1
|
Masè M, Cristoforetti A, Pelloni S, Ravelli F. Systematic in-silico evaluation of fibrosis effects on re-entrant wave dynamics in atrial tissue. Sci Rep 2024; 14:11427. [PMID: 38763959 PMCID: PMC11639732 DOI: 10.1038/s41598-024-62002-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 05/13/2024] [Indexed: 05/21/2024] Open
Abstract
Despite the key role of fibrosis in atrial fibrillation (AF), the effects of different spatial distributions and textures of fibrosis on wave propagation mechanisms in AF are not fully understood. To clarify these aspects, we performed a systematic computational study to assess fibrosis effects on the characteristics and stability of re-entrant waves in electrically-remodelled atrial tissues. A stochastic algorithm, which generated fibrotic distributions with controlled overall amount, average size, and orientation of fibrosis elements, was implemented on a monolayer spheric atrial model. 245 simulations were run at changing fibrosis parameters. The emerging propagation patterns were quantified in terms of rate, regularity, and coupling by frequency-domain analysis of correspondent synthetic bipolar electrograms. At the increase of fibrosis amount, the rate of reentrant waves significantly decreased and higher levels of regularity and coupling were observed (p < 0.0001). Higher spatial variability and pattern stochasticity over repetitions was observed for larger amount of fibrosis, especially in the presence of patchy and compact fibrosis. Overall, propagation slowing and organization led to higher stability of re-entrant waves. These results strengthen the evidence that the amount and spatial distribution of fibrosis concur in dictating re-entry dynamics in remodeled tissue and represent key factors in AF maintenance.
Collapse
Affiliation(s)
- Michela Masè
- Laboratory of Biophysics and Translational Cardiology, Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, Via Sommarive 18, 38123, Povo, Trento, Italy.
| | - Alessandro Cristoforetti
- Laboratory of Biophysics and Translational Cardiology, Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, Via Sommarive 18, 38123, Povo, Trento, Italy
| | - Samuele Pelloni
- Laboratory of Biophysics and Translational Cardiology, Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, Via Sommarive 18, 38123, Povo, Trento, Italy
| | - Flavia Ravelli
- Laboratory of Biophysics and Translational Cardiology, Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, Via Sommarive 18, 38123, Povo, Trento, Italy
- CISMed-Centre for Medical Sciences, University of Trento, 38122, Trento, Italy
| |
Collapse
|
2
|
Sánchez de la Nava AM, Gómez-Cid L, Domínguez-Sobrino A, Fernández-Avilés F, Berenfeld O, Atienza F. Artificial intelligence analysis of the impact of fibrosis in arrhythmogenesis and drug response. Front Physiol 2022; 13:1025430. [PMID: 36311248 PMCID: PMC9596790 DOI: 10.3389/fphys.2022.1025430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 09/28/2022] [Indexed: 01/16/2023] Open
Abstract
Background: Cardiac fibrosis has been identified as a major factor in conduction alterations leading to atrial arrhythmias and modification of drug treatment response. Objective: To perform an in silico proof-of-concept study of Artificial Intelligence (AI) ability to identify susceptibility for conduction blocks in simulations on a population of models with diffused fibrotic atrial tissue and anti-arrhythmic drugs. Methods: Activity in 2D cardiac tissue planes were simulated on a population of variable electrophysiological and anatomical profiles using the Koivumaki model for the atrial cardiomyocytes and the Maleckar model for the diffused fibroblasts (0%, 5% and 10% fibrosis area). Tissue sheets were of 2 cm side and the effect of amiodarone, dofetilide and sotalol was simulated to assess the conduction of the electrical impulse across the planes. Four different AI algorithms (Quadratic Support Vector Machine, QSVM, Cubic Support Vector Machine, CSVM, decision trees, DT, and K-Nearest Neighbors, KNN) were evaluated in predicting conduction of a stimulated electrical impulse. Results: Overall, fibrosis implementation lowered conduction velocity (CV) for the conducting profiles (0% fibrosis: 67.52 ± 7.3 cm/s; 5%: 58.81 ± 14.04 cm/s; 10%: 57.56 ± 14.78 cm/s; p < 0.001) in combination with a reduced 90% action potential duration (0% fibrosis: 187.77 ± 37.62 ms; 5%: 93.29 ± 82.69 ms; 10%: 106.37 ± 85.15 ms; p < 0.001) and peak membrane potential (0% fibrosis: 89.16 ± 16.01 mV; 5%: 70.06 ± 17.08 mV; 10%: 82.21 ± 19.90 mV; p < 0.001). When the antiarrhythmic drugs were present, a total block was observed in most of the profiles. In those profiles in which electrical conduction was preserved, a decrease in CV was observed when simulations were performed in the 0% fibrosis tissue patch (Amiodarone ΔCV: -3.59 ± 1.52 cm/s; Dofetilide ΔCV: -13.43 ± 4.07 cm/s; Sotalol ΔCV: -0.023 ± 0.24 cm/s). This effect was preserved for amiodarone in the 5% fibrosis patch (Amiodarone ΔCV: -4.96 ± 2.15 cm/s; Dofetilide ΔCV: 0.14 ± 1.87 cm/s; Sotalol ΔCV: 0.30 ± 4.69 cm/s). 10% fibrosis simulations showed that part of the profiles increased CV while others showed a decrease in this variable (Amiodarone ΔCV: 0.62 ± 9.56 cm/s; Dofetilide ΔCV: 0.05 ± 1.16 cm/s; Sotalol ΔCV: 0.22 ± 1.39 cm/s). Finally, when the AI algorithms were tested for predicting conduction on input of variables from the population of modelled, Cubic SVM showed the best performance with AUC = 0.95. Conclusion: In silico proof-of-concept study demonstrates that fibrosis can alter the expected behavior of antiarrhythmic drugs in a minority of atrial population models and AI can assist in revealing the profiles that will respond differently.
Collapse
Affiliation(s)
- Ana María Sánchez de la Nava
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Lidia Gómez-Cid
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Alonso Domínguez-Sobrino
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain
| | - Francisco Fernández-Avilés
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain,Universidad Complutense de Madrid, Madrid, Spain
| | - Omer Berenfeld
- Center for Arrhythmia Research, University of Michigan, Ann Arbor, MI, United States
| | - Felipe Atienza
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain,Universidad Complutense de Madrid, Madrid, Spain,*Correspondence: Felipe Atienza,
| |
Collapse
|
3
|
Atrial fibrosis identification with unipolar electrogram eigenvalue distribution analysis in multi-electrode arrays. Med Biol Eng Comput 2022; 60:3091-3112. [PMID: 36098928 PMCID: PMC9537244 DOI: 10.1007/s11517-022-02648-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 08/09/2022] [Indexed: 12/01/2022]
Abstract
Abstract Atrial fibrosis plays a key role in the initiation and progression of atrial fibrillation (AF). Atrial fibrosis is typically identified by a peak-to-peak amplitude of bipolar electrograms (b-EGMs) lower than 0.5 mV, which may be considered as ablation targets. Nevertheless, this approach disregards signal spatiotemporal information and b-EGM sensitivity to catheter orientation. To overcome these limitations, we propose the dominant-to-remaining eigenvalue dominance ratio (EIGDR) of unipolar electrograms (u-EGMs) within neighbor electrode cliques as a waveform dispersion measure, hypothesizing that it is correlated with the presence of fibrosis. A simulated 2D tissue with a fibrosis patch was used for validation. We computed EIGDR maps from both original and time-aligned u-EGMs, denoted as \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathcal {R}$$\end{document}R and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathcal{R}^{\mathcal{A}}$$\end{document}RA, respectively, also mapping the gain in eigenvalue concentration obtained by the alignment, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\Delta \mathcal{R}^{\mathcal{A}}$$\end{document}ΔRA. The performance of each map in detecting fibrosis was evaluated in scenarios including noise and variable electrode-tissue distance. Best results were achieved by \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathcal{R}^{\mathcal{A}}$$\end{document}RA, reaching 94% detection accuracy, versus the 86% of b-EGMs voltage maps. The proposed strategy was also tested in real u-EGMs from fibrotic and non-fibrotic areas over 3D electroanatomical maps, supporting the ability of the EIGDRs as fibrosis markers, encouraging further studies to confirm their translation to clinical settings. Graphical Abstract Upper panels: map of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathcal {R}^{\mathcal {A}}$$\end{document}RA from 3×3 cliques for Ψ= 0∘ and bipolar voltage map Vb-m, performed assuming a variable electrode-to-tissue distance and noisy u-EGMs (noise level σv = 46.4 μV ). Lower panels: detected fibrotic areas (brown), using the thresholds that maximize detection accuracy of each map ![]()
Collapse
|
4
|
Regional Diversities in Fibrogenesis Weighed as a Key Determinant for Atrial Arrhythmogenesis. Biomedicines 2021; 9:biomedicines9121900. [PMID: 34944715 PMCID: PMC8698388 DOI: 10.3390/biomedicines9121900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/10/2021] [Accepted: 12/11/2021] [Indexed: 11/18/2022] Open
Abstract
Atrial fibrosis plays a key role in atrial myopathy, resulting in the genesis of atrial fibrillation (AF). The abnormal distribution of fibrotic tissue, electrical coupling, paracrine interactions, and biomechanical–electrical interactions have all been suggested as causes of fibrosis-related arrhythmogenesis. Moreover, the regional difference in fibrogenesis, specifically the left atrium (LA) exhibiting a higher arrhythmogenesis and level of fibrosis than the right atrium (RA) in AF, is a key contributor to atrial arrhythmogenesis. LA fibroblasts have greater profibrotic cellular activities than RA fibroblasts, but knowledge about the regional diversity of atrial regional fibrogenesis remains limited. This article provides a comprehensive review of research findings on the association between fibrogenesis and arrhythmogenesis from laboratory to clinical evidence and updates the current understanding of the potential mechanism underlying the difference in fibrogenesis between the LA and RA.
Collapse
|