1
|
Hu H, Li W, Ma P, Song J, Zhang X, Ruan L, Zhang J, Zheng Y. TRIM22 inhibits the metastasis of colorectal cancer through facilitating β-Catenin degradation. Exp Cell Res 2025; 446:114473. [PMID: 39978715 DOI: 10.1016/j.yexcr.2025.114473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 02/15/2025] [Accepted: 02/16/2025] [Indexed: 02/22/2025]
Abstract
Tripartite motif-containing 22 (TRIM22), a member of the tripartite motif protein family, has emerged as a putative tumor suppressor in various cancers. Nevertheless, its specific role and clinical significance in colorectal cancer (CRC) remain poorly characterized. Herein, we observed that TRIM22 expression was frequently downregulated in primary CRC tissues and was significantly correlated with better prognosis. Functional assays demonstrated that TRIM22 overexpression substantially attenuated the metastatic potential of CRC cells both in vitro and in vivo. Mechanistically, our results revealed that TRIM22 directly interacts with and ubiquitinates β-Catenin, a crucial transcription factor that drives CRC metastasis by modulating the epithelial-mesenchymal transition (EMT) process. Additionally, our data indicated that the anti-metastatic effect of TRIM22 relies on the degradation of β-catenin. In summary, this study is the first to deliberate the vital anti-tumor role of TRIM22 in CRC metastasis. We also provide new evidence suggesting that TRIM22 could be a prognostic marker and therapeutic target for inhibiting CRC progression.
Collapse
Affiliation(s)
- Haiyang Hu
- The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, China
| | - Wensheng Li
- The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, China
| | - Pengfei Ma
- The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, China
| | - Junxin Song
- The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, China
| | - Xiaobo Zhang
- The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, China
| | - Longhui Ruan
- The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, China
| | - Jing Zhang
- The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, China
| | - Youwei Zheng
- The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, China.
| |
Collapse
|
2
|
Uthirapathy S, Ahmed AT, Jawad M, Jain V, Ballal S, Abdul Kareem Al-Hetty HR, Khandelwal G, Arya R, Muthena Kariem, Mustafa YF. Tripartite motif (TRIM) proteins roles in the regulation of immune system responses: Focus on autoimmune diseases. Exp Cell Res 2025; 444:114379. [PMID: 39667699 DOI: 10.1016/j.yexcr.2024.114379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/28/2024] [Accepted: 12/09/2024] [Indexed: 12/14/2024]
Abstract
The tripartite motif (TRIM) proteins are well-studied as essential modulators of many processes, including the modulation of several pathways linked to immunological reactions. Most TRIM family members can polyubiquitinate the targeted proteins by acting as E3 ubiquitin ligases. According to current research, TRIMs play a critical role in innate immune response via modifying transcription factors, pattern recognition receptors (PRRs), and key adaptor proteins within innate immunity. It is becoming clearer that TRIMs play important roles in adaptive immune response, especially in the stimulation and promotion of T cells. We highlight the E3 ubiquitin ligase functions of TRIMs in the PRRs axis linked to autoimmune disorders. By focusing on TRIM family members, we also clarify the new approaches to regulating immunological reactions to alleviate autoimmunity.
Collapse
Affiliation(s)
- Subasini Uthirapathy
- Faculty of Pharmacy, Pharmacology Department, Tishk International University, Erbil, Kurdistan Region, Iraq.
| | | | - Mahmood Jawad
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | - Vicky Jain
- Marwadi University Research Center, Department of Chemistry, Faculty of Science, Marwadi University, Rajkot, 360003, Gujarat, India
| | - Suhas Ballal
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | | | - Gaurav Khandelwal
- Department of Nephrology, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India
| | - Renu Arya
- Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali, 140307, Punjab, India
| | - Muthena Kariem
- Department of medical analysis, Medical laboratory technique college, the Islamic University, Najaf, Iraq; Department of medical analysis, Medical laboratory technique college, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq; Department of medical analysis, Medical laboratory technique college, the Islamic University of Babylon, Babylon, Iraq
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, 41001, Iraq
| |
Collapse
|
3
|
Zhou K, He Y, Lin X, Zhou H, Xu X, Xu J. KIFC1 depends on TRIM37-mediated ubiquitination of PLK4 to promote centrosome amplification in endometrial cancer. Cell Death Discov 2024; 10:419. [PMID: 39349439 PMCID: PMC11442630 DOI: 10.1038/s41420-024-02190-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 10/02/2024] Open
Abstract
Endometrial cancer (EC), as one of the most common cancers, severely threatens female reproductive health. Our previous study has shown that Kinesin family member C1 (KIFC1) played crucial roles in the progression of EC. In addition, abnormal centrosome amplification, which was reported to be partially regulated by KIFC1, usually occurred in different cancers. However, whether KIFC1 promoted EC through centrosome amplification and the potential mechanism remain to be revealed. The present study demonstrated that overexpressed KIFC1, which exhibited a worse prognosis, had a positive correlation with an increased number of centrosomes in human EC samples. In addition, KIFC1 overexpression in EC cells prompted centrosome amplification, chromosomal instability, and cell cycle progression. Moreover, we demonstrated that KIFC1 inhibited E3 ubiquitin-protein ligase TRIM37 to maintain the stability of PLK4 by reducing its ubiquitination degradation, and finally promoting centrosome amplification and EC progression in vitro. Finally, the contributing role of KIFC1 and the inhibitory effect of TRIM37 on EC development and metastasis was verified in a nude mouse xenograft model. Our study elucidated that KIFC1 depends on TRIM37-mediated reduced ubiquitination degradation of PLK4 to promote centrosome amplification and EC progression, thus providing a potential prognostic marker and promising therapeutic target for EC in the future.
Collapse
Affiliation(s)
- Kening Zhou
- Department of Gynaecology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou City, Zhejiang Province, 324000, China
| | - Yingying He
- Department of Pathology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou City, Zhejiang Province, 324000, China
| | - Xi Lin
- Department of Gynaecology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou City, Zhejiang Province, 324000, China
| | - Huihao Zhou
- Department of Gynaecology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou City, Zhejiang Province, 324000, China
| | - Xiaomin Xu
- Department of Gynaecology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou City, Zhejiang Province, 324000, China
| | - Jingui Xu
- Department of Gynaecology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou City, Zhejiang Province, 324000, China.
| |
Collapse
|
4
|
Zhao K, Chen L, Xie Y, Ren N, Li J, Zhai X, Zheng S, Liu K, Wang C, Qiu Q, Peng X, Wang W, Liu J, Che Q, Fan J, Hu H, Liu M. m6A/HOXA10-AS/ITGA6 axis aggravates oxidative resistance and malignant progression of laryngeal squamous cell carcinoma through regulating Notch and Keap1/Nrf2 pathways. Cancer Lett 2024; 587:216735. [PMID: 38369001 DOI: 10.1016/j.canlet.2024.216735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/05/2024] [Accepted: 02/16/2024] [Indexed: 02/20/2024]
Abstract
As the second most prevalent malignant tumor of head and neck, laryngeal squamous cell carcinoma (LSCC) imposes a substantial health burden on patients worldwide. Within recent years, resistance to oxidative stress and N6-methyladenosine (m6A) of RNA have been proved to be significantly involved in tumorigenesis. In current study, we investigated the oncogenic role of m6A modified long non coding RNAs (lncRNAs), specifically HOXA10-AS, and its downstream signaling pathway in the regulation of oxidative resistance in LSCC. Bioinformatics analysis revealed that heightened expression of HOXA10-AS was associated with the poor prognosis in LSCC patients, and N (6)-Methyladenosine (m6A) methyltransferase-like 3 (METTL3) was identified as a factor in promoting m6A modification of HOXA10-AS and further intensify its RNA stability. Mechanistically, HOXA10-AS was found to play as a competitive endogenous RNA (ceRNA) by sequestering miR-29 b-3p and preventing its downregulation of Integrin subunit alpha 6 (ITGA6), ultimately enhancing the oxidative resistance of tumor cells and promoting the malignant progression of LSCC. Furthermore, our research elucidated the mechanism by which ITGA6 accelerates Keap1 proteasomal degradation via enhancing TRIM25 expression, leading to increased Nrf2 stability and exacerbating its aberrant activation. Additionally, we demonstrated that ITGA6 enhances γ-secretase-mediated Notch signaling activation, ultimately promoting RBPJ-induced TRIM25 transcription. The current study provides the evidence supporting the effect of m6A modified HOXA10-AS and its downstream miR-29 b-3p/ITGA6 axis on regulating oxidative resistance and malignant progression in LSCC through the Notch and Keap1/Nrf2 pathways, and proposed that targeting this axis holds promise as a potential therapeutic approach for treating LSCC.
Collapse
Affiliation(s)
- Kai Zhao
- Department of Otolaryngology Head and Neck Surgery, Hainan Hospital of Chinese PLA General Hospital, Sanya, 572013, PR China
| | - Liwei Chen
- Department of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Beijing 100853, PR China
| | - Yingli Xie
- Department of Otolaryngology Head and Neck Surgery, Hainan Hospital of Chinese PLA General Hospital, Sanya, 572013, PR China; Medical School of Chinese PLA, Beijing, 100853, PR China
| | - Nan Ren
- Department of Otolaryngology Head and Neck Surgery, Hainan Hospital of Chinese PLA General Hospital, Sanya, 572013, PR China
| | - Jianhui Li
- Department of Otolaryngology Head and Neck Surgery, Hainan Hospital of Chinese PLA General Hospital, Sanya, 572013, PR China
| | - Xingyou Zhai
- Department of Otolaryngology Head and Neck Surgery, Hainan Hospital of Chinese PLA General Hospital, Sanya, 572013, PR China
| | - Shikang Zheng
- Department of Otolaryngology Head and Neck Surgery, Hainan Hospital of Chinese PLA General Hospital, Sanya, 572013, PR China
| | - Kun Liu
- Department of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Beijing 100853, PR China
| | - Cheng Wang
- Department of Otolaryngology Head and Neck Surgery, Hainan Hospital of Chinese PLA General Hospital, Sanya, 572013, PR China
| | - Qibing Qiu
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, PR China
| | - Xin Peng
- Department of Otolaryngology Head and Neck Surgery, Hainan Hospital of Chinese PLA General Hospital, Sanya, 572013, PR China
| | - Wenjia Wang
- Department of Otolaryngology Head and Neck Surgery, Hainan Hospital of Chinese PLA General Hospital, Sanya, 572013, PR China; Medical School of Chinese PLA, Beijing, 100853, PR China
| | - Jinjing Liu
- Medical School of Chinese PLA, Beijing, 100853, PR China
| | - Qin Che
- Department of Otolaryngology Head and Neck Surgery, Hainan Hospital of Chinese PLA General Hospital, Sanya, 572013, PR China
| | - Junda Fan
- Department of Otolaryngology Head and Neck Surgery, Hainan Hospital of Chinese PLA General Hospital, Sanya, 572013, PR China
| | - Hai Hu
- Department of Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, PR China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, PR China.
| | - Mingbo Liu
- Department of Otolaryngology Head and Neck Surgery, Hainan Hospital of Chinese PLA General Hospital, Sanya, 572013, PR China; Department of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Beijing 100853, PR China; The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, PR China.
| |
Collapse
|
5
|
Gombos G, Németh N, Pös O, Styk J, Buglyó G, Szemes T, Danihel L, Nagy B, Balogh I, Soltész B. New Possible Ways to Use Exosomes in Diagnostics and Therapy via JAK/STAT Pathways. Pharmaceutics 2023; 15:1904. [PMID: 37514090 PMCID: PMC10386711 DOI: 10.3390/pharmaceutics15071904] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/27/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
Exosomes have the potential to be the future of personalized diagnostics and therapy. They are nano-sized particles between 30 and 100 nm flowing in the extracellular milieu, where they mediate cell-cell communication and participate in immune system regulation. Tumor-derived exosomes (TDEs) secreted from different types of cancer cells are the key regulators of the tumor microenvironment. With their immune suppressive cargo, TDEs prevent the antitumor immune response, leading to reduced effectiveness of cancer treatment by promoting a pro-tumorigenic microenvironment. Involved signaling pathways take part in the regulation of tumor proliferation, differentiation, apoptosis, and angiogenesis. Signal transducers and activators of transcription factors (STATs) and Janus kinase (JAK) signaling pathways are crucial in malignancies and autoimmune diseases alike, and their potential to be manipulated is currently the focus of interest. In this review, we aim to discuss exosomes, TDEs, and the JAK/STAT pathways, along with mediators like interleukins, tripartite motif proteins, and interferons.
Collapse
Affiliation(s)
- Gréta Gombos
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Egyetem Tér 1, H-4032 Debrecen, Hungary
| | - Nikolett Németh
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Egyetem Tér 1, H-4032 Debrecen, Hungary
| | - Ondrej Pös
- Comenius University Science Park, 841 04 Bratislava, Slovakia
- Geneton Ltd., 841 04 Bratislava, Slovakia
| | - Jakub Styk
- Comenius University Science Park, 841 04 Bratislava, Slovakia
- Geneton Ltd., 841 04 Bratislava, Slovakia
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, 811 08 Bratislava, Slovakia
| | - Gergely Buglyó
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Egyetem Tér 1, H-4032 Debrecen, Hungary
| | - Tomas Szemes
- Comenius University Science Park, 841 04 Bratislava, Slovakia
- Geneton Ltd., 841 04 Bratislava, Slovakia
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, 841 01 Bratislava, Slovakia
| | - Ludovit Danihel
- 3rd Surgical Clinic, Faculty of Medicine, Comenius University and Merciful Brothers University Hospital, 811 08 Bratislava, Slovakia
| | - Bálint Nagy
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Egyetem Tér 1, H-4032 Debrecen, Hungary
- Comenius University Science Park, 841 04 Bratislava, Slovakia
| | - István Balogh
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Egyetem Tér 1, H-4032 Debrecen, Hungary
- Division of Clinical Genetics, Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Beáta Soltész
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Egyetem Tér 1, H-4032 Debrecen, Hungary
| |
Collapse
|
6
|
TRIM40 is a pathogenic driver of inflammatory bowel disease subverting intestinal barrier integrity. Nat Commun 2023; 14:700. [PMID: 36755029 PMCID: PMC9908899 DOI: 10.1038/s41467-023-36424-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 01/30/2023] [Indexed: 02/10/2023] Open
Abstract
The cortical actin cytoskeleton plays a critical role in maintaining intestinal epithelial integrity, and the loss of this architecture leads to chronic inflammation, as seen in inflammatory bowel disease (IBD). However, the exact mechanisms underlying aberrant actin remodeling in pathological states remain largely unknown. Here, we show that a subset of patients with IBD exhibits substantially higher levels of tripartite motif-containing protein 40 (TRIM40), a gene that is hardly detectable in healthy individuals. TRIM40 is an E3 ligase that directly targets Rho-associated coiled-coil-containing protein kinase 1 (ROCK1), an essential kinase involved in promoting cell-cell junctions, markedly decreasing the phosphorylation of key signaling factors critical for cortical actin formation and stabilization. This causes failure of the epithelial barrier function, thereby promoting a long-lived inflammatory response. A mutant TRIM40 lacking the RING, B-box, or C-terminal domains has impaired ability to accelerate ROCK1 degradation-driven cortical actin disruption. Accordingly, Trim40-deficient male mice are highly resistant to dextran sulfate sodium (DSS)-induced colitis. Our findings highlight that aberrant upregulation of TRIM40, which is epigenetically silenced under healthy conditions, drives IBD by subverting cortical actin formation and exacerbating epithelial barrier dysfunction.
Collapse
|
7
|
Ye H, Wang RY, Yu XZ, Wu YK, Yang BW, Ao MY, Xi MR, Hou MM. Exosomal circNFIX promotes angiogenesis in ovarian cancer via miR-518a-3p/TRIM44 axis. Kaohsiung J Med Sci 2023; 39:26-39. [PMID: 36448712 DOI: 10.1002/kjm2.12615] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 09/19/2022] [Accepted: 09/21/2022] [Indexed: 12/05/2022] Open
Abstract
Ovarian cancer (OC) is a gynecological cancer with high mortality. OC-derived exosomal circRNAs can regulate angiogenesis. This study aims to explore the role and mechanism of exosomal circRNA nuclear factor I X (CircNFIX) derived from OC cells in angiogenesis. Quantitative real-time polymerase chain reaction was employed to evaluate the levels of circNFIX, miR-518a-3p, and tripartite motif protein 44 (TRIM44) in OC and adjacent tissues. Exosomes from the ovarian surface epithelial cell (HOSEpiC) and OC cells (SKOV3 or OVCAR3) were isolated by differential centrifugation. Exosomes were cocultured with the human umbilical vein endothelial cells (HUVECs). The angiogenesis capacity was analyzed by Tube formation assay. 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) and Transwell assays were used to determine the cell viability and migration ability. The dual-luciferase report, RNA immunoprecipitation (RIP), and RNA pull-down assays were applied to validate the gene's interaction. CircNFIX and TRIM44 expression were higher and miR-518a-3p was lower in OC tissues than in the adjacent tissues. Upregulated circNFIX and TRIM44 were significantly correlated with the tumor size and International Federation of Gynecology and Obstetrics (FIGO) stage of OC patients. HUVECs treated OC-derived exosomes had higher proliferation, migration, and angiogenesis capacities than the control group. While OC-derived exosomal circNFIX silencing restrained HUVECs' proliferation, migration, and angiogenesis, compared with the OC-derived exosomes group. OC-derived exosomal circNFIX positively regulated TRIM44 expression by targeting miR-518a-3p in HUVECs. OC-derived exosomal circNFIX promoted angiogenesis by regulating the Janus-activated kinase/signal transducer and activator of transcription 1 (JAK/STAT1) pathway via miR-518a-3p/TRIM44 axis in HUVECs.
Collapse
Affiliation(s)
- Hui Ye
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.,The Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Rui-Yu Wang
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.,The Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Xiu-Zhang Yu
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.,The Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Yu-Ke Wu
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.,The Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Bo-Wen Yang
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.,The Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Meng-Yin Ao
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.,The Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Ming-Rong Xi
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.,The Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Min-Min Hou
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.,The Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| |
Collapse
|
8
|
Nevedomskaya E, Haendler B. From Omics to Multi-Omics Approaches for In-Depth Analysis of the Molecular Mechanisms of Prostate Cancer. Int J Mol Sci 2022; 23:6281. [PMID: 35682963 PMCID: PMC9181488 DOI: 10.3390/ijms23116281] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/24/2022] [Accepted: 06/01/2022] [Indexed: 02/01/2023] Open
Abstract
Cancer arises following alterations at different cellular levels, including genetic and epigenetic modifications, transcription and translation dysregulation, as well as metabolic variations. High-throughput omics technologies that allow one to identify and quantify processes involved in these changes are now available and have been instrumental in generating a wealth of steadily increasing data from patient tumors, liquid biopsies, and from tumor models. Extensive investigation and integration of these data have led to new biological insights into the origin and development of multiple cancer types and helped to unravel the molecular networks underlying this complex pathology. The comprehensive and quantitative analysis of a molecule class in a biological sample is named omics and large-scale omics studies addressing different prostate cancer stages have been performed in recent years. Prostate tumors represent the second leading cancer type and a prevalent cause of cancer death in men worldwide. It is a very heterogenous disease so that evaluating inter- and intra-tumor differences will be essential for a precise insight into disease development and plasticity, but also for the development of personalized therapies. There is ample evidence for the key role of the androgen receptor, a steroid hormone-activated transcription factor, in driving early and late stages of the disease, and this led to the development and approval of drugs addressing diverse targets along this pathway. Early genomic and transcriptomic studies have allowed one to determine the genes involved in prostate cancer and regulated by androgen signaling or other tumor-relevant signaling pathways. More recently, they have been supplemented by epigenomic, cistromic, proteomic and metabolomic analyses, thus, increasing our knowledge on the intricate mechanisms involved, the various levels of regulation and their interplay. The comprehensive investigation of these omics approaches and their integration into multi-omics analyses have led to a much deeper understanding of the molecular pathways involved in prostate cancer progression, and in response and resistance to therapies. This brings the hope that novel vulnerabilities will be identified, that existing therapies will be more beneficial by targeting the patient population likely to respond best, and that bespoke treatments with increased efficacy will be available soon.
Collapse
Affiliation(s)
| | - Bernard Haendler
- Research and Early Development, Pharmaceuticals, Bayer AG, Müllerstr. 178, 13353 Berlin, Germany;
| |
Collapse
|
9
|
Chen R, Tie Y, Lu J, Li L, Zeng Z, Chen M, Zhang S. Tripartite motif family proteins in inflammatory bowel disease: Mechanisms and potential for interventions. Cell Prolif 2022; 55:e13222. [PMID: 35373402 PMCID: PMC9136508 DOI: 10.1111/cpr.13222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/04/2022] [Indexed: 11/29/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic recurrent gastrointestinal inflammatory disease that poses a heavy burden to the global healthcare system. However, the current paucity of mechanistic understanding of IBD pathogenesis hampers the development of aetiology‐directed therapies. Novel therapeutic options based on IBD pathogenesis are urgently needed for attaining better long‐term prognosis for IBD patients. The tripartite motif (TRIM) family is a large protein family including more than 70 structurally conservative members, typically characterized by their RBCC structure, which primarily function as E3 ubiquitin ligases in post‐translational modification. They have emerged as regulators of a broad range of cellular mechanisms, including proliferation, differentiation, transcription and immune regulation. TRIM family proteins are involved in multiple diseases, such as viral infection, cancer and autoimmune disorders, including inflammatory bowel disease. This review provides a comprehensive perspective on TRIM proteins' involvement in the pathophysiology and progression of IBD, in particular, on intestinal mucosal barriers, gene susceptibility and opportunistic infections, thus providing novel therapeutic targets for this complicated disease. However, the exact mechanisms of TRIM proteins in IBD pathogenesis and IBD‐related carcinogenesis are still unknown, and more studies are warranted to explore potential therapeutic targets of TRIM proteins in IBD.
Collapse
Affiliation(s)
- Rirong Chen
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yizhe Tie
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.,Department of Clinical Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Jinyu Lu
- Department of Clinical Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.,Reproductive Medicine Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Li Li
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zhirong Zeng
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Minhu Chen
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Shenghong Zhang
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
10
|
Zheng D, Zhang Y, Xia Y, Cheng F. A Novel Gene Signature of Tripartite Motif Family for Predicting the Prognosis in Kidney Renal Clear Cell Carcinoma and Its Association With Immune Cell Infiltration. Front Oncol 2022; 12:840410. [PMID: 35371994 PMCID: PMC8968921 DOI: 10.3389/fonc.2022.840410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/22/2022] [Indexed: 12/26/2022] Open
Abstract
Given the importance of tripartite motif (TRIM) proteins in diverse cellular biological processes and that their dysregulation contributes to cancer progression, we constructed a robust TRIM family signature to stratify patients with kidney renal clear cell carcinoma (KIRC). Transcriptomic profiles and corresponding clinical information of KIRC patients were obtained from The Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium (ICGC) databases. Prognosis-related TRIM family genes were screened and used to construct a novel TRIM family-based signature for the training cohort. The accuracy and generalizability of the prognostic signature were assessed in testing, entire, and external ICGC cohorts. We analyzed correlations among prognostic signatures, tumor immune microenvironment, and immune cell infiltration. The results of univariate Cox regression and Kaplan-Meier survival analyses revealed 27 TRIMs that were robustly associated with the prognosis of patients with KIRC. We applied Lasso regression and multivariate Cox regression analyses to develop a prognostic signature containing the TRIM1, 13, 35, 26, 55, 2, 47, and 27 genes to predict the survival of patients with KIRC. The accuracy and generalizability of this signature were confirmed in internal and external validation cohorts. We also constructed a predictive nomogram based on the signature and the clinicopathological characteristics of sex, age, and T and M status to aid clinical decision-making. We analyzed immune cell infiltration analysis and found that CD8 T cells, memory resting CD4 T cells, and M2 macrophages were the most enriched components in the KIRC tumor immune microenvironment. A higher level of immune infiltration by plasma cells, follicular helper T cells, and activated NK cells, and a lower level of immune infiltration by memory resting CD4 T cells, M1 and M2 macrophages, and resting dendritic cells were associated with higher risk scores. Overall, our eight-gene TRIM family signature has sufficient accuracy and generalizability for predicting the overall survival of patients with KIRC. Furthermore, this prognostic signature is associated with tumor immune status and distinct immune cell infiltrates in the tumor microenvironment.
Collapse
|
11
|
Wu L, Yin X, Jiang K, Yin J, Yu H, Yang L, Ma C, Yan S. Comprehensive profiling of the TRIpartite motif family to identify pivot genes in hepatocellular carcinoma. Cancer Med 2022; 11:1712-1731. [PMID: 35142083 PMCID: PMC8986146 DOI: 10.1002/cam4.4552] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/27/2021] [Accepted: 12/13/2021] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION TRIpartite motif (TRIM) proteins are important members of the Really Interesting New Gene-finger-containing E3 ubiquitin-conjugating enzyme and are involved in the progression of hepatocellular carcinoma (HCC). However, the diverse expression patterns of TRIMs and their roles in prognosis and immune infiltrates in HCC have yet to be analyzed. MATERIALS Combined with previous research, we used an Oncomine database and the Human Protein Atlas to compare TRIM family genes' transcriptional levels between tumor samples and normal liver tissues, as verified by the Gene Expression Profiling Interactive Analysis database. We investigated the patient survival data of TRIMs from the Kaplan-Meier plotter database. Clinicopathologic characteristics associations and potential diagnostic and prognostic values were validated with clinical and expressional data collected from the cancer genome atlas. RESULTS We identified TRIM28, TRIM37, TRIM45, and TRIM59 as high-priority members of the TRIMs family that modulates HCC. Low expression of TRIM28 was associated with shorter overall survival (OS) than high expression (log-rank p = 0.009). The same trend was identified for TRIM37 (p = 0.001), TRIM45 (p = 0.013), and TRIM59 (p = 0.011). Multivariate analysis indicated that the level of TRIM37 was a significant independent prognostic factor for both OS (p = 0.043) and progression-free interval (p = 0.044). We performed expression and mutation analysis and functional pathways and tumor immune infiltration analysis of the changes in TRIM factors. CONCLUSION These data suggested that TRIM28, TRIM37, TRIM45, and TRIM59 could serve as efficient prognostic biomarkers and therapeutic targets in HCC.
Collapse
Affiliation(s)
- Lingyun Wu
- Department of Radiation Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xin Yin
- Department of Radiation Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kan Jiang
- Department of Radiation Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jie Yin
- Department of Radiation Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hao Yu
- Department of Radiation Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lingling Yang
- Department of Gastroenterology, the Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Chiyuan Ma
- Department of Orthopaedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Senxiang Yan
- Department of Radiation Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
12
|
Cellular Function of TRIM E3 Ubiquitin Ligases in Health and Disease. Cells 2022; 11:cells11020250. [PMID: 35053366 PMCID: PMC8773487 DOI: 10.3390/cells11020250] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 01/10/2022] [Indexed: 02/04/2023] Open
|