1
|
Cacheiro P, Spielmann N, Mashhadi HH, Fuchs H, Gailus-Durner V, Smedley D, de Angelis MH. Knockout mice are an important tool for human monogenic heart disease studies. Dis Model Mech 2023; 16:dmm049770. [PMID: 36825469 PMCID: PMC10073007 DOI: 10.1242/dmm.049770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 02/15/2023] [Indexed: 02/25/2023] Open
Abstract
Mouse models are relevant to studying the functionality of genes involved in human diseases; however, translation of phenotypes can be challenging. Here, we investigated genes related to monogenic forms of cardiovascular disease based on the Genomics England PanelApp and aligned them to International Mouse Phenotyping Consortium (IMPC) data. We found 153 genes associated with cardiomyopathy, cardiac arrhythmias or congenital heart disease in humans, of which 151 have one-to-one mouse orthologues. For 37.7% (57/151), viability and heart data captured by electrocardiography, transthoracic echocardiography, morphology and pathology from embryos and young adult mice are available. In knockout mice, 75.4% (43/57) of these genes showed non-viable phenotypes, whereas records of prenatal, neonatal or infant death in humans were found for 35.1% (20/57). Multisystem phenotypes are common, with 58.8% (20/34) of heterozygous (homozygous lethal) and 78.6% (11/14) of homozygous (viable) mice showing cardiovascular, metabolic/homeostasis, musculoskeletal, hematopoietic, nervous system and/or growth abnormalities mimicking the clinical manifestations observed in patients. These IMPC data are critical beyond cardiac diagnostics given their multisystemic nature, allowing detection of abnormalities across physiological systems and providing a valuable resource to understand pleiotropic effects.
Collapse
Affiliation(s)
- Pilar Cacheiro
- William Harvey Research Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Nadine Spielmann
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Center Munich, Munich 85764, Germany
| | - Hamed Haseli Mashhadi
- European Molecular Biology Laboratory-European Bioinformatics Institute, Hinxton CB10 1SD, UK
| | - Helmut Fuchs
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Center Munich, Munich 85764, Germany
| | - Valerie Gailus-Durner
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Center Munich, Munich 85764, Germany
| | - Damian Smedley
- William Harvey Research Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Martin Hrabĕ de Angelis
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Center Munich, Munich 85764, Germany
- Chair of Experimental Genetics, TUM School of Life Sciences, Technische Universität München, Freising 85354, Germany
- German Center for Diabetes Research (DZD), Neuherberg 85764, Germany
| |
Collapse
|
2
|
Yousefzadeh N, Jeddi S, Zarkesh M, Kashfi K, Ghasemi A. Altered sialin mRNA gene expression in type 2 diabetic male Wistar rats: implications for nitric oxide deficiency. Sci Rep 2023; 13:4013. [PMID: 36899088 PMCID: PMC10006425 DOI: 10.1038/s41598-023-31240-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023] Open
Abstract
Nitrate therapy has been suggested to boost nitric oxide (NO) levels in type 2 diabetes (T2D); however, little is known about nitrate transport across the membranes. This study aimed to assess changes in the mRNA expression of sialin, as a nitrate transporter, in the main tissues of rats with T2D. Rats were divided into two groups (n = 6/group): Control and T2D. A high-fat diet combined with a low dose of streptozotocin (STZ, 30 mg/kg) was used to induce T2D. At month 6, samples from the main tissues of rats were used to measure the mRNA expression of sialin and levels of NO metabolites. Rats with T2D had lower nitrate levels in the soleus muscle (66%), lung (48%), kidney (43%), aorta (30%), adrenal gland (58%), epididymal adipose tissue (eAT) (61%), and heart (37%) and had lower nitrite levels in the pancreas (47%), kidney (42%), aorta (33%), liver (28%), eAT (34%), and heart (32%). The order of sialin gene expression in control rats was: soleus muscle > kidney > pancreas > lung > liver > adrenal gland > brain > eAT > intestine > stomach > aorta > heart. Compared to controls, rats with T2D had higher sialin mRNA expressions in the stomach (2.1), eAT (2.0), adrenal gland (1.7), liver (8.9), and soleus muscle (3.4), and lower sialin expression in the intestine (0.56), pancreas (0.42), and kidney (0.44), all P values < 0.05. These findings indicate altered sialin mRNA expression in the main tissues of male T2D rats and may have implications for future NO-based treatment of T2D.
Collapse
Affiliation(s)
- Nasibeh Yousefzadeh
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, No. 24, Arabi Street, Daneshjoo Blvd, Velenjak, P.O. Box 19395-4763, Tehran, Iran
| | - Sajad Jeddi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, No. 24, Arabi Street, Daneshjoo Blvd, Velenjak, P.O. Box 19395-4763, Tehran, Iran
| | - Maryam Zarkesh
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Khosrow Kashfi
- Department of Molecular, Cellular, and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY, USA
| | - Asghar Ghasemi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, No. 24, Arabi Street, Daneshjoo Blvd, Velenjak, P.O. Box 19395-4763, Tehran, Iran.
| |
Collapse
|
3
|
Uusimaa J, Kettunen J, Varilo T, Järvelä I, Kallijärvi J, Kääriäinen H, Laine M, Lapatto R, Myllynen P, Niinikoski H, Rahikkala E, Suomalainen A, Tikkanen R, Tyynismaa H, Vieira P, Zarybnicky T, Sipilä P, Kuure S, Hinttala R. The Finnish genetic heritage in 2022 – from diagnosis to translational research. Dis Model Mech 2022; 15:278566. [PMID: 36285626 PMCID: PMC9637267 DOI: 10.1242/dmm.049490] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Isolated populations have been valuable for the discovery of rare monogenic diseases and their causative genetic variants. Finnish disease heritage (FDH) is an example of a group of hereditary monogenic disorders caused by single major, usually autosomal-recessive, variants enriched in the population due to several past genetic drift events. Interestingly, distinct subpopulations have remained in Finland and have maintained their unique genetic repertoire. Thus, FDH diseases have persisted, facilitating vigorous research on the underlying molecular mechanisms and development of treatment options. This Review summarizes the current status of FDH, including the most recently discovered FDH disorders, and introduces a set of other recently identified diseases that share common features with the traditional FDH diseases. The Review also discusses a new era for population-based studies, which combine various forms of big data to identify novel genotype–phenotype associations behind more complex conditions, as exemplified here by the FinnGen project. In addition to the pathogenic variants with an unequivocal causative role in the disease phenotype, several risk alleles that correlate with certain phenotypic features have been identified among the Finns, further emphasizing the broad value of studying genetically isolated populations.
Collapse
Affiliation(s)
- Johanna Uusimaa
- Children and Adolescents, Oulu University Hospital 1 , 90029 Oulu , Finland
- Research Unit of Clinical Medicine and Medical Research Center, Oulu University Hospital and University of Oulu 2 , 90014 Oulu , Finland
| | - Johannes Kettunen
- Computational Medicine, Center for Life Course Health Research, University of Oulu 3 , 90014 Oulu , Finland
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare 4 , 00271 Helsinki
- Finland 4 , 00271 Helsinki
- Biocenter Oulu, University of Oulu 5 , 90014 Oulu , Finland
| | - Teppo Varilo
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare 4 , 00271 Helsinki
- Finland 4 , 00271 Helsinki
- Department of Medical Genetics, University of Helsinki 6 , 00251 Helsinki , Finland
| | - Irma Järvelä
- Department of Medical Genetics, University of Helsinki 6 , 00251 Helsinki , Finland
| | - Jukka Kallijärvi
- Folkhälsan Institute of Genetics, Folkhälsan Research Center 7 , 00014 Helsinki , Finland
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki 8 , 00014 Helsinki , Finland
| | - Helena Kääriäinen
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare 4 , 00271 Helsinki
- Finland 4 , 00271 Helsinki
| | - Minna Laine
- Department of Pediatric Neurology, Helsinki University Hospital and University of Helsinki 9 , 00029 Helsinki , Finland
| | - Risto Lapatto
- Children's Hospital, University of Helsinki and Helsinki University Central Hospital 10 , 00029 Helsinki , Finland
| | - Päivi Myllynen
- Department of Clinical Chemistry, Cancer and Translational Medicine Research Unit, Medical Research Center, University of Oulu and Northern Finland Laboratory Centre NordLab, Oulu University Hospital 11 , 90029 Oulu , Finland
| | - Harri Niinikoski
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku 12 , 20014 Turku , Finland
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku 13 , 20014 Turku , Finland
- Centre for Population Health Research, University of Turku and Turku University Hospital 14 , 20014 Turku , Finland
- Department of Pediatrics, Turku University Hospital 15 , 20014 Turku , Finland
| | - Elisa Rahikkala
- Research Unit of Clinical Medicine and Medical Research Center, Oulu University Hospital and University of Oulu 2 , 90014 Oulu , Finland
- Department of Clinical Genetics, Oulu University Hospital 16 , 90029 Oulu , Finland
| | - Anu Suomalainen
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki 8 , 00014 Helsinki , Finland
- HUS Diagnostics, Helsinki University Hospital 17 , 00014 Helsinki , Finland
| | - Ritva Tikkanen
- Institute of Biochemistry, Medical Faculty, University of Giessen 18 , D-35392 Giessen , Germany
| | - Henna Tyynismaa
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki 8 , 00014 Helsinki , Finland
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki 19 , 00014 Helsinki , Finland
| | - Päivi Vieira
- Children and Adolescents, Oulu University Hospital 1 , 90029 Oulu , Finland
- Research Unit of Clinical Medicine and Medical Research Center, Oulu University Hospital and University of Oulu 2 , 90014 Oulu , Finland
| | - Tomas Zarybnicky
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki 8 , 00014 Helsinki , Finland
- Helsinki Institute of Life Science, University of Helsinki 20 , 00014 Helsinki , Finland
| | - Petra Sipilä
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku 12 , 20014 Turku , Finland
- Turku Center for Disease Modeling, Institute of Biomedicine, University of Turku 21 , 20014 Turku , Finland
| | - Satu Kuure
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki 8 , 00014 Helsinki , Finland
- GM-Unit, Laboratory Animal Center, Helsinki Institute of Life Science, University of Helsinki 22 , 00014 Helsinki , Finland
| | - Reetta Hinttala
- Research Unit of Clinical Medicine and Medical Research Center, Oulu University Hospital and University of Oulu 2 , 90014 Oulu , Finland
- Biocenter Oulu, University of Oulu 5 , 90014 Oulu , Finland
| |
Collapse
|
4
|
Genetically modified mice for research on human diseases: A triumph for Biotechnology or a work in progress? THE EUROBIOTECH JOURNAL 2022. [DOI: 10.2478/ebtj-2022-0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022] Open
Abstract
Abstract
Genetically modified mice are engineered as models for human diseases. These mouse models include inbred strains, mutants, gene knockouts, gene knockins, and ‘humanized’ mice. Each mouse model is engineered to mimic a specific disease based on a theory of the genetic basis of that disease. For example, to test the amyloid theory of Alzheimer’s disease, mice with amyloid precursor protein genes are engineered, and to test the tau theory, mice with tau genes are engineered. This paper discusses the importance of mouse models in basic research, drug discovery, and translational research, and examines the question of how to define the “best” mouse model of a disease. The critiques of animal models and the caveats in translating the results from animal models to the treatment of human disease are discussed. Since many diseases are heritable, multigenic, age-related and experience-dependent, resulting from multiple gene-gene and gene-environment interactions, it will be essential to develop mouse models that reflect these genetic, epigenetic and environmental factors from a developmental perspective. Such models would provide further insight into disease emergence, progression and the ability to model two-hit and multi-hit theories of disease. The summary examines the biotechnology for creating genetically modified mice which reflect these factors and how they might be used to discover new treatments for complex human diseases such as cancers, neurodevelopmental and neurodegenerative diseases.
Collapse
|