1
|
Faraji-Barhagh A, Jahandar-Lashaki S, Esfahlan RJ, Alizadeh E. Current nano drug delivery systems for targeting head and neck squamous cell carcinoma microenvironment: a narrative review. Mol Biol Rep 2025; 52:369. [PMID: 40195238 DOI: 10.1007/s11033-025-10462-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Accepted: 03/21/2025] [Indexed: 04/09/2025]
Abstract
The treatment of head and neck squamous cell carcinoma (HNSCC) remains a significant hurdle in clinical oncology, primarily due to the tumor's intricate and immune-suppressing environment, its diverse genetic and observable characteristics, and its tendency to spread locally and to distant sites, further complicated by the development of drug insensitivity. Standard treatment approaches frequently fall short in effectively managing these complex features. This article provides a critical assessment of the developing area of sophisticated drug delivery methods (DDSs) aimed at improving treatment results in HNSCC. The specific attributes of the HNSCC tumor environment are examined, with a focus on the disrupted structure of the extracellular matrix (ECM), its involvement in the spread of tumor cells through the bloodstream and the establishment of metastatic tumors, and the various ways in which drug resistance arises. Additionally, we assess how novel DDS technologies might overcome these challenges through directed delivery to particular tumor microenvironment targets, precise control of cancer-driving signaling pathways, and the avoidance of drug resistance mechanisms. This overview summarizes recent progress in DDS technologies customized for HNSCC treatment, with a particular emphasis on therapies using nanoparticles and immune-based drug delivery, highlighting their potential to address the many difficulties associated with this difficult-to-treat cancer. We will explore the progression of these treatment strategies from laboratory research to clinical practice and the ongoing efforts to improve patient survival.
Collapse
Affiliation(s)
- Aref Faraji-Barhagh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Rana Jahanban Esfahlan
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Effat Alizadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
2
|
Feng Z, Hao P, Yang Y, Xve X, Zhang J. Network pharmacology and molecular docking to explore the potential molecular mechanism of chlorogenic acid treatment of oral squamous cell carcinoma. Medicine (Baltimore) 2024; 103:e40218. [PMID: 39533555 PMCID: PMC11557041 DOI: 10.1097/md.0000000000040218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 10/04/2024] [Indexed: 11/16/2024] Open
Abstract
Oral squamous cell carcinoma (OSCC) is a tumor type with a high mortality rate. Chlorogenic acid, abundant in resources and widely utilized in cancer treatments, has seen limited studies regarding its efficacy against OSCC. This paper investigates chlorogenic acid's mechanism in treating OSCC, aiming to guide the development of novel drugs. The study employed network pharmacology, molecular docking, and survival analysis methods. Network pharmacological analysis revealed chlorogenic acid targets 23 OSCC-related proteins, including ESR1, MMP2, MMP9, SRC, MAPK8, MAPK1, CDC42, ERBB2, ATM, and BRAF. Molecular docking simulations indicated that the primary target exhibits significant binding capacity with chlorogenic acid, with MMP9 associated with tumor migration and angiogenesis standing out. Survival analysis demonstrated that the downregulation of most primary targets correlates with improved survival rates in OSCC patients. Enrichment analysis of therapeutic targets highlighted the pivotal role of MAPK-ERK and MAPK-JNK signaling pathways in chlorogenic acid's efficacy against OSCC. This paper predicts chlorogenic acid's potential targets and proposes its molecular mechanism in treating OSCC, offering a theoretical foundation for its application in OSCC treatment. We used traditional Chinese medicine, a disease pharmacology-related information base, and an analysis platform to predict targets. The Cytoscape 3.9.1 and STING databases were used to address common targets for drugs and diseases, establish networks of protein interaction relationships, and screen core targets. Meastro11.5 was used for molecular docking simulation. R4.2.2 was used for survival analysis and joint target enrichment analysis. Network pharmacological analysis identified chlorogenic acid acting on 23 OSCC targets. Molecular docking simulations revealed a strong binding affinity of chlorogenic acid compounds with these targets, particularly MMP9, essential for tumor migration and angiogenesis. Survival analysis indicated that the downregulation of most core targets was correlated with improved OSCC patient survival. Enrichment analysis of therapeutic targets highlighted the critical roles of the MAPK-ERK and MAPK-JNK signaling pathways in the effectiveness of chlorogenic acid against OSCC. This study predicted the potential targets of chlorogenic acid in OSCC treatment and hypothesized its molecular mechanism, offering a theoretical foundation for its use in OSCC therapy.
Collapse
Affiliation(s)
- Zhanqin Feng
- Department of Pharmacy, Weifang Maternal and Child Health Hospital, Weifang, Shandong, China
| | - Puyu Hao
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
| | - Yutao Yang
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
| | - Xulong Xve
- Department of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jun Zhang
- Department of Pharmacy, Weifang Maternal and Child Health Hospital, Weifang, Shandong, China
| |
Collapse
|
3
|
Pomella S, Melaiu O, Dri M, Martelli M, Gargari M, Barillari G. Effects of Angiogenic Factors on the Epithelial-to-Mesenchymal Transition and Their Impact on the Onset and Progression of Oral Squamous Cell Carcinoma: An Overview. Cells 2024; 13:1294. [PMID: 39120324 PMCID: PMC11311310 DOI: 10.3390/cells13151294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024] Open
Abstract
High levels of vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF)-2 and angiopoietin (ANG)-2 are found in tissues from oral squamous cell carcinoma (OSCC) and oral potentially malignant disorders (OPMDs). As might be expected, VEGF, FGF-2, and ANG-2 overexpression parallels the development of new blood and lymphatic vessels that nourish the growing OPMDs or OSCCs and provide the latter with metastatic routes. Notably, VEGF, FGF-2, and ANG-2 are also linked to the epithelial-to-mesenchymal transition (EMT), a trans-differentiation process that respectively promotes or exasperates the invasiveness of normal and neoplastic oral epithelial cells. Here, we have summarized published work regarding the impact that the interplay among VEGF, FGF-2, ANG-2, vessel generation, and EMT has on oral carcinogenesis. Results from the reviewed studies indicate that VEGF, FGF-2, and ANG-2 spark either protein kinase B (AKT) or mitogen-activated protein kinases (MAPK), two signaling pathways that can promote both EMT and new vessels' formation in OPMDs and OSCCs. Since EMT and vessel generation are key to the onset and progression of OSCC, as well as to its radio- and chemo-resistance, these data encourage including AKT or MAPK inhibitors and/or antiangiogenic drugs in the treatment of this malignancy.
Collapse
Affiliation(s)
- Silvia Pomella
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Via Montpellier, 00133 Rome, Italy; (S.P.); (O.M.); (M.M.); (M.G.)
| | - Ombretta Melaiu
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Via Montpellier, 00133 Rome, Italy; (S.P.); (O.M.); (M.M.); (M.G.)
| | - Maria Dri
- Department of Surgical Sciences, University of Rome Tor Vergata, 00133 Rome, Italy;
| | - Mirko Martelli
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Via Montpellier, 00133 Rome, Italy; (S.P.); (O.M.); (M.M.); (M.G.)
| | - Marco Gargari
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Via Montpellier, 00133 Rome, Italy; (S.P.); (O.M.); (M.M.); (M.G.)
| | - Giovanni Barillari
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Via Montpellier, 00133 Rome, Italy; (S.P.); (O.M.); (M.M.); (M.G.)
| |
Collapse
|
4
|
Jiang M, Wu W, Xiong Z, Yu X, Ye Z, Wu Z. Targeting autophagy drug discovery: Targets, indications and development trends. Eur J Med Chem 2024; 267:116117. [PMID: 38295689 DOI: 10.1016/j.ejmech.2023.116117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/30/2023] [Accepted: 12/31/2023] [Indexed: 02/25/2024]
Abstract
Autophagy plays a vital role in sustaining cellular homeostasis and its alterations have been implicated in the etiology of many diseases. Drugs development targeting autophagy began decades ago and hundreds of agents were developed, some of which are licensed for the clinical usage. However, no existing intervention specifically aimed at modulating autophagy is available. The obstacles that prevent drug developments come from the complexity of the actual impact of autophagy regulators in disease scenarios. With the development and application of new technologies, several promising categories of compounds for autophagy-based therapy have emerged in recent years. In this paper, the autophagy-targeted drugs based on their targets at various hierarchical sites of the autophagic signaling network, e.g., the upstream and downstream of the autophagosome and the autophagic components with enzyme activities are reviewed and analyzed respectively, with special attention paid to those at preclinical or clinical trials. The drugs tailored to specific autophagy alone and combination with drugs/adjuvant therapies widely used in clinical for various diseases treatments are also emphasized. The emerging drug design and development targeting selective autophagy receptors (SARs) and their related proteins, which would be expected to arrest or reverse the progression of disease in various cancers, inflammation, neurodegeneration, and metabolic disorders, are critically reviewed. And the challenges and perspective in clinically developing autophagy-targeted drugs and possible combinations with other medicine are considered in the review.
Collapse
Affiliation(s)
- Mengjia Jiang
- Department of Pharmacology and Pharmacy, China Jiliang University, China
| | - Wayne Wu
- College of Osteopathic Medicine, New York Institute of Technology, USA
| | - Zijie Xiong
- Department of Pharmacology and Pharmacy, China Jiliang University, China
| | - Xiaoping Yu
- Department of Biology, China Jiliang University, China
| | - Zihong Ye
- Department of Biology, China Jiliang University, China
| | - Zhiping Wu
- Department of Pharmacology and Pharmacy, China Jiliang University, China.
| |
Collapse
|
5
|
Cruz-Martins N. Advances in Plants-Derived Bioactives for Cancer Treatment. Cells 2023; 12:cells12081112. [PMID: 37190022 DOI: 10.3390/cells12081112] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 04/04/2023] [Indexed: 05/17/2023] Open
Abstract
Cancer, while a multifactorial chronic disease with an increasing prevalence, has been the subject of intense investigation, not only because of the growing need to find the main triggers that motivate its onset but essentially because of the need to discover increasingly safer and effective therapeutic options that have fewer adverse effects and associated toxicity [...].
Collapse
Affiliation(s)
- Natália Cruz-Martins
- Faculty of Medicine, University of Porto, 4099-002 Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, 4099-002 Porto, Portugal
- Institute of Research and Advanced Training in Health Sciences and Technologies, CESPU, Rua Central de Gandra, 1317, 4585-116 Gandra, Portugal
- TOXRUN-Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, 4585-116 Gandra, Portugal
| |
Collapse
|
6
|
Škubník J, Svobodová Pavlíčková V, Ruml T, Rimpelová S. Autophagy in cancer resistance to paclitaxel: Development of combination strategies. Biomed Pharmacother 2023; 161:114458. [PMID: 36889112 DOI: 10.1016/j.biopha.2023.114458] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 02/14/2023] [Accepted: 02/26/2023] [Indexed: 03/08/2023] Open
Abstract
Paclitaxel, a compound naturally occurring in yew, is a commonly used drug for the treatment of different types of cancer. Unfortunately, frequent cancer cell resistance significantly decreases its anticancer effectivity. The main reason for the resistance development is the paclitaxel-induced phenomenon of cytoprotective autophagy occurring by different mechanisms of action in dependence on a cell type and possibly even leading to metastases. Paclitaxel also induces autophagy in cancer stem cells, which greatly contributes to tumor resistance development. Paclitaxel anticancer effectivity can be predicted by the presence of several autophagy-related molecular markers, such as tumor necrosis factor superfamily member 13 in triple-negative breast cancer or cystine/glutamate transporter encoded by the SLC7A11 gene in ovarian cancer. Nevertheless, the undesired effects of paclitaxel-induced autophagy can be eliminated by paclitaxel co-administration with autophagy inhibitors, such as chloroquine. Interestingly, in certain cases, it is worthy of potentiating autophagy by paclitaxel combination with autophagy inducers, for instance, apatinib. A modern strategy in anticancer research is also to encapsulate chemotherapeutics into nanoparticle carriers or develop their novel derivatives with improved anticancer properties. Hence, in this review article, we summarize not only the current knowledge of paclitaxel-induced autophagy and its role in cancer resistance but mainly the possible drug combinations based on paclitaxel and their administration in nanoparticle-based formulations as well as paclitaxel analogs with autophagy-modulating properties.
Collapse
Affiliation(s)
- Jan Škubník
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Technická 3, Prague 6 166 28, Czech Republic.
| | - Vladimíra Svobodová Pavlíčková
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Technická 3, Prague 6 166 28, Czech Republic.
| | - Tomáš Ruml
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Technická 3, Prague 6 166 28, Czech Republic.
| | - Silvie Rimpelová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Technická 3, Prague 6 166 28, Czech Republic.
| |
Collapse
|
7
|
Hsieh MJ, Ho HY, Lo YS, Lin CC, Chuang YC, Abomughaid MM, Hsieh MC, Chen MK. Semilicoisoflavone B Induces Apoptosis of Oral Cancer Cells by Inducing ROS Production and Downregulating MAPK and Ras/Raf/MEK Signaling. Int J Mol Sci 2023; 24:4505. [PMID: 36901935 PMCID: PMC10003514 DOI: 10.3390/ijms24054505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 03/02/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) is the sixth most common type of cancer worldwide. Despite advancement in treatment, advanced-stage OSCC is associated with poor prognosis and high mortality. The present study aimed to investigate the anticancer activities of semilicoisoflavone B (SFB), which is a natural phenolic compound isolated from Glycyrrhiza species. The results revealed that SFB reduces OSCC cell viability by targeting cell cycle and apoptosis. The compound caused cell cycle arrest at the G2/M phase and downregulated the expressions of cell cycle regulators including cyclin A and cyclin-dependent kinase (CDK) 2, 6, and 4. Moreover, SFB induced apoptosis by activating poly-ADP-ribose polymerase (PARP) and caspases 3, 8, and 9. It increased the expressions of pro-apoptotic proteins Bax and Bak, reduced the expressions of anti-apoptotic proteins Bcl-2 and Bcl-xL, and increased the expressions of the death receptor pathway protein Fas cell surface death receptor (FAS), Fas-associated death domain protein (FADD), and TNFR1-associated death domain protein (TRADD). SFB was found to mediate oral cancer cell apoptosis by increasing reactive oxygen species (ROS) production. The treatment of the cells with N-acetyl cysteine (NAC) caused a reduction in pro-apoptotic potential of SFB. Regarding upstream signaling, SFB reduced the phosphorylation of AKT, ERK1/2, p38, and JNK1/2 and suppressed the activation of Ras, Raf, and MEK. The human apoptosis array conducted in the study identified that SFB downregulated survivin expression to induce oral cancer cell apoptosis. Taken together, the study identifies SFB as a potent anticancer agent that might be used clinically to manage human OSCC.
Collapse
Affiliation(s)
- Ming-Ju Hsieh
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua 500, Taiwan
- Ph.D. Program in Tissue Engineering and Regenerative Medicine, College of Medicine, National Chung Hsing University, Taichung 402, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan
| | - Hsin-Yu Ho
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua 500, Taiwan
| | - Yu-Sheng Lo
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua 500, Taiwan
| | - Chia-Chieh Lin
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua 500, Taiwan
| | - Yi-Ching Chuang
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua 500, Taiwan
| | - Mosleh Mohammad Abomughaid
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha 61922, Saudi Arabia
| | - Ming-Chang Hsieh
- School of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung 40201, Taiwan
- Department of Clinical Laboratory, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Mu-Kuan Chen
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung 402, Taiwan
- Department of Otorhinolaryngology, Head and Neck Surgery, Changhua Christian Hospital, Changhua 500, Taiwan
| |
Collapse
|
8
|
Yang H, Velmurugan BK, Chen M, Lin C, Lo Y, Chuang Y, Ho H, Hsieh M, Ko J. 7‐Epitaxol
induces apoptosis in cisplatin‐resistant head and neck squamous cell carcinoma via suppression of
AKT
and
MAPK
signalling. J Cell Mol Med 2022; 26:5807-5819. [DOI: 10.1111/jcmm.17602] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/16/2022] [Accepted: 10/10/2022] [Indexed: 11/27/2022] Open
Affiliation(s)
- Hui‐Ju Yang
- Institute of Medicine Chung Shan Medical University Taichung Taiwan
- Department of Dermatology Changhua Christian Hospital Changhua Taiwan
| | | | - Mu‐Kuan Chen
- Department of Otorhinolaryngology, Head and Neck Surgery Changhua Christian Hospital Changhua Taiwan
| | - Chia‐Chieh Lin
- Oral Cancer Research Center Changhua Christian Hospital Changhua Taiwan
| | - Yu‐Sheng Lo
- Oral Cancer Research Center Changhua Christian Hospital Changhua Taiwan
| | - Yi‐Ching Chuang
- Oral Cancer Research Center Changhua Christian Hospital Changhua Taiwan
| | - Hsin‐Yu Ho
- Oral Cancer Research Center Changhua Christian Hospital Changhua Taiwan
| | - Ming‐Ju Hsieh
- Oral Cancer Research Center Changhua Christian Hospital Changhua Taiwan
- Ph.D. Program in Tissue Engineering and Regenerative Medicine College of Medicine, National Chung Hsing University Taichung Taiwan
- Graduate Institute of Biomedical Sciences China Medical University Taichung Taiwan
| | - Jiunn‐Liang Ko
- Institute of Medicine Chung Shan Medical University Taichung Taiwan
- Department of Medical Oncology and Chest Medicine Chung Shan Medical University Hospital Taichung Taiwan
| |
Collapse
|
9
|
Lin JT, Chuang YC, Chen MK, Lo YS, Lin CC, Ho HY, Liu YT, Hsieh MJ. Shuterin Enhances the Cytotoxicity of the Natural Killer Leukemia Cell Line KHYG-1 by Increasing the Expression Levels of Granzyme B and IFN-γ through the MAPK and Ras/Raf Signaling Pathways. Int J Mol Sci 2022; 23:12816. [PMID: 36361609 PMCID: PMC9654641 DOI: 10.3390/ijms232112816] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 08/26/2023] Open
Abstract
Natural killer (NK) cell therapy is an emerging tool for cancer immunotherapy. NK cells are isolated from peripheral blood, and their number and activity are limited. Therefore, primary NK cells should be expanded substantially, and their proliferation and cytotoxicity must be enhanced. Shuterin is a phytochemical isolated from Ficus thonningii. In this study, we explored the possible capacity of shuterin to enhance the proliferation and activity of KHYG-1 cells (an NK leukemia cell line). Shuterin enhanced the proliferation of KHYG-1 cells and their cytotoxicity to K562 cells. Moreover, this phytochemical induced the expression of granzyme B by promoting the phosphorylated cyclic adenosine monophosphate response element-binding protein (CREB) and mitogen-activated protein kinase (MAPK) signaling pathways. Furthermore, the secretion of interferon (IFN)-γ increased with increasing levels of shuterin in KHYG-1 cells and NK cells obtained from adults with head and neck squamous cell carcinoma. Shuterin appeared to induce IFN-γ secretion by increasing the expression of lectin-like transcript 1 and the phosphorylation of proteins involved in the Ras/Raf pathway. Thus, shuterin represents a promising agent for promoting the proliferation and cytotoxicity of NK cells.
Collapse
Affiliation(s)
- Jen-Tsun Lin
- Department of Medicine, Division of Hematology and Oncology, Changhua Christian Hospital, Changhua 500, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung 402, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Yi-Ching Chuang
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua 500, Taiwan
| | - Mu-Kuan Chen
- Department of Otorhinolaryngology, Head and Neck Surgery, Changhua Christian Hospital, Changhua 500, Taiwan
| | - Yu-Sheng Lo
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua 500, Taiwan
| | - Chia-Chieh Lin
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua 500, Taiwan
| | - Hsin-Yu Ho
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua 500, Taiwan
| | - Yen-Tze Liu
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung 402, Taiwan
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua 500, Taiwan
- Department of Family Medicine, Changhua Christian Hospital, Changhua 500, Taiwan
| | - Ming-Ju Hsieh
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua 500, Taiwan
- College of Medicine, National Chung Hsing University, Taichung 402, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan
| |
Collapse
|