hefei 230032, China
| | - Mingli Ge
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicines, Hefei 230032, China
| | - Ruhong Fang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicines, Hefei 230032, China
| | - Qiuyun Guan
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicines, Hefei 230032, China
| | - Huijuan Cheng
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicines, Hefei 230032, China
| | - Chunru Jiang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicines, Hefei 230032, China
| | - Tiantian Su
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicines, Hefei 230032, China
| | - Zhenduo Zhu
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicines, Hefei 230032, China
| | - Hao Liu
- School of Pharmacy, Bengbu Medical College, Bengbu 233030, China
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicines, Hefei 230032, China
| | - Shihao Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicines, Hefei 230032, China
| | - Qingtong Wang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicines, Hefei 230032, China
- The Third Affiliated Hospital of Anhui Medical University (the First People's Hospital of Hefei), Hefei 230061, China
| |
Collapse
|
3
|
Mayor F, Murga C. G Protein-Coupled Receptor Kinases Take Central Stage. Cells 2022; 12:cells12010023. [PMID: 36611817 PMCID: PMC9818062 DOI: 10.3390/cells12010023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
The relevance of the family of G protein-coupled receptor kinases (GRKs) is based on its key participation in the regulation and intracellular dynamics of the largest family of membrane receptors, namely G protein-coupled receptors (GPCRs) [...].
Collapse
Affiliation(s)
- Federico Mayor
- Departamento de Biología Molecular, Instituto Universitario de Biología Molecular (IUBM) and Centro de Biología Molecular Severo Ochoa (CBMSO), Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Instituto de Investigación Sanitaria Hospital Universitario La Princesa, 28006 Madrid, Spain
- CIBER Cardiovascular (CIBERCV), Instituto de Salud Carlos III (ISCIII), 28035 Madrid, Spain
| | - Cristina Murga
- Departamento de Biología Molecular, Instituto Universitario de Biología Molecular (IUBM) and Centro de Biología Molecular Severo Ochoa (CBMSO), Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Instituto de Investigación Sanitaria Hospital Universitario La Princesa, 28006 Madrid, Spain
- CIBER Cardiovascular (CIBERCV), Instituto de Salud Carlos III (ISCIII), 28035 Madrid, Spain
- Correspondence:
| |
Collapse
|