1
|
Huang T, Fan L, Tang J, Chen S, Du G, Zhang N. Advances in research on the carcinogenic mechanisms and therapeutic potential of YAP1 in bladder cancer (Review). Oncol Rep 2025; 53:10. [PMID: 39540392 PMCID: PMC11599795 DOI: 10.3892/or.2024.8843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/25/2024] [Indexed: 11/16/2024] Open
Abstract
Bladder cancer is the most common malignant tumor of the urinary system with high morbidity and no clear pathogenesis. The Hippo signaling pathway is an evolutionarily conserved pathway that regulates organ size and maintains tissue homeostasis. Yes‑associated protein 1 (YAP1) is a key effector of this pathway and regulates downstream target genes by binding to transcriptional co‑activators with PDZ binding sequences (TAZ). Several studies have demonstrated that YAP1 is overexpressed in bladder cancer and is involved in adverse outcomes such as bladder cancer occurrence, progression, resistance to cisplatin and the recurrence of tumours. The present review summarized the involvement of YAP1 in bladder cancer disease onset and progression, and the mechanism of YAP1 involvement in bladder cancer treatment. In addition, this study further explored the potential of YAP1 in the diagnosis and treatment of bladder cancer. This study aimed to explore the potential mechanism of YAP1 in the treatment of bladder cancer.
Collapse
Affiliation(s)
- Tianyu Huang
- Department of Urology, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Longmei Fan
- Department of Urology, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Jiajia Tang
- Department of Urology, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Shicheng Chen
- Department of Urology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Guotu Du
- Department of Urology, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Neng Zhang
- Department of Urology, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| |
Collapse
|
2
|
Lu C, Gao H, Li H, Luo N, Fan S, Li X, Deng R, He D, Zhao H. A novel LINC02321 promotes cell proliferation and decreases cisplatin sensitivity in bladder cancer by regulating RUVBL2. Transl Oncol 2024; 45:101962. [PMID: 38677015 PMCID: PMC11066559 DOI: 10.1016/j.tranon.2024.101962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 10/15/2023] [Accepted: 04/15/2024] [Indexed: 04/29/2024] Open
Abstract
Bladder cancer (BC) has a high incidence and is prone to recurrence. In most instances, the low 5-year survival rate of advanced BC patients results from postoperative recurrence and drug resistance. Long noncoding RNAs (lncRNAs) can participate in numerous biological functions by regulating the expression of genes to affect tumorigenesis. Our previous work had demonstrated that a novel lncRNA, LINC02321, was associated with BC prognosis. In this study, A high expression of LINC02321 was found in BC tissues, which was associated with poor prognosis in patients. LINC02321 promoted both proliferation and G1-G0 progression in BC cells, while also inhibited sensitivity to cisplatin. Mechanistically, LINC02321 can bind to RUVBL2 and regulate the expression levels of RUVBL2 protein by affecting its half-life. RUVBL2 is involved in the DNA damage response. The potential of DNA damage repair pathways to exert chemosensitization has been demonstrated in vivo. The rescue experiment demonstrated that RUVBL2 overexpression can markedly abolish the decreased cell proliferation and the increased sensitivity of BC cells to cisplatin caused by LINC02321 knockdown. The results indicate that LINC02321 functions as an oncogene in BC, and may serve as a novel potential target for controlling BC progression and addressing cisplatin resistance in BC therapy.
Collapse
Affiliation(s)
- Chuncheng Lu
- Department of Urology, The 1st Affiliated Hospital of Kunming Medical University, Kunming 650032, China; Yunnan Province Clinical Research Center for Chronic Kidney Disease, Kunming 650032, China
| | - Hongbin Gao
- Department of Urology, The 1st Affiliated Hospital of Kunming Medical University, Kunming 650032, China; Yunnan Province Clinical Research Center for Chronic Kidney Disease, Kunming 650032, China
| | - Haiyuan Li
- Department of Urology, The 1st Affiliated Hospital of Kunming Medical University, Kunming 650032, China; Yunnan Province Clinical Research Center for Chronic Kidney Disease, Kunming 650032, China
| | - Ning Luo
- Department of Urology, The 1st Affiliated Hospital of Kunming Medical University, Kunming 650032, China; Yunnan Province Clinical Research Center for Chronic Kidney Disease, Kunming 650032, China
| | - Shipeng Fan
- Department of Urology, The 1st Affiliated Hospital of Kunming Medical University, Kunming 650032, China; Yunnan Province Clinical Research Center for Chronic Kidney Disease, Kunming 650032, China
| | - Xi Li
- Department of Urology, The 1st Affiliated Hospital of Kunming Medical University, Kunming 650032, China; Yunnan Province Clinical Research Center for Chronic Kidney Disease, Kunming 650032, China
| | - Renbin Deng
- Department of Urology, The 1st Affiliated Hospital of Kunming Medical University, Kunming 650032, China; Yunnan Province Clinical Research Center for Chronic Kidney Disease, Kunming 650032, China
| | - Danpeng He
- Department of Urology, The 1st Affiliated Hospital of Kunming Medical University, Kunming 650032, China; Yunnan Province Clinical Research Center for Chronic Kidney Disease, Kunming 650032, China
| | - Hui Zhao
- Department of Urology, The 1st Affiliated Hospital of Kunming Medical University, Kunming 650032, China; Yunnan Province Clinical Research Center for Chronic Kidney Disease, Kunming 650032, China.
| |
Collapse
|
3
|
Lee C, Park SH, Yoon SK. The E3 ligase HUWE1 increases the sensitivity of CRC to oxaliplatin through TOMM20 degradation. Oncogene 2024; 43:636-649. [PMID: 38184713 DOI: 10.1038/s41388-023-02928-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/17/2023] [Accepted: 12/20/2023] [Indexed: 01/08/2024]
Abstract
Continuous administration of oxaliplatin, the most widely used first-line chemotherapy drug for colorectal cancer (CRC), eventually leads to drug resistance. Increasing the sensitivity of CRC cells to oxaliplatin is a key strategy to overcome this issue. Impairment of mitochondrial function is a pivotal mechanism determining the sensitivity of CRC to oxaliplatin. We discovered an inverse correlation between Translocase of Outer Mitochondrial Membrane 20 (TOMM20) and oxaliplatin sensitivity as well as an inverse relationship between TOMM20 and HECT, UBA, and WWE domain containing E3 ligase 1 (HUWE1) expression in CRC. For the first time, we demonstrated that HUWE1 ubiquitinates TOMM20 directly and also regulates TOMM20 degradation via the PARKIN-mediated pathway. Furthermore, we showed that overexpression of HUWE1 in CRC cells has a negative effect on mitochondrial function, including the generation of ATP and maintenance of mitochondrial membrane potential, leading to increased production of ROS and apoptosis. This effect was amplified when cells were treated simultaneously with oxaliplatin. Our study conclusively shows that TOMM20 is a novel target of HUWE1. Our findings indicate that HUWE1 plays a critical role in regulating oxaliplatin sensitivity by degrading TOMM20 and inducing mitochondrial damage in CRC.
Collapse
Affiliation(s)
- Chanhaeng Lee
- Department of Biomedicine & Health Sciences, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 065-691, Republic of Korea
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 065-691, Republic of Korea
| | - Sang-Hee Park
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 065-691, Republic of Korea
| | - Sungjoo Kim Yoon
- Department of Biomedicine & Health Sciences, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 065-691, Republic of Korea.
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 065-691, Republic of Korea.
| |
Collapse
|
4
|
Pettitt SJ, Shao N, Zatreanu D, Frankum J, Bajrami I, Brough R, Krastev DB, Roumeliotis TI, Choudhary JS, Lorenz S, Rust A, de Bono JS, Yap TA, Tutt ANJ, Lord CJ. A HUWE1 defect causes PARP inhibitor resistance by modulating the BRCA1-∆11q splice variant. Oncogene 2023; 42:2701-2709. [PMID: 37491606 PMCID: PMC10473960 DOI: 10.1038/s41388-023-02782-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 07/07/2023] [Accepted: 07/12/2023] [Indexed: 07/27/2023]
Abstract
Although PARP inhibitors (PARPi) now form part of the standard-of-care for the treatment of homologous recombination defective cancers, de novo and acquired resistance limits their overall effectiveness. Previously, overexpression of the BRCA1-∆11q splice variant has been shown to cause PARPi resistance. How cancer cells achieve increased BRCA1-∆11q expression has remained unclear. Using isogenic cells with different BRCA1 mutations, we show that reduction in HUWE1 leads to increased levels of BRCA1-∆11q and PARPi resistance. This effect is specific to cells able to express BRCA1-∆11q (e.g. BRCA1 exon 11 mutant cells) and is not seen in BRCA1 mutants that cannot express BRCA1-∆11q, nor in BRCA2 mutant cells. As well as increasing levels of BRCA1-∆11q protein in exon 11 mutant cells, HUWE1 silencing also restores RAD51 nuclear foci and platinum salt resistance. HUWE1 catalytic domain mutations were also seen in a case of PARPi resistant, BRCA1 exon 11 mutant, high grade serous ovarian cancer. These results suggest how elevated levels of BRCA1-∆11q and PARPi resistance can be achieved, identify HUWE1 as a candidate biomarker of PARPi resistance for assessment in future clinical trials and illustrate how some PARPi resistance mechanisms may only operate in patients with particular BRCA1 mutations.
Collapse
Affiliation(s)
- Stephen J Pettitt
- The CRUK Gene Function Laboratory, The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK.
| | - Nan Shao
- The CRUK Gene Function Laboratory, The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Diana Zatreanu
- The CRUK Gene Function Laboratory, The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Jessica Frankum
- The CRUK Gene Function Laboratory, The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Ilirjana Bajrami
- The CRUK Gene Function Laboratory, The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Rachel Brough
- The CRUK Gene Function Laboratory, The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Dragomir B Krastev
- The CRUK Gene Function Laboratory, The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK
| | | | | | - Sonja Lorenz
- Max Planck Institute for Multidisciplinary Sciences, 37077, Göttingen, Germany
| | - Alistair Rust
- The Institute of Cancer Research, London, SW3 6JB, UK
| | - Johann S de Bono
- The Institute of Cancer Research, The Royal Marsden Hospital, Downs Road, Sutton, Surrey, SM2 5PT, UK
| | - Timothy A Yap
- The Institute of Cancer Research, The Royal Marsden Hospital, Downs Road, Sutton, Surrey, SM2 5PT, UK
- University of Texas MD Anderson Cancer Center, 1400 Holcombe Blvd, Houston, TX, 77030, USA
| | - Andrew N J Tutt
- The CRUK Gene Function Laboratory, The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK.
| | - Christopher J Lord
- The CRUK Gene Function Laboratory, The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK.
| |
Collapse
|
5
|
Xing J, Chen W, Chen K, Zhu S, Lin F, Qi Y, Zhang Y, Han S, Rao T, Ruan Y, Zhao S, Yu W, Cheng F. TFAP2C Knockdown Sensitizes Bladder Cancer Cells to Cisplatin Treatment via Regulation of EGFR and NF-κB. Cancers (Basel) 2022; 14:cancers14194809. [PMID: 36230734 PMCID: PMC9562889 DOI: 10.3390/cancers14194809] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/22/2022] Open
Abstract
Simple Summary Bladder cancer (BCa) is considered one of the most common neoplasms of the urology system. Cisplatin-based chemotherapy has been the primary treatment for patients with advanced or metastatic BCa. Nevertheless, cisplatin resistance often limits the treatment of bladder cancer. We expect to find approaches to improve the therapeutic efficacy of cisplatin in bladder cancer. In recent years, many studies have shown that transcription factor AP-2 gamma (TFAP2C) acts as a key player in cancer development and and its expression level is closely related to the sensitivity of tumors to cisplatin. Our study investigated whether TFAP2C affects the sensitivity of BCa cells to cisplatin and the possible mechanisms. We found that TFAP2C expression was significantly upregulated in most BCa tissues compared to adjacent normal tissues. The present study confirmed that TFAP2C knockdown enhanced the anti-tumor effects of cisplatin by decreasing cisplatin-induced activation levels of epidermal growth factor receptor (EGFR) and nuclear factor kappaB (NF-κB). Specifically, this study provides a novel approach to improve the efficacy of cisplatin. Abstract Cisplatin is the first-line chemotherapy for advanced or metastatic bladder cancer. Nevertheless, approximately half of patients with BCa are insensitive to cisplatin therapy or develop cisplatin resistance during the treatment process. Therefore, it is especially crucial to investigate ways to enhance the sensitivity of tumor cells to cisplatin. Transcription factor AP-2 gamma (TFAP2C) is involved in cancer development and chemotherapy sensitivity. However, its relationship with chemotherapy has not been studied in BCa. In this study, we aimed to investigate the therapeutic potential of TFAP2C in human BCa. Results based on TCGA (The Cancer Genome Atlas), GTEx (The Genotype-Tissue Expression) and GEO (Gene Expression Omnibus) data showed that TFAP2C expression was upregulated in BCa tissues and that its high expression was associated with poor prognosis. Meanwhile, we demonstrated the overexpression of TFAP2C in BCa clinical specimens. Subsequently, in vitro, we knocked down TFAP2C in BCa cells and found that TFAP2C knockdown further increased cell cycle arrest and apoptosis caused by cisplatin. In addition, the inhibitory effect of cisplatin on BCa cell migration and invasion was enhanced by TFAP2C knockdown. Our data indicated that cisplatin increased epidermal growth factor receptor (EGFR) and nuclear factor-kappaB (NF-κB) activation levels, but TFAP2C knockdown suppressed this effect. Finally, in vivo data further validated these findings. Our study showed that TFAP2C knockdown affected the activation levels of EGFR and NF-κB and enhanced the anti-tumor effects of cisplatin in vivo and in vitro. This provides a new direction to improve the efficacy of traditional cisplatin chemotherapy.
Collapse
Affiliation(s)
- Ji Xing
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Wu Chen
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Kang Chen
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Shaoming Zhu
- Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Fangyou Lin
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yucheng Qi
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yunlong Zhang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Shangting Han
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Ting Rao
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yuan Ruan
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Sheng Zhao
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Weimin Yu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Correspondence: (W.Y.); (F.C.)
| | - Fan Cheng
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Correspondence: (W.Y.); (F.C.)
| |
Collapse
|
6
|
Qi L, Xu X, Qi X. The giant E3 ligase HUWE1 is linked to tumorigenesis, spermatogenesis, intellectual disability, and inflammatory diseases. Front Cell Infect Microbiol 2022; 12:905906. [PMID: 35937685 PMCID: PMC9355080 DOI: 10.3389/fcimb.2022.905906] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
E3 ubiquitin ligases determine the substrate specificity and catalyze the ubiquitination of lysine residues. HUWE1 is a catalytic HECT domain-containing giant E3 ligase that contains a substrate-binding ring structure, and mediates the ubiquitination of more than 40 diverse substrates. HUWE1 serves as a central node in cellular stress responses, cell growth and death, signal transduction, etc. The expanding atlas of HUWE1 substrates presents a major challenge for the potential therapeutic application of HUWE1 in a particular disease. In addition, HUWE1 has been demonstrated to play contradictory roles in certain aspects of tumor progression in either an oncogenic or a tumor-suppressive manner. We recently defined novel roles of HUWE1 in promoting the activation of multiple inflammasomes. Inflammasome activation-mediated immune responses might lead to multifunctional effects on tumor therapy, inflammation, and autoimmune diseases. In this review, we summarize the known substrates and pleiotropic functions of HUWE1 in different types of cells and models, including its involvement in development, cancer, neuronal disorder and infectious disease. We also discuss the advances in cryo-EM-structural analysis for a functional-mechanistic understanding of HUWE1 in modulating the multitudinous diverse substrates, and introduce the possibility of revisiting the comprehensive roles of HUWE1 in multiple aspects within one microenvironment, which will shed light on the potential therapeutic application of targeting giant E3 ligases like HUWE1.
Collapse
Affiliation(s)
- Lu Qi
- Department of Orthopedics, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaoqing Xu
- Department of Oncology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaopeng Qi
- Key Laboratory for Experimental Teratology of the Ministry of Education, Department of Clinical Laboratory/Qilu Hospital, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, China
- *Correspondence: Xiaopeng Qi,
| |
Collapse
|
7
|
Bioinformatics Analysis Reveals an Association between Autophagy, Prognosis, Tumor Microenvironment, and Immunotherapy in Osteosarcoma. JOURNAL OF ONCOLOGY 2022; 2022:4220331. [PMID: 35874628 PMCID: PMC9303156 DOI: 10.1155/2022/4220331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/13/2022] [Accepted: 06/20/2022] [Indexed: 12/14/2022]
Abstract
Autophagy is a catabolic pathway involved in the regulation of bone homeostasis. We explore clinical correlation of autophagy-related key molecules to establish risk signature for predicting the prognosis, tumor microenvironment (TME), and immunotherapy response of osteosarcoma. Single cell RNA sequencing data from GSE162454 dataset distinguished malignant cells from normal cells in osteosarcoma. Autophagy-related genes (ARGs) were extracted from the established risk signature of the Molecular Signatures Database of Gene Set Enrichment Analysis (GSEA) by univariate Cox and least absolute shrinkage and selection operator (LASSO) Cox regression analysis. Overall survival (OS), TME score, abundance of infiltrating immune cells, and response to immune-checkpoint blockade (ICB) treatment in patients with different risks were compared based on risk score. Nine ARGs were identified and risk signature was constructed. In all osteosarcoma datasets, the OS was significantly longer in the high-risk patients than low-risk onset. Risk signature significantly stratified clinical outcomes, including OS, metastatic status, and survival status. Risk signature was an independent variable for predicting osteosarcoma OS and showed high accuracy. A nomogram based on risk signature and metastases was developed. The calibration curve confirmed the consistency in 1-year, 3-year, and 5-year predicted OS and the actual OS. The risk score was related to 6 kinds of T cells and macrophages, myeloid-derived suppressor cell, natural killer cell, immune score, and stromal score in TME. The risk signature helped in predicting patients' response to anti-PD1/anti-PD-L1 treatment. The ARGs-led risk signature has important value for survival prediction, risk stratification, tumor microenvironment, and immune response evaluation of osteosarcoma.
Collapse
|
8
|
Sun F, Wang H, Nie J, Hong B. Repurposing disulfiram as a chemo-therapeutic sensitizer: molecular targets and mechanisms. Anticancer Agents Med Chem 2022; 22:2920-2926. [PMID: 35430981 DOI: 10.2174/1871520621666220415102553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/20/2021] [Accepted: 02/03/2022] [Indexed: 11/22/2022]
Abstract
Currently, chemo-therapy is still the main strategy for cancer treatment. However, chemo-therapy resistance remains its main challenge. Disulfiram [DSF] is a drug approved by FDA for the treatment of alcohol addiction, but it is later discovered that it has the anticancer activity. Importantly, there have been many literatures reporting that DSF can be used as a chemo-therapeutic sensitizer to enhance the anticancer activity of chemo-drugs in a variety of cancers. Furthermore, the combinations of DSF and chemo-drugs have been tested in clinic trials. In the review, we summarized the possible molecular targets and mechanisms of DSF to reverse chemo-resistance. We also further discussed the opportunities and challenges of DSF as a chemo-therapeutic sensitizer. In conclusion, DSF could be a potential repurposed drug to sensitize cancer cells to chemo-therapy in clinic.
Collapse
Affiliation(s)
- Feilong Sun
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China.,University of Science and Technology of China, Hefei, Anhui, China
| | - Hongzhi Wang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China.,Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, China
| | - Jinfu Nie
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China.,Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, China
| | - Bo Hong
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China.,Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, China
| |
Collapse
|
9
|
Yi L, Wang H, Li W, Ye K, Xiong W, Yu H, Jin X. The FOXM1/RNF26/p57 axis regulates the cell cycle to promote the aggressiveness of bladder cancer. Cell Death Dis 2021; 12:944. [PMID: 34650035 PMCID: PMC8516991 DOI: 10.1038/s41419-021-04260-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/24/2021] [Accepted: 10/04/2021] [Indexed: 12/26/2022]
Abstract
Bladder cancer is one of the most lethal cancers in the world. Despite the continuous development of medical technologies and therapeutic strategies, the overall survival rate of bladder cancer has not changed significantly. Targeted therapy is a new promising method for bladder cancer treatment. Thus, an in-depth study of the molecular mechanism of the occurrence and development of bladder cancer is urgently needed to identify novel therapeutic candidates for bladder cancer. Here, bioinformatics analysis demonstrated that RNF26 was one of the risk factors for bladder cancer. Then, we showed that RNF26 is abnormally upregulated in bladder cancer cells and tissues and that higher RNF26 expression is an unfavorable prognostic factor for bladder cancer. Moreover, we found that RNF26 promotes bladder cancer progression. In addition, we showed that RNF26 expression is promoted by FOXM1 at the transcriptional level through MuvB complex. The upregulated RNF26 in turn degrades p57 (CDKN1C) to regulate the cell cycle process. Collectively, we uncovered a novel FOXM1/RNF26/p57 axis that modulates the cell cycle process and enhances the progression of bladder cancer. Thus, the FOXM1/RNF26/p57 signaling axis could be a candidate target for the treatment of bladder cancer.
Collapse
Affiliation(s)
- Lu Yi
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Uro-Oncology Institute of Central South University, Changsha, Hunan, 410011, China
- Hunan Engineering Research Center of Smart and Precise Medicine, Changsha, Hunan, 410011, China
| | - Haohui Wang
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Uro-Oncology Institute of Central South University, Changsha, Hunan, 410011, China
- Hunan Engineering Research Center of Smart and Precise Medicine, Changsha, Hunan, 410011, China
| | - Wei Li
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Uro-Oncology Institute of Central South University, Changsha, Hunan, 410011, China
- Hunan Engineering Research Center of Smart and Precise Medicine, Changsha, Hunan, 410011, China
| | - Kun Ye
- Uro-Oncology Institute of Central South University, Changsha, Hunan, 410011, China
| | - Wei Xiong
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Uro-Oncology Institute of Central South University, Changsha, Hunan, 410011, China
| | - Haixin Yu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Xin Jin
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
- Uro-Oncology Institute of Central South University, Changsha, Hunan, 410011, China.
- Hunan Engineering Research Center of Smart and Precise Medicine, Changsha, Hunan, 410011, China.
| |
Collapse
|