1
|
Noguchi R, Yanagihara K, Iino Y, Komatsu T, Kubo T, Ono T, Osaki J, Adachi Y, Iwata S, Shiota Y, Seyama T, Kondo T. Establishment and characterization of novel cancer cachexia-inducing cell line, Aku60GC, of scirrhous gastric cancer. Hum Cell 2025; 38:82. [PMID: 40178664 DOI: 10.1007/s13577-025-01208-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Accepted: 03/10/2025] [Indexed: 04/05/2025]
Abstract
Cancer cachexia is a pathological state characterized by severe weight loss, skeletal muscle depletion, and adipose tissue reduction. Cancer cachexia is observed in gastric cancer (GC) with a higher incidence over 80%. Approximately 80% patients with advanced GC including scirrhous gastric cancer (SGC), which has the worst prognosis among all GC, are affected with cachexia. The exact pathophysiology in SGC cancer cachexia remains elusive, and therapeutic approaches for the cancer cachexia have not been established. Patient-derived cancer cachexia models are promising for elucidating the underlying mechanisms of disease progression and developing novel treatments, none of which originate from SGC. Therefore, we established a novel cancer cachexia-inducing cell line, designated Aku60GC, through stepwise selection of a patient-derived SGC cell line, HSC-60. Subcutaneous implantation of the Aku60GC cells into nude mice resulted in weight loss, muscle atrophy, and adipose tissue depletion with high reproducibility, accompanied by elevation of the circulating cytokines IL-8 and IL-18. Compared to parental HSC-60 cells, Aku60GC cells exhibited additional genomic changes, such as AKT2 and CCNE1 gains, a somatic mutation of RUNX1, and accelerated growth. Thus, our results demonstrate that the Aku60GC cell line is a valuable resource for research on cancer cachexia in SGC.
Collapse
Affiliation(s)
- Rei Noguchi
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Kazuyoshi Yanagihara
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.
- Department of Life Sciences, Faculty of Pharmacy, Yasuda Women's University, 6-13-1 Yasuhigashi, Asaminami-ku, Hiroshima-shi, Hiroshima, 731-0153, Japan.
- Biospecimen Laboratories, Inc., 1-5-10-105 Nakamagome, Ohta-ku, Tokyo, 143-0027, Japan.
| | - Yuki Iino
- Exploratory Oncology and Clinical Trial Center, National Cancer Center, 6-5-1 Kashiwanoha, Kashiwa-shi, Chiba, 277-8577, Japan
| | - Teruo Komatsu
- Exploratory Oncology and Clinical Trial Center, National Cancer Center, 6-5-1 Kashiwanoha, Kashiwa-shi, Chiba, 277-8577, Japan
| | - Takanori Kubo
- Department of Life Sciences, Faculty of Pharmacy, Yasuda Women's University, 6-13-1 Yasuhigashi, Asaminami-ku, Hiroshima-shi, Hiroshima, 731-0153, Japan
| | - Takuya Ono
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Julia Osaki
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Yuki Adachi
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Shuhei Iwata
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Yomogi Shiota
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Toshio Seyama
- Department of Life Sciences, Faculty of Pharmacy, Yasuda Women's University, 6-13-1 Yasuhigashi, Asaminami-ku, Hiroshima-shi, Hiroshima, 731-0153, Japan
| | - Tadashi Kondo
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.
| |
Collapse
|
2
|
You Y, Wang Y, Zhang G, Li Y. The Molecular Mechanisms and Treatment of Cancer-Related Cachexia. J Nutr Sci Vitaminol (Tokyo) 2025; 71:1-15. [PMID: 40024744 DOI: 10.3177/jnsv.71.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
Cancer cachexia is a multifactorial syndrome characterized by persistent skeletal muscle loss, with or without fat loss, which cannot be completely reversed by traditional nutritional support and leads to impaired organ function. Cachexia seriously reduces the quality of life of (QOL) patients, affects the therapeutic effect against cancers, increases the incidence of complications, and is an important cause of death for patients with advanced cancers. To date, no effective medical intervention has completely reversed cachexia, and no medication has been agreed upon. Here, we describe recent advances in the diagnosis, molecular mechanism and treatment of cancer-related cachexia.
Collapse
Affiliation(s)
- Yongfei You
- Department of Medical Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University
- Department of Medical Oncology, The Third Affiliated Hospital, Jiangxi Medical College, Nanchang University, The First Hospital of Nanchang
| | - Yong Wang
- Department of Medical Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University
| | - Guohua Zhang
- Nanchang Key Laboratory of Tumor Gene Diagnosis and Innovative Treatment Research, Gaoxin Branch of the First Affiliated Hospital, Jiangxi Medical College, Nanchang University
| | - Yong Li
- Department of Medical Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University
| |
Collapse
|
3
|
Sun L, Yuan C, An X, Kong L, Zhang D, Chen B, Lu Z, Liu J. Delta-like noncanonical notch ligand 2 regulates the proliferation and differentiation of sheep myoblasts through the Wnt/β-catenin signaling pathway. J Cell Physiol 2024; 239:e31385. [PMID: 39030845 DOI: 10.1002/jcp.31385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/25/2024] [Accepted: 07/05/2024] [Indexed: 07/22/2024]
Abstract
This study delved into the role of delta-like noncanonical notch ligand 2 (DLK2) in the cell cycle, proliferation, apoptosis, and differentiation of myoblasts, as well as its interaction with the classical Wnt/β-catenin signaling pathway in regulating myoblast function. The research revealed that upregulation of DLK2 in myoblasts during the proliferation phase enhanced myoblast proliferation, facilitated cell cycle progression, and reduced apoptosis. Conversely, downregulation of DLK2 expression using siRNA during the differentiation phase promoted myoblast hypertrophy and fusion, suppressed the expression of muscle fiber degradation factors, and expedited the differentiation process. DLK2 regulates myoblasts function by influencing the expression of various factors associated with the Wnt/β-catenin signaling pathway, including CTNNB1, FZD1, FZD6, RSPO1, RSPO4, WNT4, WNT5A, and adenomatous polyposis coli. In essence, DLK2, with the involvement of the Wnt/β-catenin signaling pathway, plays a crucial regulatory role in the cell cycle, proliferation, apoptosis, and differentiation of myoblasts.
Collapse
Affiliation(s)
- Lixia Sun
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Chao Yuan
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xuejiao An
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Lingying Kong
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Dan Zhang
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Bowen Chen
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Zengkui Lu
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jianbin Liu
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
4
|
Tang W, Sun J, Malyar RM, Shi F. Analysis of lncRNAs and Their Regulatory Network in Skeletal Muscle Development of the Yangtze River Delta White Goat. Animals (Basel) 2024; 14:3125. [PMID: 39518848 PMCID: PMC11545041 DOI: 10.3390/ani14213125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/26/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
lncRNA (long non-coding RNA) has been confirmed to be associated with growth, development, cell proliferation, and other biological processes. This study explored the potential role and dynamic change process of lncRNAs and related ceRNA (competitive endogenous RNA) networks in skeletal muscle development of the Yangtze River Delta White (YDW) goat, and to analyze the differences in muscle fiber characteristics and meat quality levels of goats at different growth stages. In this study, we compared the expression profiles of lncRNAs in the M. Longissimus dorsi of the YDW goats at different stages of growth and development by RNA sequencing. The results revealed that, in terms of muscle fiber characteristics, muscle fiber diameter and muscle fiber area were significantly larger in 6-month-old and 10-month-old goats than those in 2-month-old goats (p < 0.01). In terms of muscle quality, a* and b* values of 6-month-old goats were significantly higher than those of 2-month-old goats (p < 0.01). Additionally, the a*, b*, and L* values of 6-month-old goats were significantly higher than those of 10-month-old goats (p < 0.01). The pH at 45 min post-mortem (pH45min) in 10-month-old goats was significantly higher than that in 2-month-old goats (p = 0.006). However, the pH at 24 h post-mortem (pH24h) in 10-month-old goats was significantly lower than that in both 2-month-old and 6-month-old goats (p < 0.01). Shear force increased gradually with age (p < 0.05), while there was no significant difference in drip loss among the different age groups (p > 0.05). Among the identified lncRNA expression profiles, a total of 3073 lncRNAs were found, including 2676 known lncRNAs and 397 novel lncRNAs. Of these, 110, 93, and 99 lncRNAs were specifically expressed in 2-month-old, 6-month-old, and 10-month-old goats, respectively. The lncRNA target gene enrichment analysis showed that they were mainly involved in actin binding, the actin cytoskeleton, the myocardin complex, as well as the AMPK, FoxO, and GnRH signaling pathways. When constructing the lncRNA-miRNA-mRNA ceRNA network, it was found that the ceRNA networks centered on chi-miR-758 and chi-miR-127-5p were involved in muscle development across all three periods, suggesting that they may play an important role in goat muscle growth and development.
Collapse
Affiliation(s)
- Wenjun Tang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (W.T.); (J.S.); (R.M.M.)
| | - Jiahao Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (W.T.); (J.S.); (R.M.M.)
- Lishui Institute of Agriculture and Forestry Sciences, Lishui 323000, China
| | - Rahmani Mohammad Malyar
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (W.T.); (J.S.); (R.M.M.)
- Veterinary Science Faculty, Nangarhar University, Nangarhar 2601, Afghanistan
| | - Fangxiong Shi
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (W.T.); (J.S.); (R.M.M.)
| |
Collapse
|
5
|
Chen G, Zou J, He Q, Xia S, Xiao Q, Du R, Zhou S, Zhang C, Wang N, Feng Y. The Role of Non-Coding RNAs in Regulating Cachexia Muscle Atrophy. Cells 2024; 13:1620. [PMID: 39404384 PMCID: PMC11482569 DOI: 10.3390/cells13191620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/17/2024] [Accepted: 09/25/2024] [Indexed: 10/19/2024] Open
Abstract
Cachexia is a late consequence of various diseases that is characterized by systemic muscle loss, with or without fat loss, leading to significant mortality. Multiple signaling pathways and molecules that increase catabolism, decrease anabolism, and interfere with muscle regeneration are activated. Non-coding RNAs (ncRNAs), such as microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), play vital roles in cachexia muscle atrophy. This review mainly provides the mechanisms of specific ncRNAs to regulate muscle loss during cachexia and discusses the role of ncRNAs in cachectic biomarkers and novel therapeutic strategies that could offer new insights for clinical practice.
Collapse
Affiliation(s)
- Guoming Chen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (G.C.); (C.Z.); (N.W.)
| | - Jiayi Zou
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; (J.Z.); (Q.H.)
| | - Qianhua He
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; (J.Z.); (Q.H.)
| | - Shuyi Xia
- Fifth Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou 510405, China;
| | - Qili Xiao
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; (Q.X.); (S.Z.)
| | - Ruoxi Du
- Eighth Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou 510405, China;
| | - Shengmei Zhou
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; (Q.X.); (S.Z.)
| | - Cheng Zhang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (G.C.); (C.Z.); (N.W.)
| | - Ning Wang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (G.C.); (C.Z.); (N.W.)
| | - Yibin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (G.C.); (C.Z.); (N.W.)
| |
Collapse
|
6
|
Du J, Wu Q, Bae EJ. Epigenetics of Skeletal Muscle Atrophy. Int J Mol Sci 2024; 25:8362. [PMID: 39125931 PMCID: PMC11312722 DOI: 10.3390/ijms25158362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Skeletal muscle atrophy, characterized by diminished muscle strength and mass, arises from various causes, including malnutrition, aging, nerve damage, and disease-related secondary atrophy. Aging markedly escalates the prevalence of sarcopenia. Concurrently, the incidence of muscle atrophy significantly rises among patients with chronic ailments such as heart failure, diabetes, and chronic obstructive pulmonary disease (COPD). Epigenetics plays a pivotal role in skeletal muscle atrophy. Aging elevates methylation levels in the promoter regions of specific genes within muscle tissues. This aberrant methylation is similarly observed in conditions like diabetes, neurological disorders, and cardiovascular diseases. This study aims to explore the relationship between epigenetics and skeletal muscle atrophy, thereby enhancing the understanding of its pathogenesis and uncovering novel therapeutic strategies.
Collapse
Affiliation(s)
- Jiacheng Du
- Department of Biochemistry, Jeonbuk National University Medical School, Jeonju 54896, Republic of Korea
| | - Qian Wu
- Department of Biochemistry, Jeonbuk National University Medical School, Jeonju 54896, Republic of Korea
| | - Eun Ju Bae
- School of Pharmacy and Institute of New Drug Development, Jeonbuk National University, Jeonju 54896, Republic of Korea
| |
Collapse
|
7
|
Pedraza-Vázquez G, Mena-Montes B, Hernández-Álvarez D, Gómez-Verjan JC, Toledo-Pérez R, López-Teros MT, Königsberg M, Gómez-Quiroz LE, Luna-López A. A low-intensity lifelong exercise routine changes miRNA expression in aging and prevents osteosarcopenic obesity by modulating inflammation. Arch Gerontol Geriatr 2023; 105:104856. [PMID: 36399890 DOI: 10.1016/j.archger.2022.104856] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/06/2022] [Accepted: 11/09/2022] [Indexed: 11/14/2022]
Abstract
Osteosarcopenic obesity (OSO) has been associated with increase immobility, falls, fractures, and other dysfunctions, which could increase mortality risk during aging. However, its etiology remains unknown. Recent studies revealed that sedentarism, fat gain, and epigenetic regulators are critical in its development. One effective intervention to prevent and treat OSO is exercise. Therefore, in the present study, by keeping rats in conditions of sedentarism and others under a low-intensity exercise routine, we established an experimental model of OSO. We determined the degree of sarcopenia, obesity, and osteopenia at different ages and analyzed the miRNA expression during the lifespan using miRNA microarrays from gastrocnemius muscle. Interestingly microarrays results showed that there is a set of miRNAs that changed their expression with exercise. The pathway enrichment analysis showed that these miRNAs are strongly associated with immune regulation. Further inflammatory profiles with IL-6/IL-10 and TNF-α/IL-10 ratios showed that exercised rats presented a lower pro-inflammatory profile than sedentary rats. Also, the body fat gain in the sedentary group increased the inflammatory profile, ultimately leading to muscle dysfunction. Exercise prevented strength loss over time and maintained skeletal muscle functionality over time. Differential expression of miRNAs suggests that they might participate in this process by regulating the inflammatory response associated with aging, thus preventing the development of OSO.
Collapse
Affiliation(s)
- Gibrán Pedraza-Vázquez
- Posgrado en Biología Experimental, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico; Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Mexico City, Mexico; Dirección de Investigación, Instituto Nacional de Geriatría, Mexico City 10200, Mexico
| | - Beatriz Mena-Montes
- Posgrado en Biología Experimental, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico; Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Mexico City, Mexico; Dirección de Investigación, Instituto Nacional de Geriatría, Mexico City 10200, Mexico
| | - David Hernández-Álvarez
- Posgrado en Biología Experimental, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico; Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Mexico City, Mexico
| | | | - Rafael Toledo-Pérez
- Posgrado en Biología Experimental, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico; Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Mexico City, Mexico
| | | | - Mina Königsberg
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Mexico City, Mexico
| | - Luis E Gómez-Quiroz
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Mexico City, Mexico
| | - Armando Luna-López
- Dirección de Investigación, Instituto Nacional de Geriatría, Mexico City 10200, Mexico.
| |
Collapse
|
8
|
The complex pathophysiology of cardiac cachexia: A review of current pathophysiology and implications for clinical practice. Am J Med Sci 2023; 365:9-18. [PMID: 36055378 DOI: 10.1016/j.amjms.2022.08.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 04/09/2022] [Accepted: 08/24/2022] [Indexed: 01/04/2023]
Abstract
Cardiac cachexia is a muscle wasting process that often develops in those with chronic heart failure resulting in weight loss, low levels of physical activity, reduced quality of life, and is associated with a poor prognosis. The pathology of cardiac cachexia is complex with new evidence emerging that implicates several body systems. This review describes the pathophysiology associated with cardiac cachexia and addresses: 1) hormonal changes- neurohormonal abnormalities and metabolic hormone imbalance; 2) mechanisms of muscle wasting in cardiac cachexia, and the integral mechanisms between changed hormones due to cardiac cachexia and muscle wasting processes, and 3) associated abnormalities of gastrointestinal system that contribute to cardiac cachexia. These pleiotropic mechanisms demonstrate the intricate interplay between the affected systems and account for why cardiac cachexia is difficult to manage clinically. This review summarises current pathophysiology of cardiac cachexia and highlights symptoms of cardiac cachexia, implications for clinical practice and research gaps.
Collapse
|
9
|
Potential Therapeutic Strategies for Skeletal Muscle Atrophy. Antioxidants (Basel) 2022; 12:antiox12010044. [PMID: 36670909 PMCID: PMC9854691 DOI: 10.3390/antiox12010044] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/13/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
The maintenance of muscle homeostasis is vital for life and health. Skeletal muscle atrophy not only seriously reduces people's quality of life and increases morbidity and mortality, but also causes a huge socioeconomic burden. To date, no effective treatment has been developed for skeletal muscle atrophy owing to an incomplete understanding of its molecular mechanisms. Exercise therapy is the most effective treatment for skeletal muscle atrophy. Unfortunately, it is not suitable for all patients, such as fractured patients and bedridden patients with nerve damage. Therefore, understanding the molecular mechanism of skeletal muscle atrophy is crucial for developing new therapies for skeletal muscle atrophy. In this review, PubMed was systematically screened for articles that appeared in the past 5 years about potential therapeutic strategies for skeletal muscle atrophy. Herein, we summarize the roles of inflammation, oxidative stress, ubiquitin-proteasome system, autophagic-lysosomal pathway, caspases, and calpains in skeletal muscle atrophy and systematically expound the potential drug targets and therapeutic progress against skeletal muscle atrophy. This review focuses on current treatments and strategies for skeletal muscle atrophy, including drug treatment (active substances of traditional Chinese medicine, chemical drugs, antioxidants, enzyme and enzyme inhibitors, hormone drugs, etc.), gene therapy, stem cell and exosome therapy (muscle-derived stem cells, non-myogenic stem cells, and exosomes), cytokine therapy, physical therapy (electroacupuncture, electrical stimulation, optogenetic technology, heat therapy, and low-level laser therapy), nutrition support (protein, essential amino acids, creatine, β-hydroxy-β-methylbutyrate, and vitamin D), and other therapies (biomaterial adjuvant therapy, intestinal microbial regulation, and oxygen supplementation). Considering many treatments have been developed for skeletal muscle atrophy, we propose a combination of proper treatments for individual needs, which may yield better treatment outcomes.
Collapse
|
10
|
Uddin MH, Mohammad RM, Philip PA, Azmi AS, Muqbil I. Role of noncoding RNAs in pancreatic ductal adenocarcinoma associated cachexia. Am J Physiol Cell Physiol 2022; 323:C1624-C1632. [PMID: 36280389 PMCID: PMC9722253 DOI: 10.1152/ajpcell.00424.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/11/2022] [Accepted: 10/11/2022] [Indexed: 11/22/2022]
Abstract
Cachexia is an acute syndrome that is very commonly observed in patients with cancer. Cachexia is the number one cause of death in patients with metastatic disease and is also the major factor for physical toxicity and financial burden. More importantly, the majority of patients with advanced-stage pancreatic ductal adenocarcinoma (PDAC) cancer undergo cachexia. Pancreatic cancer causes deaths of ∼50,000 Americans and about 400,000 people worldwide every year. The high mortality rates in metastatic PDAC are due to systemic pathologies and cachexia, which quickens death in these patients. About 90% of all patients with PDAC undergo wasting of muscle causing mobility loss and leading to a number of additional pathological conditions. PDAC-associated cancer cachexia emanates from complex signaling cues involving both mechanical and biological signals. Tumor invasion is associated with the loss of pancreatic function-induced digestive disorders and malabsorption, which causes subsequent weight loss and eventually promotes cachexia. Besides, systemic inflammation of patients with PDAC could release chemical cues (e.g., cytokine-mediated Atrogin-1/MAFbx expression) that participate in muscle wasting. Our understanding of genes, proteins, and cytokines involved in promoting cancer cachexia has evolved considerably. However, the role of epigenetic factors, particularly the role of noncoding RNAs (ncRNAs) in regulating PDAC-associated cachexia is less studied. In this review article, the most updated knowledge on the various ncRNAs including microRNAs (miRs), long noncoding RNA (lncRNAs), piwi interacting RNAs (PiwiRNAs), small nucleolar RNA (snoRNAs), and circular RNAs (circRNA) and their roles in cancer cachexia are described.
Collapse
Affiliation(s)
- Md Hafiz Uddin
- Department of Oncology, Wayne State University School of Medicine, Karmanos Cancer Institute, Detroit, Michigan
| | - Ramzi M Mohammad
- Department of Oncology, Wayne State University School of Medicine, Karmanos Cancer Institute, Detroit, Michigan
| | - Philip A Philip
- Department of Oncology, Wayne State University School of Medicine, Karmanos Cancer Institute, Detroit, Michigan
- Henry Ford Health System, Detroit, Michigan
| | - Asfar S Azmi
- Department of Oncology, Wayne State University School of Medicine, Karmanos Cancer Institute, Detroit, Michigan
| | - Irfana Muqbil
- Department of Natural Sciences, Lawrence Tech University, Southfield, Michigan
| |
Collapse
|
11
|
Pauk M, Saito H, Hesse E, Taipaleenmäki H. Muscle and Bone Defects in Metastatic Disease. Curr Osteoporos Rep 2022; 20:273-289. [PMID: 35994202 PMCID: PMC9522697 DOI: 10.1007/s11914-022-00741-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/25/2022] [Indexed: 11/30/2022]
Abstract
PURPOSE OF REVIEW The present review addresses most recently identified mechanisms implicated in metastasis-induced bone resorption and muscle-wasting syndrome, known as cachexia. RECENT FINDINGS Metastatic disease in bone and soft tissues is often associated with skeletal muscle defects. Recent studies have identified a number of secreted molecules and extracellular vesicles that contribute to cancer cell growth and metastasis leading to bone destruction and muscle atrophy. In addition, alterations in muscle microenvironment including dysfunctions in hepatic and mitochondrial metabolism have been implicated in cancer-induced regeneration defect and muscle loss. Moreover, we review novel in vitro and animal models including promising new drug candidates for bone metastases and cancer cachexia. Preservation of bone health could be highly beneficial for maintaining muscle mass and function. Therefore, a better understanding of molecular pathways implicated in bone and muscle crosstalk in metastatic disease may provide new insights and identify new strategies to improve current anticancer therapeutics.
Collapse
Affiliation(s)
- Martina Pauk
- Institute of Musculoskeletal Medicine, University Hospital, LMU Munich, Munich, Germany
- Musculoskeletal University Center Munich, University Hospital, LMU Munich, Munich, Germany
| | - Hiroaki Saito
- Institute of Musculoskeletal Medicine, University Hospital, LMU Munich, Munich, Germany
- Musculoskeletal University Center Munich, University Hospital, LMU Munich, Munich, Germany
| | - Eric Hesse
- Institute of Musculoskeletal Medicine, University Hospital, LMU Munich, Munich, Germany
- Musculoskeletal University Center Munich, University Hospital, LMU Munich, Munich, Germany
| | - Hanna Taipaleenmäki
- Institute of Musculoskeletal Medicine, University Hospital, LMU Munich, Munich, Germany.
- Musculoskeletal University Center Munich, University Hospital, LMU Munich, Munich, Germany.
| |
Collapse
|
12
|
Malla J, Zahra A, Venugopal S, Selvamani TY, Shoukrie SI, Selvaraj R, Dhanoa RK, Hamouda RK, Mostafa J. What Role Do Inflammatory Cytokines Play in Cancer Cachexia? Cureus 2022; 14:e26798. [PMID: 35971351 PMCID: PMC9372379 DOI: 10.7759/cureus.26798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 07/12/2022] [Indexed: 11/05/2022] Open
|
13
|
miR-222 Is Involved in the Amelioration Effect of Genistein on Dexamethasone-Induced Skeletal Muscle Atrophy. Nutrients 2022; 14:nu14091861. [PMID: 35565830 PMCID: PMC9104324 DOI: 10.3390/nu14091861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/14/2022] [Accepted: 04/25/2022] [Indexed: 12/14/2022] Open
Abstract
Skeletal muscle atrophy is a complex degenerative disease characterized by decreased skeletal muscle mass, skeletal muscle strength, and function. MicroRNAs (miRNAs) are a potential therapeutic target, and natural products that regulate miRNA expression may be a safe and effective treatment strategy for muscle atrophy. Previous studies have shown beneficial effects of genistein treatment on muscle mass and muscle atrophy, but the mechanism is not fully understood. Differential co-expression network analysis revealed that miR-222 was upregulated in multiple skeletal muscle atrophy models. Subsequent in vitro (C2C12 myoblasts) and in vivo (C57BL/6 mice) experiments showed that genistein could alleviate dexamethasone-induced muscle atrophy and downregulate the expression of miR-222 in muscle tissue and C2C12 myotubes. The dual-luciferase reporter assay system confirmed that IGF1 is a target gene of miR-222 and is regulated by genistein. In C2C12 myotubes, both dexamethasone and miR-222 overexpression promoted muscle atrophy, however, this function was significantly reduced after genistein treatment. Furthermore, we also observed that both genistein and miR-222 antagomiR could significantly inhibit dexamethasone-induced muscle atrophy in vivo. These results suggest that miR-222 may be involved in the regulation of genistein on muscle atrophy, and genistein and miR-222 may be used to improve muscle health.
Collapse
|