1
|
Wang X, Shen W, Yao L, Li C, You H, Guo D. Current status and future prospects of molecular imaging in targeting the tumor immune microenvironment. Front Immunol 2025; 16:1518555. [PMID: 39911388 PMCID: PMC11794535 DOI: 10.3389/fimmu.2025.1518555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 01/02/2025] [Indexed: 02/07/2025] Open
Abstract
Molecular imaging technologies have significantly transformed cancer research and clinical practice, offering valuable tools for visualizing and understanding the complex tumor immune microenvironment. These technologies allow for the non-invasive examination of key components within the tumor immune microenvironment, including immune cells, cytokines, and stromal cells, providing crucial insights into tumor biology and treatment responses. This paper reviews the latest advancements in molecular imaging, with a focus on its applications in assessing interactions within the tumor immune microenvironment. Additionally, the challenges faced by molecular imaging technologies are discussed, such as the need for highly sensitive and specific imaging agents, issues with data integration, and difficulties in clinical translation. The future outlook emphasizes the potential of molecular imaging to enhance personalized cancer treatment through the integration of artificial intelligence and the development of novel imaging probes. Addressing these challenges is essential to fully realizing the potential of molecular imaging in improving cancer diagnosis, treatment, and patient outcomes.
Collapse
Affiliation(s)
- Xiang Wang
- Department of Radiology, First People’s Hospital of Linping District, Hangzhou, China
- The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Weifen Shen
- Department of Radiology, First People’s Hospital of Linping District, Hangzhou, China
- The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Lingjun Yao
- Department of Radiology, First People’s Hospital of Linping District, Hangzhou, China
- The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Chao Li
- Department of Radiology, First People’s Hospital of Linping District, Hangzhou, China
- The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Huiming You
- Department of Radiology, First People’s Hospital of Linping District, Hangzhou, China
- The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Duancheng Guo
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
2
|
Hazra R, Chattopadhyay S, Mallick A, Gayen S, Roy S. Unravelling CD24-Siglec-10 pathway: Cancer immunotherapy from basic science to clinical studies. Immunology 2024; 173:442-469. [PMID: 39129256 DOI: 10.1111/imm.13847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 07/27/2024] [Indexed: 08/13/2024] Open
Abstract
Cancer immunotherapy has revolutionized the treatment landscape by harnessing the power of the immune system to combat malignancies. Two of the most promising players in this field are cluster of differentiation 24 (CD24) and sialic acid-binding Ig-like lectin 10 (Siglec-10), and both of them play pivotal roles in modulating immune responses. CD24, a cell surface glycoprotein, emerges as a convincing fundamental signal transducer for therapeutic intervention, given its significant implication in the processes related to tumour progression and immunogenic evasion. Additionally, the immunomodulatory functions of Siglec-10, a prominent member within the Siglec family of immune receptors, have recently become a crucial point of interest, particularly in the context of the tumour microenvironment. Hence, the intricate interplay of both CD24 and Siglec-10 assumes a critical role in fostering tumour growth, facilitating metastasis and also orchestrating immune evasion. Recent studies have found multiple evidences supporting the therapeutic potential of targeting CD24 in cancer treatment. Siglec-10, on the other hand, exhibits immunosuppressive properties that contribute to immune tolerance within the tumour microenvironment. Therefore, we delve into the complex mechanisms through which Siglec-10 modulates immune responses and facilitates immune escape in cancer. Siglec-10 also acts as a viable target for cancer immunotherapy and presents novel avenues for the development of therapeutic interventions. Furthermore, we examine the synergy between CD24 and Siglec-10 in shaping the immunosuppressive tumour microenvironment and discuss the implications for combination therapies. Therefore, understanding the roles of CD24 and Siglec-10 in cancer immunotherapy opens exciting possibilities for the development of novel therapeutics.
Collapse
Affiliation(s)
- Rudradeep Hazra
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, Kolkata, India
| | - Soumyadeep Chattopadhyay
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, Kolkata, India
| | - Arijit Mallick
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, Kolkata, India
| | - Sakuntala Gayen
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, Kolkata, India
| | - Souvik Roy
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, Kolkata, India
| |
Collapse
|
3
|
G. de Castro C, G. del Hierro A, H-Vázquez J, Cuesta-Sancho S, Bernardo D. State-of-the-art cytometry in the search of novel biomarkers in digestive cancers. Front Oncol 2024; 14:1407580. [PMID: 38868532 PMCID: PMC11167087 DOI: 10.3389/fonc.2024.1407580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/10/2024] [Indexed: 06/14/2024] Open
Abstract
Despite that colorectal and liver cancer are among the most prevalent tumours in the world, the identification of non-invasive biomarkers to aid on their diagnose and subsequent prognosis is a current unmet need that would diminish both their incidence and mortality rates. In this context, conventional flow cytometry has been widely used in the screening of biomarkers with clinical utility in other malignant processes like leukaemia or lymphoma. Therefore, in this review, we will focus on how advanced cytometry panels covering over 40 parameters can be applied on the study of the immune system from patients with colorectal and hepatocellular carcinoma and how that can be used on the search of novel biomarkers to aid or diagnose, prognosis, and even predict clinical response to different treatments. In addition, these multiparametric and unbiased approaches can also provide novel insights into the specific immunopathogenic mechanisms governing these malignant diseases, hence potentially unravelling novel targets to perform immunotherapy or identify novel mechanisms, rendering the development of novel treatments. As a consequence, computational cytometry approaches are an emerging methodology for the early detection and predicting therapies for gastrointestinal cancers.
Collapse
Affiliation(s)
- Carolina G. de Castro
- Mucosal Immunology Lab, Institute of Biomedicine and Molecular Genetics (IBGM), University of Valladolid and Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, Spain
| | - Alejandro G. del Hierro
- Mucosal Immunology Lab, Institute of Biomedicine and Molecular Genetics (IBGM), University of Valladolid and Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, Spain
| | - Juan H-Vázquez
- Mucosal Immunology Lab, Institute of Biomedicine and Molecular Genetics (IBGM), University of Valladolid and Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, Spain
| | - Sara Cuesta-Sancho
- Mucosal Immunology Lab, Institute of Biomedicine and Molecular Genetics (IBGM), University of Valladolid and Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, Spain
| | - David Bernardo
- Mucosal Immunology Lab, Institute of Biomedicine and Molecular Genetics (IBGM), University of Valladolid and Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, Spain
- Centro de Investigaciones Biomedicas en Red de Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| |
Collapse
|
4
|
Sakata T, Yoshio S, Yamazoe T, Mori T, Kakazu E, Aoki Y, Aoyanagi N, Okamoto T, Ito T, Toyoda H, Kawaguchi T, Ono Y, Takahashi Y, Taketomi A, Kanto T. Immunoglobulin-like transcript 2 as an impaired anti-tumor cytotoxicity marker of natural killer cells in patients with hepatocellular carcinoma. Front Immunol 2024; 15:1389411. [PMID: 38638429 PMCID: PMC11024250 DOI: 10.3389/fimmu.2024.1389411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 03/25/2024] [Indexed: 04/20/2024] Open
Abstract
Introduction Natural killer (NK) cells play a pivotal role in immune surveillance in the liver. We aimed to identify potential targets for NK cell-mediated immune intervention by revealing the functional molecules on NK cells in HCC patients. Methods To evaluate the impact of aging on NK cell phenotypes, we examined NK cells from healthy volunteers (HVs) of various ages. Because ILT2 expression on CD56dim NK cells increased with increasing age, we enrolled age-matched HCC patients and HVs. We determined the NK cell phenotypes in blood mononuclear cells (PBMCs) and intrahepatic lymphocytes (IHLs) from cancerous and non-cancerous tissues. We evaluated cytotoxicity and antibody-dependent cellular cytotoxicity (ADCC) of NK cells in vitro. Results ILT2-positive CD56dim NK cells in PBMCs were increased in HCC patients compared with HVs. In HCC patients, ILT2-positive CD56dim NK cells were increased in cancerous IHLs compared with non-cancerous IHLs and PBMCs. We examined the impact of macrophage migration inhibitory factor (MIF) on ILT2 expression in co-cultures of HCC cells and NK cells. The enhanced expression of ILT2 on CD56dim NK cells from HCC patients was inhibited by masking antibodies against MIF and CXCR4. ILT2-positive CD56dim NK cells exhibited lower capacities for cytotoxicity and ADCC than ILT2-negative cells, which were partially restored by ILT2 blockade. Conclusions In HCC patients, ILT2 is a signature molecule for cancerous CD56dim NK cells with impaired cytolytic capacity. The MIF-CXCR4 interaction is associated with ILT2 induction on CD56dim NK cells and ILT2 serves as a target for functional NK cell restoration.
Collapse
Affiliation(s)
- Toshihiro Sakata
- Department of Liver Diseases, The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Chiba, Japan
- Department of Gastoenterological Surgery I, Hokkaido University Graduate School of Medicine, Hokkaido, Japan
| | - Sachiyo Yoshio
- Department of Liver Diseases, The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Chiba, Japan
| | - Taiji Yamazoe
- Department of Liver Diseases, The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Chiba, Japan
| | - Taizo Mori
- Department of Liver Diseases, The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Chiba, Japan
| | - Eiji Kakazu
- Department of Liver Diseases, The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Chiba, Japan
| | - Yoshihiko Aoki
- Kohnodai Hospital, National Center for Global Health and Medicine, Chiba, Japan
| | - Nobuyoshi Aoyanagi
- Kohnodai Hospital, National Center for Global Health and Medicine, Chiba, Japan
| | - Toru Okamoto
- Department of Microbiology, Juntendo University School of Medicine, Tokyo, Japan
| | - Takanori Ito
- Division of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Aichi, Japan
| | - Hidenori Toyoda
- Department of Gastroenterology, Ogaki Municipal Hospital, Gifu, Japan
| | - Takumi Kawaguchi
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Fukuoka, Japan
| | - Yoshihiro Ono
- Division of Hepatobiliary and Pancreatic Surgery, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Yu Takahashi
- Division of Hepatobiliary and Pancreatic Surgery, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Akinobu Taketomi
- Department of Gastoenterological Surgery I, Hokkaido University Graduate School of Medicine, Hokkaido, Japan
| | - Tatsuya Kanto
- Department of Liver Diseases, The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Chiba, Japan
| |
Collapse
|
5
|
Wang X, Huang L, Wen X, Li D, Yang G, Zheng J. Altered NCR3 Splice Variants May Result in Deficient NK Cell Function in Renal Cell Carcinoma Patients. In Vivo 2024; 38:174-183. [PMID: 38148073 PMCID: PMC10756430 DOI: 10.21873/invivo.13423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/18/2023] [Accepted: 10/25/2023] [Indexed: 12/28/2023]
Abstract
BACKGROUND/AIM The natural killer (NK) cell function of patients with malignant tumours may be suppressed by deficiency, and the poor prognosis of renal cell carcinoma (RCC) patients may be due to escape from NK cell cytotoxicity, especially with respect to natural cytotoxicity receptors (NCRs) on the NK cell surface. However, the specific mechanism remains unclear. Therefore, in this study, we sought to explore the role of NCR, especially NCR3 splice variants, in the process of NK cell deficiency in RCC patients. MATERIALS AND METHODS We used flow cytometry to analyse the phenotype of NK cells from the peripheral blood and kidney tumour tissue of RCC patients. The NKp30-mediated NK cell killing function was measured by antibody-dependent cell-mediated cytotoxicity (ADCC) in NK and RCC cell coincubation. We extracted RNA from the peripheral blood mononuclear cells (PBMCs) of RCC patients and renal carcinoma tissue and carried out real-time quantitative PCR to detect the mRNA levels of NKp30a, NKp30b and NKp30c. mRNA expression levels of cytokines (IL-6, IL-8, IL-10, IL-18 and TGF-β) based on RNA extracted from renal carcinoma tissue and adjacent normal kidney tissues were also measured by real-time quantitative PCR. RESULTS Regarding the phenotype of NK cells in RCC patients, the proportion of NK cells in tumour tissue was significantly reduced, with changes in the NK cell proportion being most obvious in NKp30+ NK cells. Furthermore, the results of the ADCC function assay showed limited NKp30+ NK cell-mediated cytotoxicity in RCC patients. Through real-time quantitative PCR, we found lower expression of NKp30a and NKp30b, the immunostimulatory splice variants of NCR3 encoding NKp30, in RCC patients. Moreover, expression of activating cytokines (IL-6 and IL-8) in renal cancer tissue was decreased, though inhibitory cytokine (TGF-β) expression remained unchanged, which may result in an immunosuppressive cytokine microenvironment. CONCLUSION Decreased expression of immunostimulatory NCR3 splice variants and the inhibitory cytokine microenvironment in RCC patients may contribute to deficient NK cell cytotoxicity and renal carcinoma cell immune escape from NK cell killing, which may provide a theoretical basis for finding new immunotherapeutic targets for RCC.
Collapse
Affiliation(s)
- Xuelei Wang
- Department of Urology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, P.R. China
| | - Liqun Huang
- Department of Urology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, P.R. China
| | - Xiaofei Wen
- Department of Urology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, P.R. China
| | - Dongyang Li
- Department of Urology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, P.R. China
| | - Guosheng Yang
- Department of Urology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, P.R. China
| | - Junhua Zheng
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| |
Collapse
|
6
|
Li Z, Zhang Z, Fang L, Zhao J, Niu Z, Chen H, Cao G. Tumor Microenvironment Composition and Related Therapy in Hepatocellular Carcinoma. J Hepatocell Carcinoma 2023; 10:2083-2099. [PMID: 38022729 PMCID: PMC10676104 DOI: 10.2147/jhc.s436962] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/10/2023] [Indexed: 12/01/2023] Open
Abstract
Globally, primary liver cancer is the third leading cause of cancer death, and hepatocellular carcinoma (HCC) accounts for 75%-95%. The tumor microenvironment (TME), composed of the extracellular matrix, helper cells, immune cells, cytokines, chemokines, and growth factors, promotes the immune escape, invasion, and metastasis of HCC. Tumor metastasis and postoperative recurrence are the main threats to the long-term prognosis of HCC. TME-related therapies are increasingly recognized as effective treatments. Molecular-targeted therapy, immunotherapy, and their combined therapy are the main approaches. Immunotherapy, represented by immune checkpoint inhibitors (ICIs), and targeted therapy, highlighted by tyrosine kinase inhibitors (TKIs), have greatly improved the prognosis of HCC. This review focuses on the TME compositions and emerging therapeutic approaches to TME in HCC.
Collapse
Affiliation(s)
- Zishuai Li
- Key Laboratory of Biological Defense, Ministry of Education, Second Military Medical University, Shanghai, 200433, People’s Republic of China
- Shanghai Key Laboratory of Medical Bioprotection, Second Military Medical University, Shanghai, 200433, People’s Republic of China
- Department of Epidemiology, Second Military Medical University, Shanghai, 200433, People’s Republic of China
| | - Zihan Zhang
- Department of Epidemiology, Tongji University School of Medicine Tongji University, Shanghai, 200120, People’s Republic of China
| | - Letian Fang
- Key Laboratory of Biological Defense, Ministry of Education, Second Military Medical University, Shanghai, 200433, People’s Republic of China
- Shanghai Key Laboratory of Medical Bioprotection, Second Military Medical University, Shanghai, 200433, People’s Republic of China
- Department of Epidemiology, Second Military Medical University, Shanghai, 200433, People’s Republic of China
| | - Jiayi Zhao
- Key Laboratory of Biological Defense, Ministry of Education, Second Military Medical University, Shanghai, 200433, People’s Republic of China
- Shanghai Key Laboratory of Medical Bioprotection, Second Military Medical University, Shanghai, 200433, People’s Republic of China
- Department of Epidemiology, Second Military Medical University, Shanghai, 200433, People’s Republic of China
| | - Zheyun Niu
- Department of Epidemiology, Tongji University School of Medicine Tongji University, Shanghai, 200120, People’s Republic of China
| | - Hongsen Chen
- Key Laboratory of Biological Defense, Ministry of Education, Second Military Medical University, Shanghai, 200433, People’s Republic of China
- Shanghai Key Laboratory of Medical Bioprotection, Second Military Medical University, Shanghai, 200433, People’s Republic of China
- Department of Epidemiology, Second Military Medical University, Shanghai, 200433, People’s Republic of China
| | - Guangwen Cao
- Key Laboratory of Biological Defense, Ministry of Education, Second Military Medical University, Shanghai, 200433, People’s Republic of China
- Shanghai Key Laboratory of Medical Bioprotection, Second Military Medical University, Shanghai, 200433, People’s Republic of China
- Department of Epidemiology, Second Military Medical University, Shanghai, 200433, People’s Republic of China
| |
Collapse
|
7
|
Lv X, Zhu S, Wu J, Shi J, Wei Q, Li T, Yang N, Liu C, Qi L, Zang G, Cheng H, Yang Z, Jin C, Wang Y, Cui J, Ueno H, Liu YJ, Chen J. Reciprocal costimulatory molecules control the activation of mucosal type 3 innate lymphoid cells during engagement with B cells. Cell Mol Immunol 2023; 20:808-819. [PMID: 37225838 PMCID: PMC10310834 DOI: 10.1038/s41423-023-01041-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 05/09/2023] [Indexed: 05/26/2023] Open
Abstract
Innate lymphoid cells (ILCs) are the counterpart of T helper cells in the innate immune system and share multiple phenotypes with T helper cells. Inducible T-cell costimulator (ICOS) is recognized on T cells and participates in T-cell activation and T and B-cell engagement in lymphoid tissues. However, the role of ICOS in ILC3s and ILC3-involved interactions with the immune microenvironment remains unclear. Here, we found that ICOS expression on human ILC3s was correlated with the activated state of ILC3s. ICOS costimulation enhanced the survival, proliferation, and capacity of ILC3s to produce cytokines (IL-22, IL-17A, IFN-γ, TNF, and GM-CSF). Via synergistic effects of ICOS and CD40 signaling, B cells promoted ILC3 functions, and ILC3-induced T-cell-independent B-cell IgA and IgM secretion primarily required CD40 signaling. Hence, ICOS is essential for the nonredundant role of ILC3s and their interaction with adjacent B cells.
Collapse
Affiliation(s)
- Xinping Lv
- Cancer Center, First Hospital of Jilin University, Changchun, Jilin, 130021, China
- Laboratory for Tumor Immunology, First Hospital of Jilin University, Changchun, Jilin, 130061, China
| | - Shan Zhu
- Cancer Center, First Hospital of Jilin University, Changchun, Jilin, 130021, China
- Laboratory for Tumor Immunology, First Hospital of Jilin University, Changchun, Jilin, 130061, China
| | - Jing Wu
- Cancer Center, First Hospital of Jilin University, Changchun, Jilin, 130021, China
- Laboratory for Tumor Immunology, First Hospital of Jilin University, Changchun, Jilin, 130061, China
| | - Jinfeng Shi
- Department of Otolaryngology Head and Neck Surgery, First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Qiuyu Wei
- Laboratory for Tumor Immunology, First Hospital of Jilin University, Changchun, Jilin, 130061, China
| | - Tete Li
- Laboratory for Tumor Immunology, First Hospital of Jilin University, Changchun, Jilin, 130061, China
- Department of Translational Medicine, Changchun GeneScience Pharmaceuticals Co., Ltd., Changchun, Jilin, 130012, China
| | - Ning Yang
- Laboratory for Tumor Immunology, First Hospital of Jilin University, Changchun, Jilin, 130061, China
| | - Chunyan Liu
- Laboratory for Tumor Immunology, First Hospital of Jilin University, Changchun, Jilin, 130061, China
- Department of Gynecology, First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Lingli Qi
- Laboratory for Tumor Immunology, First Hospital of Jilin University, Changchun, Jilin, 130061, China
- Department of Pediatric Gastroenterology, First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Guoxia Zang
- Laboratory for Tumor Immunology, First Hospital of Jilin University, Changchun, Jilin, 130061, China
| | - Hang Cheng
- Laboratory for Tumor Immunology, First Hospital of Jilin University, Changchun, Jilin, 130061, China
- Department of Pediatrics, First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Zhiguang Yang
- Department of Thoracic Surgery, First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Chengyan Jin
- Department of Thoracic Surgery, Second Hospital of Jilin University, Changchun, Jilin, 130041, China
| | - Yusheng Wang
- Department of Otolaryngology Head and Neck Surgery, First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Jiuwei Cui
- Cancer Center, First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Hideki Ueno
- Department of Immunology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- ASHBi Institute for the Advanced Study of Human Biology, Kyoto University, Kyoto, Japan
| | - Yong-Jun Liu
- Laboratory for Tumor Immunology, First Hospital of Jilin University, Changchun, Jilin, 130061, China.
| | - Jingtao Chen
- Cancer Center, First Hospital of Jilin University, Changchun, Jilin, 130021, China.
- Laboratory for Tumor Immunology, First Hospital of Jilin University, Changchun, Jilin, 130061, China.
| |
Collapse
|
8
|
Sun R, Li J, Lin X, Yang Y, Liu B, Lan T, Xiao S, Deng A, Yin Z, Xu Y, Xiang Z, Wu B. Peripheral immune characteristics of hepatitis B virus-related hepatocellular carcinoma. Front Immunol 2023; 14:1079495. [PMID: 37077908 PMCID: PMC10106696 DOI: 10.3389/fimmu.2023.1079495] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 03/21/2023] [Indexed: 04/05/2023] Open
Abstract
BackgroundLiver cancer is the sixth most common cancer worldwide and the third leading cause of cancer-related death. As a chronic liver disease, many studies have shown that the immune response plays a key role in the progression of liver cancer. Chronic hepatitis B virus (HBV) infection is one of the high-risk factors for HCC, accounting for 50%–80% of HCC cases worldwide, and little is known about the immune status of HBV associated hepatocellular carcinoma (HBV-HCC), therefore, we aimed to explore the changes in peripheral immunity in patients with HBV-HCC.MethodsIn this study, patients with HBV-HCC (n=26), patients with hepatitis B-related cirrhosis (HBV-LC) (n=31) and healthy volunteers (n=49) were included. The lymphocytes and their subpopulation phenotypes in peripheral blood were characterized. In addition, we explored the effect of viral replication on peripheral immunity in patients with HCC and analyzed the circulating immunophenotypic characteristics at different stages of HCC with flow cytometry.ResultsFirstly, our results showed that the percentages of total αβ T cells in the peripheral blood of HBV-HCC patients was significantly decreased compared to healthy subjects. Secondly, we found that naïve CD4+ T cells in HBV-HCC patients were significantly reduced, terminally differentiated CD8+ T cells, homing memory CD8+ T cells and Th2 cells were increased in peripheral circulation in HBV-HCC patients. Moreover, in the peripheral blood of HBV-HCC patients, expression of TIGIT on CD4+ T cells and PD-1 on the surface of Vδ 1 T cells was increased. In addition, we found that sustained viral replication resulted in up-regulation of TIM3 expression on CD4+ T cells, and TIM3+ γδ T cells increased in peripheral circulation in patients with advanced HBV-HCC.ConclusionOur study showed that circulating lymphocytes in HBV-HCC patients exhibited features of immune exhaustion, especially in HCC patients with persistent viral replication and in patients with intermediate and advanced HBV-HCC, including decreased frequency of T cells and elevated expression of inhibitory receptors including TIGIT and TIM3 on CD4+ T cells and γδ T cells. Meanwhile, our research suggests that the combination of CD3+ T cell and CD8+HLADR+CD38+ T cell may be a potential diagnostic indicator for HBV-HCC. These findings could help us to better understand the immune characteristics of HBV-HCC and explore the immune mechanisms and immunotherapy strategies for HBV-HCC.
Collapse
Affiliation(s)
- Ruonan Sun
- Department of Gastroenterology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jiawei Li
- The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou, Guangdong, China
| | - Xianyi Lin
- Department of Gastroenterology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yidong Yang
- Department of Gastroenterology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Bing Liu
- Department of Interventional Medicine, Zhuhai People’s Hospital (Zhuhai hospital affiliated with Jinan University), Zhuhai, Guangdong, China
| | - Tianbi Lan
- Department of Hematology, Affiliated Dongguan People's Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, China
| | - Shuang Xiao
- Guangzhou Purui Biotechnology Co., Ltd., Guangzhou, Guangdong, China
| | - Anyi Deng
- The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou, Guangdong, China
| | - Zhinan Yin
- The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou, Guangdong, China
| | - Yan Xu
- The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou, Guangdong, China
- *Correspondence: Bin Wu, ; Zheng Xiang, ; Yan Xu,
| | - Zheng Xiang
- Department of Microbiology and Immunology, Health Science Center (School of Medicine), Jinan University, Guangzhou, Guangdong, China
- *Correspondence: Bin Wu, ; Zheng Xiang, ; Yan Xu,
| | - Bin Wu
- Department of Gastroenterology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
- *Correspondence: Bin Wu, ; Zheng Xiang, ; Yan Xu,
| |
Collapse
|
9
|
Tajik M, Baharfar M, Donald WA. Single-cell mass spectrometry. Trends Biotechnol 2022; 40:1374-1392. [PMID: 35562238 DOI: 10.1016/j.tibtech.2022.04.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/04/2022] [Accepted: 04/09/2022] [Indexed: 01/21/2023]
Abstract
Owing to recent advances in mass spectrometry (MS), tens to hundreds of proteins, lipids, and small molecules can be measured in single cells. The ability to characterize the molecular heterogeneity of individual cells is necessary to define the full assortment of cell subtypes and identify their function. We review single-cell MS including high-throughput, targeted, mass cytometry-based approaches and antibody-free methods for broad profiling of the proteome and metabolome of single cells. The advantages and disadvantages of different methods are discussed, as well as the challenges and opportunities for further improvements in single-cell MS. These methods is being used in biomedicine in several applications including revealing tumor heterogeneity and high-content drug screening.
Collapse
Affiliation(s)
- Mohammad Tajik
- School of Chemistry, University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Mahroo Baharfar
- School of Chemical Engineering, University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - William A Donald
- School of Chemistry, University of New South Wales, Sydney, New South Wales, 2052, Australia.
| |
Collapse
|
10
|
T and NK Cell-Based Immunotherapy in Chronic Viral Hepatitis and Hepatocellular Carcinoma. Cells 2022; 11:cells11020180. [PMID: 35053296 PMCID: PMC8773863 DOI: 10.3390/cells11020180] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 12/29/2021] [Indexed: 02/06/2023] Open
|